Skip to main content
Log in

Discrete Lagrange-d’Alembert-Poincaré equations for Euler’s disk

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

Nonholonomic systems are described by the Lagrange-d’Alembert principle. The presence of symmetry leads to a reduced d’Alembert principle and to the Lagrange-d’Alembert-Poincaré equations. First, we briefly recall from previous works how to obtain these reduced equations for the case of a thick disk rolling on a rough surface using a three-dimensional abelian group of symmetries. The main results of the present paper are the calculation of the discrete Lagrange-d’Alembert-Poincaré equations for an Euler’s disk and the numerical simulation of a trajectory and its energy behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bildsten L.: Viscous dissipation for Euler disk. Phys. Rev. E. 66, 056309 (2002)

    Article  MathSciNet  Google Scholar 

  2. Bloch, A.M.: Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics Series, vol. 24. Springer, New-York (2003)

  3. Bloch A.M., Krishnaprasad P.S., Marsden J.E., Murray R.M: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Borisov A.V., Mamaev I.S., Kilin A.A.: Dynamics of rolling disk. Regul. Chaotic Dyn. 8, 201–212 (2002)

    Article  Google Scholar 

  5. Caps H., Dorbolo S., Ponte S., Croisier H., Vandewalle N.: Rolling and slipping motion of Euler’s disk. Phys. Rev. E 69, 056610 (2004)

    Article  MathSciNet  Google Scholar 

  6. Cendra H., Marsden J.E., Ratiu T.: Geometric Mechanics, Lagrangian reduction and Nonholonomic Systems Mathematics. Unlimited and Beyond. Springer, Berlin (2001)

    Google Scholar 

  7. Cendra H., Díaz V.A.: The Lagrange-d’Alembert-Poincaré equations and Integrability for the rolling disk. Regul. Chaotic Dyn. 11(1), 67–81 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cendra H., Díaz V.A: The Lagrange-d’Alembert-Poincaré equations and Integrability for the Euler’s Disk. Regul. Chaotic Dyn. 12(1), 56–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cortés J.: Geometric, control and numerical aspects of nonholonomic systems. Lecture Notes in Mathematics, vol. 1793. Springer, Berlin (2002)

    Google Scholar 

  10. Cortés J., Martí nez S.: Nonholonomic integrators. Nonlinearity 14(5), 1365–1392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cushman R., Duistermaat H., Sniatycki J.: Geometry of nonholonomically constrained systems. Adv. Ser. Nonlinear Dyn. 26, (2010)

  12. Cushman R., Hermans J., Kemppainen D.: The rolling disk. Nonlinear Differ. Equ. Appl. 19, (1996)

  13. de León M., Martínde Diego D., Santamaría-Merino A.: Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3), 1042–1064 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Easwar, K., Rouyer, F., Menon, N.: Speeding to a stop: the finite-time singularity of a spinning disk. Phys. Rev. E 66, 045102(R) (2002)

  15. Fedorov Y.N., Zenkov D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 2211–2241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fedorov, Y.N. and Zenkov, D.V.: Dynamics of the discrete Chaplygin sleigh. Discret. Contin. Dyn. Syst., 258–267 (2005)

  17. Hairer E., Lubich C., Wanner G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations Springer Series in Computational Mathematics, vol 31. Springer, Berlin (2002)

    Google Scholar 

  18. Iglesias D., Marrero J.C., Martínde Diego D., Martínez E.: Discrete nonholonomic Lagrangian systems on Lie groupoids. J. Nonlinear Sci. 18, 221–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kessler P., O’Reilly O.M.: The ringing of Euler’s disk. Regul. Chaotic Dyn. 7, 49–60 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Marsden J.E., West M.: Discrete Mechanics and variational integrators. Acta Numer. 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. McDonald, A.J., McDonald, K.T.: The rolling motion of a disk on a horizontal plane. e-print available at http://www.puhep1.princeton.edu/mcdonald/examples/rollingdisk.pdf and at http://www.lanl.gov/abs/physics/0008227 (2001)

  22. McLachlan R., Perlmutter M.: Integrators for nonholonomic mechanical systems. J. Nonlinear Sci. 16, 283–328 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Moffatt H.K.: Euler’s disk and its finite-time singularity. Nature 404, 833–834 (2000)

    Article  Google Scholar 

  24. Moffat H.K.: Reply to G. van den Engh et al. Nature 408, 540 (2000)

    Article  Google Scholar 

  25. Petrie D., Hunt J.L., Gray C.G.: Does the Euler disk slip during its motion?. Am. J. Phys. 70, 1025 (2002)

    Article  Google Scholar 

  26. Stanislavsky A.A., Weron K.: Nonlinear oscillations in the rolling motion of Euler’s disk. Phys. D 156, 247–259 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. van den Engh G., Nelson P., Roach J.: Numismatic gyrations. Nature 408, 540 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Alejandra Díaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campos, C.M., Cendra, H., Díaz, V.A. et al. Discrete Lagrange-d’Alembert-Poincaré equations for Euler’s disk. RACSAM 106, 225–234 (2012). https://doi.org/10.1007/s13398-011-0053-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0053-3

Keywords

Mathematics Subject Classification (2000)

Navigation