Skip to main content
Log in

Abstract

We introduce the discrete counterpart of the vakonomic method in Lagrangian mechanics with non-holonomic constraints. After defining the concepts of “admissible section” and “admissible infinitesimal variation” of a discrete vakonomic system, we aim to determinate those admissible sections that are critical for the Lagrangian of the system with respect to admissible infinitesimal variations. For sections that satisfy a certain regularity condition, we prove that critical sections are extremals of a variational problem without constraints canonically associated to the initial system (Lagrange multiplier rule). We introduce a notion of “constrained variational integrator”, which is characterized by a Cartan equation that ensures its simplecticity. Moreover, under certain regularity conditions we prove that these integrators can be locally constructed from a generating function of the second kind in the sense of symplectic geometry. Finally, the theory is illustrated with two elementary examples: an isoperimetric problem and an optimal control problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d V.I., Kozlov V.V., Neĭshtadt A.I.: Dynamical Systems III. Encyclopaedia of Mathematical Sciences, vol. 3. Springer, Berlin (1988)

    Google Scholar 

  2. Benito R., Martín de Diego D.: Discrete vakonomic mechanics. J. Math. Phys. 46(8), 083521 (2005)

    Article  MathSciNet  Google Scholar 

  3. Bloch, A.M.: Nonholonomic Mechanics and Control, Springer Science Ed. (2003)

  4. Cardin F., Favretti M.: On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints. J. Geom. Phys. 18(4), 295–325 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, J.-B., Guo, H.-Y., Wu, K.: Total variation and variational symplectic-energy-momentum integrators, preprint, hep-th/0109178 (2001)

  6. Chen J.-B., Guo H.-Y., Wu K.: Discrete total variation calculus and Lee’s discrete mechanics. Appl. Math. Comput. 177(1), 226–234 (2006)

    Article  MathSciNet  Google Scholar 

  7. Cortés, J.: Geometric, Control and Numerical Aspects of Nonholonomic Systems. Lecture Notes in Mathematics, vol. 1793, Springer, Berlin (2002)

  8. García, P.L., Rodrigo, C.: Cartan forms and second variation for constrained variational problems, Proceedings of the VII International Conference on Geometry, Integrability and Quantization (Varna, Bulgary), pp. 140–153. 7 Bulgarian Acad. Sci., Sofia (2006)

  9. García P.L., García A., Rodrigo C.: Cartan forms for first order constrained variational problems. J. Geom. Phys. 56(4), 571–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goldstein, H.: Classical mechanics, 2nd edn. In: Addison-Wesley Series in Physics. Addison-Wesley, Reading (1980)

  11. Gràcia X., Marín Solano J., Muñoz Lecanda M.C.: Some geometric aspects of variational calculus in constrained systems. Rep. Math. Phys. 51(1), 127–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Guibout, V.M., Bloch, A.: Discrete variational principles and Hamilton-Jacobi theory for mechanical systems and optimal control problems e-print ccsd-00002863, version1-2004

  13. Hsu L.: Calculus of variations via the Griffiths formalism. J. Differ. Geom. 36, 551–589 (1992)

    MATH  Google Scholar 

  14. Lee T.D.: Can time be a discrete dynamical variable?. Phys. Lett. B 122, 217–220 (1983)

    Article  Google Scholar 

  15. de León M., Martínde Diego D., Santamaría Merino A.: Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3), 1042–1064 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. de León M., Martín de Diego D., Santamaría Merino A.: Discrete variational integrators and optimal control theory. Adv. Comput. Math. 26(1–3), 251–268 (2006)

    Google Scholar 

  17. de León M., Marrero J.C., Martín de Diego D.: Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach. J. Geom. Phys. 35, 126–144 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Marsden J.E., Patrick G.W., Shkoller S.: Multisymplectic geometry, variational integrators and nonlinear PDEs. Commun. Math. Phys. 199(2), 351–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marsden J.E., West M.: Discrete mechanics and variational integrators. Acta Numer. 10, 317–514 (2001)

    MathSciNet  Google Scholar 

  20. Martínez S., Cortés J., de León M.: Symmetries in vakonomic dynamics: applications to optimal control. J. Geom. Phys. 38, 343–365 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Piccione P., Tausk D.V.: Lagrangian and Hamiltonian formalism for constrained variational problems. Proc. Roy. Soc. Edinb. Sect. A 132(6), 1417–1437 (2002)

    MathSciNet  MATH  Google Scholar 

  22. West, M.: Variational Integrators Ph.D. thesis, California Institute of Technology, Pasadena (2004)

  23. Vankerschaver J., Cantrijn F., de León M., Martínde Diego D.: Geometric aspects of nonholonomic field theories. Rep. Math. Phys 56(3), 387–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro L. García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García, P.L., Fernández, A. & Rodrigo, C. Variational integrators in discrete vakonomic mechanics. RACSAM 106, 137–159 (2012). https://doi.org/10.1007/s13398-011-0030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0030-x

Keywords

Mathematics Subject Classification (2000)

Navigation