Skip to main content
Log in

Quantum coordinate ring in WZW model and affine vertex algebra extensions

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we construct various simple vertex superalgebras which are extensions of affine vertex algebras, by using abelian cocycle twists of representation categories of quantum groups. This solves the Creutzig and Gaiotto conjectures (Creutzig and Gaiotto in Comm Math Phys 379:785–845, 2020, Conjecture 1.1 and 1.4) in the case of type ABC. If the twist is trivial, the resulting algebras correspond to chiral differential operators in the chiral case, and to WZW models in the non-chiral case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(F_{G,k}\) also satisfies the axiom of a full field algebra introduced by Huang and Kong in [29].

References

  1. Arkhipov, S., Gaitsgory, D.: Differential operators on the loop group via chiral algebras. Int. Math. Res. Not. 4, 165–210 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aguiar, M., Mahajan, S.: Monoidal functors, species and Hopf algebras, CRM Monograph Series, 29. American Mathematical Society, Providence, RI (2010)

  3. Bichon, J., Yuncken, R.: Quantum subgroups of the compact quantum group \({{\rm SU}}_{-1}(3)\). Bull. Lond. Math. Soc. 46(2), 315–328 (2014)

    Article  MathSciNet  Google Scholar 

  4. Bakalov, B., Kirillov, A., Jr.: Lectures on tensor categories and modular functors, University Lecture Series, 21. American Mathematical Society, Providence, RI (2001)

  5. Bichon, J., Neshveyev, S., Yamashita, M.: Graded twisting of categories and quantum groups by group actions. Ann. Inst. Fourier (Grenoble) 66, 6 (2016)

    Article  MathSciNet  Google Scholar 

  6. Creutzig, T., Gaiotto, D.: Vertex algebras for S-duality. Comm. Math. Phys. 379(3), 785–845 (2020)

    Article  MathSciNet  Google Scholar 

  7. Creutzig, T., Kanade, S., McRae, R.: Tensor categories for vertex operator superalgebra extensions, arXiv:1705.05017 [q-alg]

  8. Creutzig, T., Kanade, S., McRae, R.: Glueing vertex algebras, arXiv:1906.00119 [q-alg]

  9. Creutzig, T., Linshaw, A.: Trialities of W-algebras, arXiv:2005.10234 [math.RT]

  10. Creutzig, T., Linshaw, A.: Trialities of orthosymplectic W-algebras, arXiv:2102.10224 [math.RT]

  11. Cohen, M., Westreich, S.: From supersymmetry to quantum commutativity. J. Algebra 168(1), 1–27 (1994)

    Article  MathSciNet  Google Scholar 

  12. Dong, C., Lepowsky, J.: Generalized vertex algebras and relative vertex operators, Progress in Mathematics, 112. Birkhäuser Boston Inc, Boston, MA (1993)

  13. Donin, J., Mudrov, A.: Reflection equation, twist, and equivariant quantization. Israel J. Math. 136, 11–28 (2003)

    Article  MathSciNet  Google Scholar 

  14. Drinfeld, V.G.: Quasi-Hopf algebras. Algebra i Analiz 1(6), 114–148 (1989)

    MathSciNet  Google Scholar 

  15. Drinfeld, V.G.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({\rm Gal}(\overline{ Q}/{ Q})\). Algebra i Analiz 2(4), 149–181 (1990)

    MathSciNet  Google Scholar 

  16. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor categories, Mathematical Surveys and Monographs, 205, (2015)

  17. Etingof, P., Frenkel, I., Kirillov, Jr., A.: Lectures on representation theory and Knizhnik–Zamolodchikov Equations, Mathematical Surveys and Monographs, AMS, 58, 1998

  18. Etingof, P., Schiffmann, O.: Lectures on quantum groups, Lectures in Mathematical Physics, Second, International Press, Somerville, MA, 2002

  19. Feĭgin, B.L.: Extensions of vertex algebras. Constructions and applications. Uspekhi Mat. Nauk. 72(4(436)), 131–190 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Frenkel, E., Gaiotto, D.: Quantum Langlands dualities of boundary conditions, \(D\)-modules, and conformal blocks, Commun. Number Theory Phys., 14 (2), 199–313 (2020)

  21. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, liv+508 (1988)

  22. Fuchs, J., Runkel, I., Schweigert, C.: Conformal correlation functions, Frobenius algebras and triangulations. Nucl. Phys. 624, 452–468 (2002)

    Article  MathSciNet  Google Scholar 

  23. Frenkel, I.B., Styrkas, K.: Modified regular representations of affine and Virasoro algebras, VOA structure and semi-infinite cohomology. Adv. Math. 206(1), 57–111 (2006)

    Article  MathSciNet  Google Scholar 

  24. Frenkel, I., Zhu, Y.: Vertex operator algebras associated to representations of affine and Virasoro algebras. Duke Math. J. 66(1), 123–168 (1992)

    Article  MathSciNet  Google Scholar 

  25. Gorbounov, V., Malikov, F., Schechtman, V.: On chiral differential operators over homogeneous spaces. Int. J. Math. Math. Sci. 26(2), 83–106 (2001)

    Article  MathSciNet  Google Scholar 

  26. Gorbounov, V., Malikov, F., Schechtman, V.: Gerbes of chiral differential operators. II. Vertex algebroids. Invent. Math. 155(3), 605–680 (2004)

    Article  MathSciNet  Google Scholar 

  27. Huang, Y.-Z..: Vertex operator algebras, the Verlinde conjecture, and modular tensor categories. Proc. Natl. Acad. Sci. USA 102(15), 5352–5356 (2005)

    Article  MathSciNet  Google Scholar 

  28. Humphreys, J.E.: Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Second printing, revised. Springer-Verlag, New York-Berlin (1978)

  29. Huang, Y.-Z., Kong, L.: Full field algebras. Comm. Math. Phys. 272(2), 345–396 (2007)

    Article  MathSciNet  Google Scholar 

  30. Huang Huang, Y.-Z., Kirillov, A., Jr., Lepowsky, J.: Braided tensor categories and extensions of vertex operator algebras. Comm. Math. Phys. 337(3), 1143–1159 (2015)

    Article  MathSciNet  Google Scholar 

  31. Jantzen, J.C.: Lectures on quantum groups, Graduate Studies in Mathematics, 6. American Mathematical Society, Providence, RI (1996)

  32. Jordans, B.P.A.: A classification of \(SU(d)\)-type \(\rm C^*\)-tensor categories. Internat. J. Math. 25, 9 (2014)

    Article  MathSciNet  Google Scholar 

  33. Kassel, C.: Quantum groups, Graduate Texts in Mathematics, 155. Springer-Verlag, New York (1995)

  34. Kazhdan, D., Lusztig, G.: Tensor structures arising from affine Lie algebras. I, II, J. Amer. Math. Soc., 6(4), 905–947, 949–1011 (1993)

  35. Klimyk, A., Schmüdgen, K.: Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, (1997)

  36. Kazhdan, D., Wenzl, H.: Reconstructing monoidal categories. Adv. Soviet Math. 16, 111–136 (1993)

    MathSciNet  MATH  Google Scholar 

  37. Knizhnik, V.G., Zamolodchikov, A.B.: Current algebra and Wess-Zumino model in two dimensions. Nuclear Phys. B 247(1), 83–103 (1984)

    Article  MathSciNet  Google Scholar 

  38. Lusztig, G.: Introduction to quantum groups, Modern Birkhäuser Classics, Reprint of the, 1994th edn. Birkhäuser/Springer, New York (2010)

  39. Lusztig, G.: Monodromic systems on affine flag manifolds, Proc. Roy. Soc. London Ser. A, 445, 1994, (1923), 231–246; Erratum, Proc. Roy. Soc. London Ser. A, 450, 731-732 (1995)

  40. Moriwaki, Y.: Two-dimensional conformal field theory, current-current deformation and mass formula, arXiv:2007.07327 [q-alg]

  41. Neshveyev, S., Yamashita, M.: Twisting the \(q\)-deformations of compact semisimple Lie groups. J. Math. Soc. Japan 67, 2 (2015)

    Article  MathSciNet  Google Scholar 

  42. Pinzari, C., Roberts, J.E.: A rigidity result for extensions of braided tensor \(C^*\)-categories derived from compact matrix quantum groups. Comm. Math. Phys. 306, 3 (2011)

    Article  MathSciNet  Google Scholar 

  43. Tsuchiya, A., Kanie, Y.: Vertex operators in conformal field theory on \({\bf P}^1\) and monodromy representations of braid group, Adv. Stud. Pure Math., 16, 297–372 (1988)

  44. Tuba, I., Wenzl, H.: On braided tensor categories of type \(BCD\), J. Reine Angew. Math., 581, 31–69 (2005)

  45. Zhu, M.: Vertex operator algebras associated to modified regular representations of affine Lie algebras. Adv. Math. 219(5), 1513–1547 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I wish to express my gratitude to Shigenori Nakatsuka for letting me know about the conjectures in [6] and valuable discussions and to Yuki Arano for discussions on quantum groups, and to Makoto Yamashita and Hironori Oya for giving me the references. I would also like to thank Tomoyuki Arakawa and Thomas Creutzig for valuable comments. This work was supported by the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuto Moriwaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In Appendix, we will prove Conjecture 1 for the simple Lie algebras of type \(B_n\) (\(n \ge 1\)). Here, we need to consider representations of quantum groups which are not type 1 (see Sect. 2.1 for type 1 representations). We will first review the non-type 1 representations of \(U_q({\mathfrak {g}})\).

For \(\lambda \in P\), let \({\mathbb {C}}\chi _\lambda \) be a one-dimensional representation of \(U_q({\mathfrak {g}})\) defined by

$$\begin{aligned} E_\alpha \cdot \chi _\lambda =F_\alpha \cdot \chi _\lambda =0,\;\;\;\;\; K_\alpha \cdot \chi _\lambda = (-1)^{\langle \langle \alpha , \lambda \rangle \rangle }\chi _\lambda \text { for }\alpha \in \Pi . \end{aligned}$$

Then, for a type 1 module M, \(M\otimes {\mathbb {C}}\chi _\lambda \) and \({\mathbb {C}}\chi _\lambda \otimes M\) are \(U_q({\mathfrak {g}})\)-modules, which are not of type 1. For example, for \(L_q(\lambda )\otimes {\mathbb {C}}\chi _\lambda \), we have

$$\begin{aligned} K_\alpha \cdot v_\lambda \otimes \chi _\lambda = q^{\langle \langle \alpha ,\lambda \rangle \rangle }(-1)^{\langle \langle \alpha ,\lambda \rangle \rangle } v_\lambda \otimes \chi _\lambda \end{aligned}$$

for the highest weight vector \(v_\lambda \in L_q(\lambda )\).

In order to define a braided tensor category structure on a non-type 1 representation category, the following lemma is very important.

Lemma A.1

For any type 1 module \(M \in U_q({\mathfrak {g}}){\text {-mod}}\), define a linear map \(h_M^\gamma :M\otimes {\mathbb {C}}\chi _\gamma \rightarrow {\mathbb {C}}\chi _\gamma \otimes M\) by

$$\begin{aligned} h_M^\gamma (m_\lambda \otimes \chi _\gamma )=\exp (\pi i (\gamma ,\lambda ))\chi _\gamma \otimes m_\lambda \end{aligned}$$

for any \(\lambda \in P\) and \(m_\lambda \in M_\lambda \). Then, \(h_M^\gamma \) is a \(U_q({\mathfrak {g}})\)-module homomorphism. In particular, the family of the maps \(\{h_M^{\gamma }\}_{M \in U_q({\mathfrak {g}}){\text {-mod}}}\) is a natural transformation of \(- \otimes {\mathbb {C}}\chi _\gamma \) and \({\mathbb {C}}\chi _\gamma \otimes -\).

Proof

Let \(\lambda \in P\) and \(m_\lambda \in M_{\lambda }\) and \(\alpha \in \Pi \). Since

$$\begin{aligned} E_\alpha \cdot (m_\lambda \otimes \chi _\gamma )&= \Delta (E_\alpha ) \cdot (m_\lambda \otimes \chi _\gamma ) \\&= (E_\alpha \otimes 1+K_\alpha \otimes E_\alpha )\cdot (m_\lambda \otimes \chi _\gamma )= (E_\alpha \cdot m_\lambda ) \otimes \chi _\gamma , \end{aligned}$$

and \(E_\alpha \cdot m_\lambda \in M_{\lambda +\alpha }\) we have \(h_{M}^\gamma (E_\alpha \cdot (m_\lambda \otimes \chi _\gamma ))= \exp (\pi i (\gamma ,\lambda +\alpha )) (\chi _\gamma \otimes E_\alpha \cdot m_\lambda ).\)

Similarly, since \(E_\alpha \cdot (\chi _\gamma \otimes m_\lambda ) = (E_\alpha \otimes 1+K_\alpha \otimes E_\alpha )\cdot (\chi _\gamma \otimes m_\lambda )= (K_\alpha \cdot \chi _\gamma \otimes E_\alpha \cdot m_\lambda )\), and \(K_\alpha \cdot \chi _\gamma = (-1)^{\langle \langle \gamma ,\alpha \rangle \rangle }\chi _\gamma \), we have

$$\begin{aligned} E_\alpha \cdot h_{M}^\gamma (m_\lambda \otimes \chi _\gamma )&= \exp (\pi i (\gamma ,\lambda )) E_\alpha \cdot (\chi _\gamma \otimes m_\lambda )\\&=\exp (\pi i (\gamma , \lambda +\alpha ))(\chi _\gamma \otimes E_\alpha \cdot m_\lambda ). \end{aligned}$$

Hence, \(h_{M}^\gamma (E_\alpha \cdot (m_\lambda \otimes \chi _\gamma ))=E_\alpha \cdot h_{M}^\gamma (m_\lambda \otimes \chi _\gamma )\) for any \(\alpha \in \Pi \). It is easy to check this for \(F_\alpha \) and \(K_\alpha \) and thus \(h_M^\gamma \) is a \(U_q({\mathfrak {g}})\)-module homomorphism. The naturality is obvious. \(\square \)

It is easy to show that only for \({\mathfrak {g}}\) of type B one-dimensional representations satisfy the following important properties:

Lemma A.2

The following conditions are equivalent:

  1. 1.

    \(\chi _{\lambda +\alpha }=\chi _\lambda \) for any \(\alpha \in Q\) and \(\lambda \in P\);

  2. 2.

    \(\langle \langle \alpha ,\beta \rangle \rangle \in 2{\mathbb {Z}}\) for any \(\alpha ,\beta \in Q\);

  3. 3.

    The simple Lie algebra \({\mathfrak {g}}\) is of type \(A_1\) or of type \(B_n\) (\(n\ge 2\)).

We will now proceed to the case of type B. According to [28], the root system of type \(B_n\) can be written as

$$\begin{aligned} \{\pm e_i\pm e_j, e_i\}_{1 \le i,j \le n}, \end{aligned}$$

where \(\{e_i\}_{i=1,2,\dots ,n}\) is the standard basis of \({\mathbb {R}}^n\), and the simple roots and the fundamental weights as

$$\begin{aligned} (\alpha _1,\alpha _2,\dots ,\alpha _{n-1},\alpha _n)&=(e_1-e_2,e_2-e_3,\dots , e_{n-1}-e_n, e_n),\\ (\lambda _1,\lambda _2,\dots ,\lambda _{n-1},\lambda _n)&=(e_1,e_1+e_2,\dots ,e_1+e_2+\dots +e_{n-1}, \frac{e_1+e_2+\dots +e_n}{2}). \end{aligned}$$

The weight lattice is spanned by \(\{e_i, \lambda _n \}_{i=1,2,\dots ,n}\) and \(P/Q\cong {\mathbb {Z}}_2\) is generated by \(\lambda _n\). Note that by the normalization, \(\langle \langle e_i, e_i \rangle \rangle =2\) for any \(i=1,\dots ,n\) (see Lemma A.2) and \(\langle \langle \lambda _n, \lambda _n \rangle \rangle =\frac{n}{2}\). Let us denote the generator of \(U_q(\mathrm {so}({2n+1}))\), \(E_{\alpha _i},F_{\alpha _i},K_{\alpha _i}\), by \(E_i,F_i,K_i\) for short. We remark that among \(\alpha _1,\alpha _2,\dots ,\alpha _n\), only \(\alpha _n\) is a short root.

Proposition A.3

There exist Hopf algebra isomorphisms \(\phi : U_q(\mathrm {so}(2n+1))\rightarrow U_{-q}(\mathrm {so}(2n+1))\) such that:

$$\begin{aligned} \phi (E_i)=E_i,\;\;\;\; \phi (F_i)&=F_{i},\;\;\;\; \phi (K_i)=K_i\;\;\;\;\;\; \text { for }i=1,\dots ,n-1 \end{aligned}$$

and

$$\begin{aligned} \phi (E_n)=- E_n,\;\;\;\; \phi (F_n)&=F_{n},\;\;\;\; \phi (K_n)=K_n. \end{aligned}$$

Proof

The assertion follows from an easy computation. The point is that \(q_{\alpha _i}=q^{\frac{\langle \langle \alpha _i,\alpha _i\rangle \rangle }{2}}=q^2\) for any \(i=1,2,\dots ,n-1\) since they are long roots and \(\langle \langle \alpha ,\beta \rangle \rangle \in 2{\mathbb {Z}}\) for any \(\alpha ,\beta \in Q\) (see Lemma A.2). In particular, \(q_{\alpha } = (-q)_{\alpha }\) for long roots. The only non-trivial relation is

$$\begin{aligned} \sum _{r=0}^{1-a_{\alpha \beta }} (-1)^r \left( \begin{matrix} 1-a_{\alpha \beta } \\ r \end{matrix} \right) _{q_\alpha } E_\alpha ^r E_\beta E_\alpha ^{1-a_{\alpha \beta }-r} = 0, \end{aligned}$$

for \(\alpha = \alpha _n\) and \(\beta =\alpha _{n-1}\), which follows from \( \left( \begin{matrix} 3 \\ 1 \end{matrix} \right) _{-q} = 3_{-q}=(-1)^{3+1}3_{q} = \left( \begin{matrix} 3 \\ 1 \end{matrix} \right) _{q}\). \(\square \)

Remark A.4

We note that the above proposition is also applicable to the case of \(A_1 = B_1\), that is,

$$\begin{aligned} \phi : U_q(\mathrm {sl}_2)\rightarrow U_{-q}(\mathrm {sl}_2),\;\;\;\; \phi (E)=-E,\;\;\;\;\;\phi (F)=F,\;\;\;\;\;\; \phi (K)=K. \end{aligned}$$

It is noteworthy that the Hopf algebras \(U_q(\mathrm {sl}_2)\) and \(U_{q'}(\mathrm {sl}_2)\) are isomorphic if and only if \(q'=\pm q^{\pm }\) (see [35, Proposition 6 in Section 3]).

Let M be a type 1 \(U_{-q}(\mathrm {so}(2n+1))\)-module and \(\phi ^*M\) an \(U_{q}(\mathrm {so}(2n+1))\)-module defined by

$$\begin{aligned} a \cdot _\phi m = \phi (a) \cdot m \;\;\;\;\;\;\;\;\;\text { for any }a \in U_{q}(\mathrm {so}(2n+1)) \text { and }m\in M. \end{aligned}$$

Then, we have

$$\begin{aligned} K_i \cdot _\phi v = (-q)^{\langle \langle \alpha _i,\lambda \rangle \rangle }v =(-1)^{\langle \langle \alpha _i,\lambda \rangle \rangle } q^{\langle \langle \alpha _i,\lambda \rangle \rangle }v \text { for }v \in M_{\lambda }. \end{aligned}$$

Hence, \(\phi ^* M\) is not necessarily a type 1 representation.

Based on this observation, we will define a type 2 module of \(U_q(\mathrm {so}_{2n+1})\). We first observe that by Lemma A.2 the one dimensional representation \({\mathbb {C}}\chi _{\gamma }\) is only depends on \(\gamma \in P/Q={\mathbb {Z}}/2{\mathbb {Z}}\). Denote \(\chi _{\lambda _n}\) by \(\chi \).

For each \(\lambda \in P^+\), let \(L_q^{{II}}(\lambda )\) be the unique irreducible highest module defined by

$$\begin{aligned} K_i v_\lambda = (-q)^{\langle \langle \alpha _i,\lambda \rangle \rangle } v_\lambda ,\;\;\;\; E_i v_\lambda = 0\;\;\;\;\text { for }i=1,\dots ,n. \end{aligned}$$

We say a \(U_q(\mathrm {so}_{2n+1})\)-module is of type 2 if it decomposes into a direct sum of \(L_q^{{II}}(\lambda )\)’s for \(\lambda \in P^+\). Denote the category of type 2 (resp. of type 1) \(U_q(\mathrm {so}_{2n+1})\)-modules by \(C^{{II}}\) (resp. \(C^I\)).

Let \(M,N \in C^{{II}}\). Since \(U_q({\mathrm {so}_{2n+1}})\) is a Hopf algebra, \(M\otimes N\) is a \(U_q({\mathrm {so}_{2n+1}})\)-module and it is easy to show that \(M\otimes N \in C^{{II}}\). Thus, \(C^{{II}}\) is naturally a monoidal category. Let \(\rho \in {\mathbb {C}}\) satisfy \(\exp (\pi i \rho )=q\) and denote the braided tensor category \((U_q({\mathrm {so}_{2n+1}}),R(\rho )){\text {-mod}}\) by \(C^I(\rho )\). In this section, we will prove Conjecture 1 for type B in three steps:

  1. 1.

    To give a braided tensor category structure on \(C^{{II}}\), which depends on the choice of \(\rho \). We denote it by \(C^{{II}}(\rho +1)\);

  2. 2.

    To show that a Hopf algebra isomorphism \(\phi :U_q({\mathrm {so}_{2n+1}})\rightarrow U_{-q}({\mathrm {so}_{2n+1}})\) induces an equivalence of braided tensor categories between \(C^{{II}}(\rho +1)\) and \((U_{-q}({\mathrm {so}_{2n+1}}),R(\rho +1)){\text {-mod}}\);

  3. 3.

    To construct a functor \(F:C^I(\rho )^{Q_{\mathrm {so}_{2n+1}}}\) and \(C^{{II}}(\rho +1)\) which gives an equivalence of braided tensor categories.

We will first consider Step (1). For any type 2 module \(M^{{II}}\), set for all \(\lambda \in P\)

$$\begin{aligned} M_{\lambda }^{{II}}= \{m\in M^{{II}}\mid K_i m= (-q)^{\langle \langle \lambda ,\alpha _i \rangle \rangle }m \text { for } i=1,\dots ,n \}. \end{aligned}$$

Then, we have

$$\begin{aligned} M^{{II}}= \bigoplus _{\lambda \in P} M_{\lambda }^{{II}}. \end{aligned}$$

In order to define the R-matrix for type 1 representations, we consider a linear map \(f_\rho \) (see Sect. 2.2). Define for all type 2 \(U_q({\mathrm {so}_{2n+1}})\)-modules \(M^{{II}}\) and \(N^{{II}}\) a bijective linear map \(f_\rho ^{{II}}:M^{{II}}\otimes N^{{II}}\rightarrow M^{{II}}\otimes N^{{II}}\) by

$$\begin{aligned} f_\rho (m\otimes n)=\exp \left( - \pi i (\rho +1) \langle \langle \lambda ,\mu \rangle \rangle \right) m\otimes n \text { for any }m\in M_\lambda ^{{II}}\text { and }n\in N_{\mu }^{{II}}\end{aligned}$$

and for all \(\mu , \lambda \in P\). Then, a statement similar to Lemma 2.12 holds for type 2 modules by replacing \(f_\rho \) with \(f_\rho ^{{II}}\).

Lemma A.5

Let \(u \in U_q({\mathrm {so}_{2n+1}})_{\mu }^-\) and \(u' \in U_q({\mathrm {so}_{2n+1}})_{\mu }^+\) for \(\mu \in Q\) with \(\mu \ge 0\). For any type 2 \(U_q({\mathrm {so}_{2n+1}})\)-modules \(M^{{II}}\) and \(N^{{II}}\),

$$\begin{aligned} (f_{\rho }^{{II}})^{-1} \circ (u\otimes u') \circ f_{\rho }^{{II}}=uK_{\mu } \otimes K_{-\mu }u' \end{aligned}$$

as linear maps acting on \(M^{{II}}\otimes N^{{II}}\).

Let us define a linear map \(R(\rho )^{{II}}\) by

$$\begin{aligned} R(\rho )^{{II}}= (\Theta \circ f_\rho ^{{II}})^{-1}:M^{{II}}\otimes N^{{II}}\rightarrow M^{{II}}\otimes N^{{II}}. \end{aligned}$$

Then, by the above lemma, \(R(\rho )^{{II}}\) satisfies the axiom of an R matrix (R1-R3 in Sect. 2.2) as an operator on \(C^{{II}}\) (see for example [31, Section 3]). Denote by \(C^{{II}}(\rho +1)\) the braided tensor category defined by \(R(\rho )^{{II}}\).

Then, the following lemma follows from a similar argument in Sect. 2.3:

Lemma A.6

The Hopf algebra isomorphism \(\phi :U_{q}(\mathrm {so}(2n+1)) \rightarrow U_{-q}(\mathrm {so}(2n+1))\) induces an equivalence between \(C^{{II}}(\rho +1)\) and \((U_{-q}(\mathrm {so}(2n+1)),R(\rho +1)){\text {-mod}}\) as braided tensor categories.

This completes Step (1) and Step (2). Finally, we will show the last step. For \(S=I,{{II}}\) and \(i \in P/Q={\mathbb {Z}}/2{\mathbb {Z}}\), let \(C_i^{S}\) be a full subcategory of \(C^S\) consisting of modules which is isomorphic to a direct sum of \(L_q^S(\lambda )\)’s for \(\lambda \in i\lambda _n+Q\). This grading coincides with the \(P/Q\)-grading introduced in Sect. 2.4. We can define a (grading preserving) functor \(F: C^I \rightarrow C^{{II}}\) by \(F(M)=({\mathbb {C}}\chi ^0\otimes M_0) \oplus ({\mathbb {C}}\chi \otimes M_1)\) for any \(M=M_0\oplus M_1 \in C^I=C_0^I\oplus C_1^I\), where \({\mathbb {C}}\chi ^0\) is the trivial representation. Then, F gives an equivalence of \({\mathbb {Z}}/2{\mathbb {Z}}\)-graded abelian categories. For any \(M \in C^I\), define a linear map \(h_M:M\otimes {\mathbb {C}}\chi \rightarrow {\mathbb {C}}\chi \otimes M\) by

$$\begin{aligned} h_M(m_\lambda \otimes \chi )=\exp (\pi i (\lambda _n,\lambda ))\chi \otimes m_\lambda \end{aligned}$$

for any \(\lambda \in P\) and \(m_\lambda \in M_\lambda \). Then, \(h_\bullet \) is a natural transformation by Lemma A.1.

Note that \(C^{{II}}\) is a strict monoidal category since it is a full subcategory of the category of all \(U_q({\mathrm {so}_{2n+1}})\)-modules, which is clearly strict. Hence, we can identify \(\chi ^0\otimes M=M\) for any \(M \in C^{{II}}\). Define a \(U_q({\mathrm {so}_{2n+1}})\)-module isomorphism \(\epsilon _2:{\mathbb {C}}\chi \otimes {\mathbb {C}}\chi \rightarrow {\mathbb {C}}\) by \(\epsilon _2(\chi \otimes \chi )=1\).

Let \(M_i \in C_i^I\) and \(N_j \in C_j^I\) for \(i,j=0,1\). Define a natural transformation \(g_{M_i,N_j}:F(M_i) \otimes F(N_j) \rightarrow F(M_i\otimes N_j)\) by

$$\begin{aligned} g_{M_0,N_0}&: (\chi ^0 \otimes M_0)\otimes (\chi ^0\otimes N_0) = \chi ^0 \otimes M_0 \otimes N_0,\\ g_{M_1\otimes N_0}&: (\chi ^1 \otimes M_1)\otimes (\chi ^0\otimes N_0)= \chi ^{1}\otimes M_1 \otimes N_0,\\ g_{M_0\otimes N_1}&: (\chi ^0 \otimes M_0) \otimes (\chi ^1\otimes N_1) {\mathop {\longrightarrow }\limits ^{{\mathrm {id}}_{\chi ^0}\otimes h_{M_0} \otimes {\mathrm {id}}_{N_1}}} \chi ^{1}\otimes M_0\otimes N_1,\\ g_{M_1\otimes N_1}&: (\chi ^1 \otimes M_1)\otimes (\chi ^1\otimes N_1) {\mathop {\longrightarrow }\limits ^{{\mathrm {id}}_{\chi ^1}\otimes h_{M_1} \otimes {\mathrm {id}}_{N_1}}} \chi ^{2}\otimes M_1\otimes N_1 {\mathop {\rightarrow }\limits ^{\epsilon _2\otimes {\mathrm {id}}_{M_1\otimes N_1}}}\chi ^{0}\\&\quad \otimes M_1\otimes N_1. \end{aligned}$$

Then, we have:

Proposition A.7

The functor \(F: C^I\rightarrow C^{{II}}\) together with the natural transformation \(g_{M,N}:F(M)\otimes F(N) \rightarrow F(M\otimes N)\) and \(\epsilon :{\varvec{1}} = F({\varvec{1}})\) give an equivalence of braided tensor categories from \((C^I)^{Q_{\mathrm {so}_{2n+1}}}\) to \(C^{{II}}\).

Before giving the proof, we remark that the value \(\exp (\pi i p \langle \langle \lambda _n,\lambda _n\rangle \rangle )=\exp (\frac{\pi i np}{2})\) is not well-defined for \(p \in {\mathbb {Z}}/2{\mathbb {Z}}\), which is the source of the 3-cocycle \(\alpha :({\mathbb {Z}}/2{\mathbb {Z}})^3\rightarrow {\mathbb {C}}^\times \). In fact, let \(\iota :{\mathbb {Z}}/2{\mathbb {Z}}\rightarrow {\mathbb {Z}}\) be a map defined by sending \(\{\bar{0},\bar{1}\}\mapsto \{0,1\}\). Then, we have:

Lemma A.8

The explicit form of the abelian cocycle \((\alpha _n,c_n) \in Z_{\text {ab}}^3({\mathbb {Z}}/2{\mathbb {Z}},{\mathbb {C}}^\times )\) such that \(c(a,a)=Q_{{\mathrm {so}_{2n+1}}}(a)\) for \(a \in {\mathbb {Z}}/2{\mathbb {Z}}=P/Q\) can be give by

$$\begin{aligned} \alpha _n(a,b,c)&={\left\{ \begin{array}{ll} (-1)^n &{} (a=b=c=1)\\ 1 &{} (\text {otherwise})\\ \end{array}\right. }\\&=\exp \left( \pi i a\frac{\iota (b)+\iota (c)-\iota (a+b)}{2}\right) ,\\ c_n(a,b)&={\left\{ \begin{array}{ll} i^n &{} (a=b=1) \\ 1 &{} (\text {otherwise}). \end{array}\right. } \end{aligned}$$

Proof of Proposition A.7

We will verify the conditions (LM1) and (LM2) in Sect. 1.2. Since both \(C^I\) and \(C^{{II}}\) are strict monoidal categories, the associative isomorphisms are trivial before twisting. Let \(p_i \in {\mathbb {Z}}/2{\mathbb {Z}}\) and \(M_i \in C_{p_i}^I\), \(\beta _i \in P\), and \(v_i \in (M_i)_{\beta _i}\) for \(i=1,2,3\). Then, we have

$$\begin{aligned} g_{M_1\otimes M_2,M_3}&\circ (g_{M_1,M_2}\otimes {\mathrm {id}}_{M_3}) \left( (\chi ^{p_1} \otimes v_1 \otimes \chi ^{p_2} \otimes v_2)\otimes \chi ^{p_3} \otimes v_3\right) \\&=g_{M_1\otimes M_2,M_3} (\exp (p_2\pi i \langle \langle \lambda _n,\beta _1\rangle \rangle ) (\chi ^{p_1+p_2} \otimes v_1 \otimes \otimes v_2) \otimes \chi ^{p_3} \otimes v_3)\\&= \exp (\pi i (p_2\langle \langle \lambda _n,\beta _1\rangle \rangle +p_3\langle \langle \lambda _n,\beta _1+\beta _2 \rangle \rangle ) (\chi ^{p_1+p_2+p_3}\\&\quad \otimes (v_1 \otimes \otimes v_2) \otimes v_3 \end{aligned}$$

and

$$\begin{aligned} g_{M_1,M_2\otimes M_3}&\circ ({\mathrm {id}}_{M_1}\otimes g_{M_2,M_3}) ( \chi ^{p_1} \otimes v_1 \otimes (\chi ^{p_2} \otimes v_2 \otimes \chi ^{p_3} \otimes v_3))\\&=g_{M_1,M_2\otimes M_3}( \exp (\pi i p_3 \langle \langle \lambda _n,\beta _2 \rangle \rangle ) \chi ^{p_1} \otimes v_1 \otimes (\chi ^{p_2+p_3} \otimes v_2 \otimes v_3) )\\&= \exp (\pi i (p_3 \langle \langle \lambda _n,\beta _2 \rangle \rangle +\iota (p_2,p_3)\langle \langle \lambda _n,\beta _1\rangle \rangle ) \chi ^{p_1+p_2+p_3} \otimes v_1\\&\quad \otimes (v_2 \otimes v_3). \end{aligned}$$

Thus, in order to verify (LM1), it suffices to show that

$$\begin{aligned}&\alpha (p_1,p_2,p_3)\exp (\pi i (p_2\langle \langle \lambda _n,\beta _1\rangle \rangle +p_3\langle \langle \lambda _n,\beta _1+\beta _2 \rangle \rangle )\\&\quad =\exp (\pi i (p_3 \langle \langle \lambda _n,\beta _2 \rangle \rangle +\iota (p_2,p_3)\langle \langle \lambda _n,\beta _1\rangle \rangle ), \end{aligned}$$

which follows from Lemma A.8. (LM2) is obvious. Hence, the assertion holds. \(\square \)

Finally, we will prove that \(F:C^I(\rho )^{Q_{\mathrm {so}_{2n+1}}}\rightarrow C^{{II}}(\rho +1)\) is a braided monoidal functor. Let \(p_i \in {\mathbb {Z}}/2{\mathbb {Z}}\) and \(M_i \in C_{p_i}^I\), \(\beta _i \in P\), and \(m_i \in (M_i)_{\beta _i}\) for \(i=1,2\). It suffices to show that the following diagram commutes:

figure b

where \(c_n(p_1,p_2)\) is given in Lemma A.8. Recall \(\Theta =\sum _{\mu \ge 0}\Theta _\mu \) and \(\Theta _\mu =\sum _{i=0}^{r(\mu )}v_i^\mu \otimes u_i^\mu \in U_\mu ^-{\hat{\otimes }}U_\mu ^+\) (see Sect. 2.2). Then, we have:

$$\begin{aligned} g_{M_1,M_2}&\circ (B_{F(M_1),F(M_2)}^{{II}})^{-1} (\chi ^{p_2} \otimes m_2)\otimes (\chi ^{p_1} \otimes m_1)\\&=g_{M_1,M_2} \circ \Theta \circ f_\rho ^{{II}}\circ P_{21} (\chi ^{p_2} \otimes v_2)\otimes (\chi ^{p_1} \otimes v_1)\\&= \exp (-\pi i (\rho +1)\langle \langle \beta _1,\beta _2 \rangle \rangle ) \sum _{\mu \ge 0}\sum _{i=0}^{r(\mu )} g_{M_1,M_2} (v_i^\mu \cdot (\chi ^{p_1} \otimes m_1))\\&\quad \otimes (u_i^\mu \cdot (\chi ^{p_2} \otimes m_2)). \end{aligned}$$

Since \(\Delta (E_i)=E_i \otimes 1 + K_i\otimes E_i\) and \(\Delta (F_i)=F_i\otimes K_i^{-1}+1\otimes F_i\), we have

$$\begin{aligned} (v_i^\mu \cdot (\chi ^{p_1} \otimes m_1)) \otimes (u_i^\mu \cdot (\chi ^{p_2} \otimes m_2))&=(\chi ^{p_1} \otimes v_i^\mu \cdot m_1) \otimes (K_\mu \cdot \chi ^{p_2} \otimes u_i^\mu \cdot m_2)\\&=(-1)^{p_2 \langle \langle \lambda _n,\mu \rangle \rangle } (\chi ^{p_1} \otimes v_i^\mu \cdot m_1)\\&\quad \otimes (\chi ^{p_2} \otimes u_i^\mu \cdot m_2). \end{aligned}$$

Hence, we have:

$$\begin{aligned}&g_{M_1,M_2}\circ (B_{F(M_1),F(M_2)}^{{II}})^{-1} (\chi ^{p_2} \otimes m_2) \otimes (\chi ^{p_1} \otimes m_1)\\&\quad = \exp (\pi i (\rho +1)\langle \langle \beta _1,\beta _2 \rangle \rangle ) \sum _{\mu \ge 0}\sum _{i=0}^{r(\mu )} \Bigl ( \exp (\pi i \iota (p_2) \langle \langle \lambda _n, \beta _1+\mu \rangle \rangle )\\&\qquad \times (-1)^{p_2\langle \langle \lambda _n,\mu \rangle \rangle } (\chi ^{p_1+p_2} \otimes v_i^\mu \cdot m_1 \otimes u_i^\mu \cdot m_2) \Bigr )\\&\quad = \exp (\pi i (\rho +1)\langle \langle \beta _1,\beta _2 \rangle \rangle ) \exp (\pi i \iota (p_2) \langle \langle \lambda _n, \beta _1\rangle \rangle ) \sum _{\mu \ge 0}\sum _{i=0}^{r(\mu )} (\chi ^{p_1+p_2}\\&\qquad \otimes v_i^\mu \cdot m_1 \otimes u_i^\mu \cdot m_2). \end{aligned}$$

Similarly, we have

$$\begin{aligned}&c_n(p_1,p_2)F(B_{M_1,M_2}^I)^{-1} \circ g_{M_1,M_2} (\chi ^{p_2} \otimes m_2)\otimes (\chi ^{p_1} \otimes m_1)\\&\quad =c_n(p_1,p_2)\exp (\pi i \iota (p_1)\langle \langle \lambda _n, \beta _2 \rangle \rangle ) F(B_{M_1,M_2}^I)^{-1} (\chi ^{p_1+p_2} \otimes m_2 \otimes m_1)\\&\quad =c_n(p_1,p_2)\exp (\pi i \iota (p_1)\langle \langle \lambda _n, \beta _2 \rangle \rangle ) \chi ^{p_1+p_2} \otimes \left( \Theta \circ f_\rho \circ P_{21} (m_2 \otimes m_1)\right) \\&\quad =c_n(p_1,p_2)\exp (\pi i \iota (p_1)\langle \langle \lambda _n, \beta _2 \rangle \rangle ) \exp (-\pi i \rho (\beta _1,\beta _2)) \sum _{\mu \ge 0}\sum _{i=0}^{r(\mu )} \chi ^{p_1+p_2}\\&\qquad \otimes (v_i^\mu \cdot m_1 \otimes u_i^\mu m_2). \end{aligned}$$

Thus, the proof of the conjecture comes down to the following lemma:

Lemma A.9

If \((M_i)_{\beta _i} \ne 0\) for \(i=1,2\), then

$$\begin{aligned} c_n(p_1,p_2)= \exp (\pi i (\langle \langle \beta _1,\beta _2 \rangle \rangle + \iota (p_2) \langle \langle \lambda _n, \beta _1\rangle \rangle - \iota (p_1)\langle \langle \lambda _n, \beta _2 \rangle \rangle ). \end{aligned}$$

Proof

Let \(k:P\times P\rightarrow {\mathbb {C}}^\times \) be a map defined by \(k(\beta _1,\beta _2)=\exp (\pi i (\langle \langle \beta _1,\beta _2 \rangle \rangle + \iota (\beta _2) \langle \langle \lambda _n, \beta _1\rangle \rangle - \iota (\beta _1)\langle \langle \lambda _n, \beta _2 \rangle \rangle )\), where \(\iota :P\rightarrow P/Q= \{0,1\}\) is defined by the composition of the projection and the identification.

We claim that \(k(\beta _1+\alpha ,\beta _2)=k(\beta _1,\beta _2+\alpha )=k(\beta _1,\beta _2)\) for any \(\alpha \in Q\). The difference \(k(\beta _1+\alpha ,\beta _2)k(\beta _1,\beta _2)^{-1}\) is equal to \(\exp (\pi i (\langle \langle \beta _2,\alpha \rangle \rangle +\iota (\beta _2)\langle \langle \lambda _n,\alpha \rangle \rangle ))\). Thus, if \(\beta _2 \in Q\) i.e., \(\iota (\beta _2)=0\), then \(k(\beta _1+\alpha ,\beta _2)k(\beta _1,\beta _2)^{-1}\) is equal to 1 by Lemma A.2. Similarly, if \(\iota (\beta _2)=1\), then \(k(\beta _1+\alpha ,\beta _2)k(\beta _1,\beta _2)^{-1} =\exp (\pi i (\langle \langle \beta _2,\alpha \rangle \rangle +\langle \langle \lambda _n,\alpha \rangle \rangle )) =\exp (\pi i (\langle \langle \lambda _n,\alpha \rangle \rangle +\langle \langle \lambda _n,\alpha \rangle \rangle ))=1,\) thus the claim is proved.

Since \(k(0,0)=k(\lambda _n,0)=k(0,\lambda _n)=1\) and \(k(\lambda _n,\lambda _n)=i^n\), the assertion follows from Lemma A.8. \(\square \)

Hence, we have:

Theorem A.10

The composition of F and \(\phi ^*\) gives a braided monoidal equivalence between \((U_q({\mathrm {so}_{2n+1}}),R(\rho )){\text {-mod}}^{Q_{\mathrm {so}_{2n+1}}}\) and \((U_{-q}({\mathrm {so}_{2n+1}}),R(\rho )){\text {-mod}}\) for any \(n \ge 1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moriwaki, Y. Quantum coordinate ring in WZW model and affine vertex algebra extensions. Sel. Math. New Ser. 28, 68 (2022). https://doi.org/10.1007/s00029-022-00782-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00782-2

Keywords

Mathematics Subject Classification

Navigation