
Selecta Mathematica (2022) 28:57
https://doi.org/10.1007/s00029-022-00767-1

SelectaMathematica
New Series

Hodge ideals of free divisors

Alberto Castaño Domínguez1 · Luis Narváez Macarro2 · Christian Sevenheck3

Accepted: 6 January 2022 / Published online: 18 April 2022
© The Author(s) 2022

Abstract
We consider the Hodge filtration on the sheaf of meromorphic functions along free
divisors for which the logarithmic comparison theorem holds. We describe the Hodge
filtration steps as submodules of the order filtration on a cyclic presentation in terms
of a special factor of the Bernstein–Sato polynomial of the divisor and we conjecture a
bound for the generating level of the Hodge filtration. Finally, we develop an algorithm
to compute Hodge ideals of such divisors and we apply it to some examples.
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Mathematics Subject Classification 32C38 · 14F10 · 32S35 · 32S40

1 Introduction

For a reduced divisor D in a complexmanifold X of dimension n, we consider the sheaf
OX (∗D) of meromorphic functions along D. It is well-known that this is a coherent
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and holonomic left DX -module, which underlies a mixed Hodge module on X (see
[37, 38] and more specifically [39]). The latter can be constructed in a functorial way
as j∗QH

U [n], where U := X\D, j : U ↪→ X is the canonical embedding, and QH
U [n]

denotes the constant pure Hodge module on U . The aim of this paper is to describe
the Hodge filtration on the mixed Hodge module j∗QH

U [n] for certain divisors and
to compute it explicitly in some examples. This question has some history, but has
recently been reconsidered in a series of articles (see [28–31]) by Mustaţă and Popa
(in the algebraic setting though), from a birational point of view. The authors of these
papers introduce the so-called Hodge ideals: these are coherent sheaves of ideals
Ik(D) ⊂ OX measuring the difference between the Hodge filtration FH• O(∗D) and
the pole order filtration P•OX (∗D). The latter consists of locally freeOX -modules of
rank one given by PkOX (∗D) := OX ((k+1)D). Indeed, by a classical result of Saito
([39, Proposition 0.9]) we always have FH

k OX (∗D) ⊂ PkOX (∗D), with equality if
and only if D is smooth (the “only if” part of the latter statement is also due toMustaţă
and Popa, see [28, Theorem A]) and then one puts

Ik(D) · Pk(D) := FH
k OX (∗D).

It is known (see [28, Proposition 10.1] as well as [41, Theorem 0.4]) that the zeroth
Hodge ideal I0(D) coincides with the multiplier ideal J ((1 − ε)D). Notice that the
latter, although originally defined either analytically or via birational methods (see,
e.g., [23, Section 9] and the references given therein) was already known to have
a description via D-modules, see [5, Theorem 0.1]. For X projective, there is the
celebrated Nadel vanishing theorem for multiplier ideals, and one looks for similar
statements for the higher Hodge ideals (see [28, §§ G and H] and also [15]); these
have applications e.g. if X = Pn or if X is an abelian variety.

The known results on Hodge ideals are mostly either global in nature, or concern
the case of isolated singularities, see e.g. [21, 49]. In this paper, we are interested in a
specific class of divisors with highly non-isolated singular loci (namely, we will have
codimD(Dsing) = 1, in particular, these divisors are not normal). These are the so-
called free divisors, introduced and first studied by K. Saito almost 40 years ago (see
[36]). They often appear as discriminants in a generalized sense, e.g., discriminants of
singularities of maps (e.g. isolated hypersurface or complete intersection singularities,
see, e.g. [24], or of reduced space curves [48]) or discriminants in quiver representation
spaces (see, e.g., [17]). Another important class of free divisors are free hyperplane
arrangements (see, e.g., [12, Chapter 8]); we will perform some computations for
Hodge ideals for low-dimensional examples of free arrangements in section 5 below.

Althoughourmethods are adapted to the special situation of free divisors,webelieve
that they have the potential to give insights into the structure of the Hodge filtration
steps on OX (∗D) in more general situations. As an example, we consider cases of
divisors that are not free, but close to it at the very end of the paper.More generally, it is
clear that the Hodge filtration onOX (∗D) can always be accessed using the approach
of our paper, that is, by some non-trivial use of the V -filtration along this divisor
(see below), however, the concrete calculation of this V -filtration might sometimes
be difficult. A related, though different approach, also using the V -filtration, is found
in [30, 31]. In concrete classes of examples, such as hyperplane arrangements, we
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hope that our results, and more generally the study of Hodge ideals will be useful
for classical questions, like Terao’s conjecture, or the homological characterization of
freeness ( [14]).

Let us briefly recall the definition of free divisors. For a complex manifold X , we
denote by �

p
X resp. by �X the locally freeOX -module of holomorphic p-forms resp.

the locally free OX -module of tangent vector fields or of C-derivations of OX . If
D ⊂ X is a reduced divisor, then we write �1

X (log D) resp. �X (− log D) for the
sheaf of logarithmic one-forms resp. of logarithmic vector fields on X , that is:

�1
X (log D) :=

{
α ∈ �1

X (D) | dα ∈ �2
X (D)

}
,

�X (− log D) := {θ ∈ �X | θ(I(D)) ⊂ I(D)} ,

where I(D) ⊂ OX is the ideal sheaf of D. These are coherent and reflexive OX -
modules. The examples of divisors that we are studying in this paper are given by the
following condition.

Definition 1.1 (see [36]) A divisor D ⊂ X is called free if the sheaf �1
X (log D) (or,

equivalently, the sheaf �X (− log D)) is a locally free OX -module.

If D is free, then we have the equality

p∧
�1

X (log D) ∼= �
p
X (log D) :=

{
α ∈ �

p
X (D) | dα ∈ �

p+1
X (D)

}
.

Hence the terms of the so-called logarithmic de Rham complex of (X , D), i.e., the
complex (�•

X (log D), d), are locally free OX -modules. Notice that the most basic
example of a free divisor is a divisor with simple normal crossings, in which case
the logarithmic de Rham complex is a well studied object. It is particularly useful
for the construction (due to Deligne, see, e.g., [33, II.4]) of a mixed Hodge structure
on the cohomology of the complement U = X\D, in case it is quasi-projective.
If D has simple normal crossings, then it is classical that the logarithmic de Rham
complex computes the cohomology ofU , in otherwords,we have a quasi-isomorphism
R j∗CU ∼= (�•

X (log D), d). This is not always true for any free divisor, but if it is, we
say that the logarithmic comparison theoremholds for D (see [11]). This is in particular
the case under a condition called strongly Koszul (see [32, Corollary 4.5]), which we
recall in the next section (see Definition 2.3 below). Strongly Koszul free divisors
are the objects of study of this paper. Many interesting free divisors, such as free
hyperplane arrangements, or more generally locally quasi-homogeneous free divisors
satisfy the strong Koszul hypothesis. A nice feature of divisors in this class is that we
have a natural isomorphism DX ⊗VD

X
OX (D) ∼= OX (∗D), where VD

X is the sheaf of
logarithmic differential operators with respect to D, from which we obtain an explicit
representation ofOX (∗D) ∼= DX/I, where I is a left ideal inDX . As a consequence,
we can consider another filtration (besides the Hodge filtration) Ford• OX (∗D), called
the order filtration, which is simply given by the image of F•DX (the filtration by

order of differential operators) under the isomorphism DX ⊗VD
X
OX (D)

∼=→ OX (∗D)
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(or, equivalently, is induced from F•DX when writingOX (∗D) ∼= DX/I for the ideal
I mentioned above).

The main tool to describe the Hodge filtration FH• OX (∗D) is to look at the graph
embedding ih : X ↪→ Ct × X , where h is a local defining equation of D, and to
consider ih,+OX (∗D). It also underlies a mixed Hodge module (on Ct × X ), and
it is well-known that the Hodge filtration on OX (∗D) can be deduced from the one
on ih,+OX (∗D) (up to a shift by one), and vice versa. More precisely, recall that
ih,+OX (∗D) ∼= OX (∗D)[∂t ] (we recall the DCt×X -module structure on OX (∗D)[∂t ]
in Formula (19) on page 22 below), and that under this isomorphism, we have

FH• OX (∗D) =
(
FH•+1ih,+OX (∗D)

)
∩ (OX (∗D) ⊗ 1). (1)

Hence we are reduced to determine FH• ih,+OX (∗D). In order to do so, we use a key
property of mixed Hodge modules, which is known as strict specializability. It can be
rephrased as a formula (see [39, Proposition 4.2]) describing the Hodge filtration on a
module which is the extension of its restriction outside a smooth divisor (which is the
hyperplane {t = 0} ⊂ Ct ×X in our case). In order to use it, we have to compute some
steps of the canonical V -filtration along {t = 0} of the module ih,+OX (∗D), denoted
by V •

canih,+OX (∗D). Here we rely crucially on a previous result of the second named
author ([32, Theorem 4.1]), namely, that the roots of the Bernstein–Sato polynomial
bh(s) of h are contained in (−2, 0) and that they are symmetric around −1. As we
will see below, the set of roots of bh(s) bigger than −1 plays a particular role, and we
put

B ′
h := {αi ∈ Q ∩ (0, 1) | bh(αi − 1) = 0} . (2)

for later reference. For an element αi ∈ B ′
h , we write li for the multiplicity of the root

αi − 1 in bh . The polynomial
∏

αi∈B′
h
(s − αi + 1)li ∈ C[s] is the special factor of the

Bernstein–Sato polynomial bh(s) mentioned in the abstract.
We can consider another V -filtration on the module ih,+OX (∗D), induced from

V •DCt×X for a cyclic presentation DCt×X/I ′ of ih,+OX (∗D) obtained from the
cyclic presentation DX/I of OX (∗D) mentioned above. We will denote it by
V •
indih,+OX (∗D). Knowing that bh(s) is closely related to the b-function of such fil-

tration (see Lemma 3.2 below), we can describe V k
canih,+OX (∗D) at least for integer

values of k as a submodule of V k
indih,+OX (∗D).

Our main result can then be summarized as follows:

Theorem (see Proposition 3.3 and Theorem 4.4 below) Let D ⊂ X be a strongly
Koszul free divisor, and suppose that it is globally given by a reduced equation h ∈ OX .
Then:

1. We have the following inclusions of coherent OX -modules:

FH• OX (∗D) ⊂ Ford• OX (∗D) ⊂ P•OX (∗D).
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2. The zeroth step of the canonical V -filtration on ih,+OX (∗D) can be described as
follows:

V 0
canih,+OX (∗D) ∼= V 1

indih,+OX (∗D) +
∏

αi∈B′
h

(∂t t + αi )
li V 0

indih,+OX (∗D).

3. For all k ∈ Z, we have the following recursive formula for the Hodge filtration on
OX (∗D) (recall the shift convention between FH• OX (∗D) and FH• ih,+OX (∗D)):

FH
k OX (∗D) ∼=[
∂t F

H
k ih,+OX (∗D) + V 0

canih,+OX (∗D)
]

∩
(
Ford
k OX (∗D) ⊗ 1

)
. (3)

Notice that part 2 actually holds under weaker assumptions on D, see Proposition 3.3
below for more details.

Combining these three results and taking into account equation (1) allow us to
determine the Hodge ideals of D. Theorem 5.2 below (and specifically Formula (48))
gives a concrete and explicit way to calculate theHodge filtration steps on ih,+OX (∗D)

resp. onOX (∗D) and the Hodge ideals of D. In the second part of section 5, we apply
our method to certain interesting examples.

In applications, it is sometimes useful to study the behaviour of a Hodge mod-
ule under the duality functor. It is defined for objects of the category MHM, but
it restricts to the usual holonomic dual of the underlying D-module. We give (see
Theorem 4.10) some statements estimating the Hodge filtration on the dual Hodge
module with underlying DX -module DOX (∗D), following standard convention, this
DX -module is denoted by OX (!D). Interestingly, our results on the dual Hodge fil-
tration also involve the cardinality of the set B ′

h , i.e. the number of roots (counted
with multiplicity) of bh lying strictly in the interval (−1, 0). Finally, we state a con-
jecture (see Conjecture 4.12) estimating the generating level of the Hodge filtration
FH• OX (∗D), namely, we expect that it is always generated at level |B ′

h |. Computation
of examples in section 5 supports this conjecture.

The paper is organized as follows: In section 2,wefirst introduce rigorously the class
of divisors we are interested in, and define the order filtration on OX (∗D) globally.
We prove an important fact for the filtered module (OX (∗D), Ford• ), which is known
as the Cohen-Macaulay property (see Proposition 2.9). It is known from Saito’s theory
that the same property holds for (OX (∗D), FH• ), i.e., the filtered module underlying
the mixed Hodge module j∗QH

U [n]. We are using the Cohen-Macaulay property of
both filtrations to give the estimation of the Hodge filtration on the dual module of
OX (∗D) (see Theorem 4.10) referred to above.

In section 3, we recall some general facts on V -filtrations and then describe
(see Proposition 3.3) the canonical V -filtration on the graph embedding module of
OX (∗D). In the subsequent section 4, we use these results to prove formula (3) (see
Theorem 4.4). Finally, in section 5, we develop techniques for the computation of
Hodge ideals, and perform them for some significant examples.
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2 Filtration by order onOX (∗D)
The purpose of this section is to introduce the class of divisors we are going to study
in this paper, these are free divisors satisfying the strong Koszul hypothesis. In that
case, we can define a particular good filtration Ford• on the sheaf OX (∗D). We call
it order filtration, because if locally we choose a reduced equation h for D, then the
strong Koszul hypothesis implies that there is a canonical representation of OX (∗D)

as a cyclic leftDX -module (generated by h−1)DX/I(h), and then our order filtration
is the filtration onDX/I(h) induced by the filtration onDX by the order of differential
operators. Nevertheless, as we will see below, Ford• OX (∗D) is globally well defined.
As mentioned in the introduction, one of our main results is that for each k ∈ Z the
Hodge filtration FH

k OX (∗D) is a coherentOX -submodule of Ford
k OX (∗D) as well as

a precise description of the inclusion FH
k OX (∗D) ⊂ Ford

k OX (∗D) (see Theorem 4.4
below). We will also show in this section that the order filtration Ford• OX (∗D) shares
a key feature with FH• OX (∗D), known as the Cohen-Macaulay property. This is used
in section 4 (see the proof of Theorem 4.10) to give some statement about the dual
Hodge filtration.

For the remainder of this paper (except in subsection 5.4, where we explicitly relax
these assumptions), we will assume X to be an n-dimensional complex manifold,
and D ⊂ X a free divisor. We will be specifically working with those free divisors
satisfying an additional hypothesis called strongly Koszul, that we define now.

Denote as before by �X the locally free OX -module of rank n of vector fields
and by DX the sheaf of linear differential operators with holomorphic coefficients,
endowed with the filtration F•DX by the order of differential operators. For each
divisor D ⊂ X we write OX (∗D) for the sheaf of meromorphic functions with poles
along D and �•

X (∗D) the meromorphic de Rham complex. If D is a free divisor, we
denote by �X (− log D) ⊂ �X the locally free OX -module of rank n of logarithmic
vector fields and by �•

X (log D) the logarithmic de Rham complex. Moreover, we let

VD
X :=

{
P ∈ DX | P(I(D)k) ⊂ I(D)k ∀k ∈ Z

}
⊂ DX

be the sheaf of rings of logarithmic differential operators with respect to D. It is filtered
by the order of differential operators as well, namely FkVD

X := VD
X ∩ FkDX for all

k ∈ Z, and there is a canonical isomorphism of graded OX -algebras (see [7, Remark
2.1.5])

Sym•
OX

�X (− log D)
∼−→ GrF• VD

X .

The sheafOX (D) ⊂ OX (∗D) of meromorphic functions with poles of order ≤ 1 is a
left VD

X -module by the definition of VD
X and we have a canonical DX -linear map ( [9,

§4])

DX
L⊗VD

X
OX (D) −→ OX (∗D). (4)

We quote the following result (see [9, Corollaire 4.2]):
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Theorem 2.1 Let D ⊂ X be a free divisor. The following properties are equivalent:

(i) The logarithmic comparison theorem (LCT) holds for D (i.e. the inclusion
�•

X (log D) ↪→ �•
X (∗D) is a quasi-isomorphism of complexes of sheaves of C-

vector spaces).
(ii) The map (4) is a quasi-isomorphism of complexes of left DX -modules.

Let us notice that property (ii) in the above theorem means that the complexDX
L⊗VD

XOX (D) is concentrated in degree 0 and the canonical DX -linear map

α : DX ⊗VD
X
OX (D) −→ OX (∗D)

is an isomorphism of left DX -modules.

Definition 2.2 Assume that D ⊂ X is free and that the logarithmic comparison theo-
rem holds for D. We define the order filtration Ford• OX (∗D) by

Ford• OX (∗D) := α
(
(F•DX ) ⊗VD

X
OX (D)

)
⊂ OX (∗D),

which by definition is a filtration by OX -coherent submodules.

Let us give a more explicit local description. Let p ∈ D, and take a basis δ1, . . . , δn
of �X (− log D)p as well as a local equation h ∈ OX ,p of D around p, such that
δi (h) = αi h. Assume that the LCT holds for D, then we have the following explicit
local presentation

DX ,p/DX ,p(δ1 + α1, . . . , δn + αn) ∼= OX ,p(∗D), (5)

where the class [1] is send to h−1 (see the explanation after Corollaire 4.2 in [9]).
Under this isomorphism, the filtration Ford• OX (∗D)p is the induced filtration on
DX ,p/DX ,p(δ1 + α1, . . . , δn + αn) by F•DX ,p, which explains its name.

We now introduce the strong Koszul hypothesis. It implies that the LCT holds for
D ⊂ X , but it is stronger. Its additional assumptions will be needed in the next section.

Definition 2.3 Let D ⊂ X be a free divisor and let p ∈ D. Let h ∈ OX ,p be a local
reduced equation of (D, p) and let δ1, . . . , δn be any OX ,p-basis of �X ,p(− log D)

with δi (h) = αi h.

1. We say that D is Koszul at p ∈ D if the sequence

σ(δ1), . . . , σ (δn)

is regular in GrF• DX ,p. (Here and at later occasions, for an element P in a filtered
ring, we denote by σ(P) its symbol, i.e. its class in the associated graded ring.)

2. We say that D is strongly Koszul at p ∈ D if the sequence

h, σ (δ1) − α1s, . . . , σ (δn) − αns
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is regular in GrT• DX ,p[s] (where T•DX ,p[s] is the filtration on DX ,p[s] for which
vector fields on X as well as the variable s have order 1, we will call it the total
order filtration on DX ,p[s]).

We say that D is Koszul resp. strongly Koszul if it is so at any p ∈ D. Since the strong
Koszul assumption will be our main hypothesis later, we will sometimes abbreviate it
by saying that D is an SK-free divisor.

Let us notice that, in the above definition, the ordering of the sequences is not
relevant because their elements are homogeneous. Let us also notice that if D has an
Euler local equation h ∈ OX ,p, i.e. h belongs to its gradient ideal (with respect to
some local coordinates), then there is a basis δ1, . . . , δn−1, χ of �X (− log D)p with
δi (h) = 0 and χ(h) = h. In such a case, D is strongly Koszul at p if and only if
h, σ (δ1), . . . , σ (δn−1) is a regular sequence in GrF• DX ,p (compare with Definition
7.1 and Proposition 7.2 of [18] in the case of linear free divisors). For D to be strongly
Koszul is equivalent to be of “linear Jacobian type”, i.e. the ideal (h, h′

x1 , . . . , h
′
x1) is

of linear type, and any strongly Koszul free divisor is Koszul (see Propositions (1.11)
and (1.14) of [32]).

Any plane curve is a Koszul free divisor. Any locally quasi-homogeneous free
divisor is strongly Koszul [9, Theorem 5.6], and so are free hyperplane arrangements
or discriminants of stable maps in Mather’s “nice dimensions”. In particular, any
normal crossing divisor is strongly Koszul free.

Let us recall the following properties of SK-free divisors.

Proposition 2.4 If D is a strongly Koszul free divisor, then we have:

1. D is locally strongly Euler homogeneous, that is, for each p ∈ D there is a vector
field χ ∈ �X ,p which vanishes at p and such that χ(h) = h for some reduced
local equation h of D at p.

2. The LCT holds for D, in particular, we have the local cyclic presentation of
OX (∗D) from formula (5) above. More specifically, if for each p ∈ D, we take
h and χ as in point 1 and if we let δ1, . . . , δn−1 to be a basis of germs at p
of vector fields vanishing on h, in such a way that δ1, . . . , δn−1, χ is a basis of
�X (−log D)p, then there is an isomorphism of left DX ,p-modules

DX ,p

DX ,p (δ1, . . . , δn−1, χ + 1)
∼= OX ,p(∗D), (6)

sending the class of 1 ∈ DX ,p to h−1 ∈ OX ,p(∗D).
3. Let p ∈ D be a point, h ∈ OX ,p be a reduced local equation of D at p and

bh(s) the Bernstein–Sato polynomial of h (i.e., the monic generator of the ideal
of polynomials b(s) ∈ C[s] satisfying P(s)hs+1 = b(s)hs for some P(s) ∈
DX ,p[s]). Then we have bh(−s−2) = ±bh(s). In particular, if {α1, . . . , αk} ⊂ Q

is the set of roots of bh(s), with α1 ≤ · · · ≤ αk , we have αi ∈ (−2, 0) and
αi + αk+1−i = −2 for all i .

Proof Part 1 is a consequence of Propositions (1.9) and (1.11) of [32]. Part 2 is a
consequence of Corollary (4.5) of [32]. Part 3 is a consequence of Corollary (4.2) of
[32]. �
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Remark 2.5 Definition 2.3 is purely algebraic and makes sense in rings other than ana-
lytic local ringsOX ,p, for instance in polynomial rings R := C[x1, . . . , xn], algebraic
local rings of polynomial rings at maximal ideals or formal power series rings. Under
this scope, if h ∈ C[x1, . . . , xn] is a non-constant reduced polynomial, D = V(h) is
the affine algebraic hypersurface with equation h = 0 and Dan ⊂ Cn is the corre-
sponding analytic hypersurface, we know that D is a (algebraic) free divisor if and only
if Dan is a (analytic) free divisor, and if so, the following properties are equivalent:

(a) The (affine algebraic) divisor D is stronglyKoszul, i.e. for some (and hence for any)
basis δ1, . . . , δn of Der(− log D) = {δ ∈ DerC(R) | δ(h) ∈ (h)}, the sequence

h, σ (δ1) − a1s, . . . , σ (δn) − ans, with δi (h) = ai h, ai ∈ R,

is regular in GrT• W[s], where W = R〈∂1, . . . , ∂n〉 is the Weyl algebra and
GrT• W[s] = R[σ(∂1), . . . , σ (∂n), s] is the graded ring of W[s] with respect to
the total order filtration.

(b) For each maximal ideal m ⊂ R containing h, D is strongly Koszul at m, i.e. for
some (and hence for any) basis δ1, . . . , δn of

Der(− log D)m = Der(− log Dm) = {δ ∈ DerC(Rm) | δ(h) ∈ (h)},

the sequence

h, σ (δ1) − a1s, . . . , σ (δn) − ans, with δi (h) = ai h, ai ∈ Rm,

is regular in GrT• Wm[s], where Wm = Rm〈∂1, . . . , ∂n〉, and GrT• Wm[s] =
Rm[σ(∂1), . . . , σ (∂n), s] is the graded ring of Wm[s] with respect to the total
order filtration.

(c) The (analytic) divisor Dan is stronglyKoszul (in the sense of Definition 2.3 above).

The next step is to discuss some of the deeper properties of the order filtration
Ford• OX (∗D). The main result is Proposition 2.9 below, which is concerned with the
dual filtered module D(OX (∗D), Ford• ). In order to do this, we need to recall a few
facts about the duality theory of filteredmodules. The original reference is [37, Section
2.4], but for what follows below, [43, § 29] provides enough background information.

For any complex manifold X , we consider the (sheaf of) Rees ring(s) RFDX of
the filtered ring (DX , F•), that is RFDX := ⊕k∈ZFkDX · zk ⊂ DX [z]. In local
coordinates x1, . . . , xn on U ⊂ X , we have

RU = �(U ,RFDX )

= OU [z]〈z∂x1, . . . , z∂xn 〉 ⊂ �(U ,DX [z]) = OU [z]〈∂x1, . . . , ∂xn 〉. (7)

The ring RFDX will be denoted by D̃X . For what follows, we will need an interpre-
tation of this sheaf in terms of Lie algebroids, more precisely, we will use the fact that
D̃X is the enveloping algebra of the Lie algebroid z�X [z] ⊂ DerC[z](OX [z]) of rank
n = dim X over the C[z]-algebra OX [z].
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Lie algebroids are the sheaf version of Lie-Rinehart algebras (see [34]). They were
originally studied in the setting of Differential Geometry (the book [25] is a complete
reference here), and for instance in [6] the complex analytic case is considered.

For the ease of the reader, let us recall the notions of Lie-Rinehart algebras and
Lie algebroids. Let us take a commutative base ring k and a commutative k-algebra
A (resp. a sheaf of commutative k-algebras A over a topological space X ). A Lie-
Rinehart algebra over (k, A) is a (left) A-module L which is also a k-Lie algebra,
endowed with an anchor map 
 : L → Derk(A): a (left) A-linear morphism of k-Lie
algebras such that

[λ, aλ′] = a[λ, λ′] + 
(λ)(a)λ′

for all λ, λ′ ∈ L and a ∈ A. Respectively, a Lie algebroid over (k,A) is a (left)
A-module L which is also a sheaf of k-Lie algebras, endowed with an anchor map

 : L → Derk(A): a (left) A-linear morphism of sheaves of k-Lie algebras such that

[λ, aλ′] = a[λ, λ′] + 
(λ)(a)λ′

for all local sections λ, λ′ of L and a of A.
We usually assume that L is a projective A-module (resp. L is a locally free A-

module) of finite rank. It is clear that for each point p ∈ X , by using the natural
morphism Derk(A)p → Derk(Ap), any Lie algebroid L over (k,A) gives rise to a
Lie-Rinehart algebra Lp over (k,Ap).

For any Lie-Rinehart algebra L over (k, A) (resp. for any Lie algebroid L over
(k,A)), there is a universal k-algebra U(L) (resp. sheaf of k-algebras U(L)), endowed
with canonical maps A → U(L) and L → U(L) (resp. A → U(L) and L → U(L)),
called the enveloping algebra of L (resp. ofL). One easily proves that for each p ∈ X ,
there is a canonical isomorphism U(Lp) ∼= U(L)p. Enveloping algebras are naturally
(positively) filtered.

Over a complex analytic manifold X , our basic example is k = C, A = OX and
L = �X = DerC(OX ), where the anchor is the identity. In this case, the correspond-
ing enveloping algebra is the sheaf of differential operators DX (cf. [6, § 2]). The fact
thatRFDX is the enveloping algebra of the Lie algebroid z�X [z] over (C[z],OX [z]),
where the anchor map is given by the inclusion z�X [z] ⊂ DerC[z](OX [z]), is easy
(it is basically [46, Exercise 8.7]). In general, the enveloping algebra of any Lie alge-
broid comes equipped with a natural filtration, but in the case of RFDX , we have an
additional structure: the grading by z. All the objects C[z],OX [z], z�X [z] are graded
by the powers of z, and the enveloping algebra of z�X [z] inherits a graded structure
which coincides with the original one inRFDX . Later, we will come back to the role
of graded structures on our Lie algebroid (or our Lie-Rinehart algebra).

On the other hand, the natural filtration on D̃X as enveloping algebra of z�X [z]
can be derived from its graded structure in the following way (notice that it is not the
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usual filtration associated to the grading):

FkD̃X =
(

k−1⊕
i=0

FiDX · zi
) ⊕ ( ∞⊕

i=k

FkDX · zi
)

.

We have a canonical commutative diagram of graded OX [z]-algebras

Sym•
OX [z](z�X [z]) GrF• D̃X

Sym•
OX [z](�X [z]) GrF• (DX [z])

Sym•
OX

(�X )[z] GrF• (DX )[z],

∼=

∼=

∼= ∼=
∼=

(8)

where F•(DX [z]) := (F•DX )[z] and where the horizontal arrows are isomorphisms
by the Poincaré-Birkhoff-Witt theorem for Lie algebroids resp. Lie-Rinehart algebras
(see, e.g., [34, Theorem 3.1]). Let us notice that all objects in the above diagram are
bigraded (where the additional grading is given by the z-degree), and all maps in the
diagram are morphisms of bigraded algebras.

For a filtered left (resp. right) DX -module (M, F•), we write R(M, F•) :=
RFM := ⊕k∈ZFkM · zk for its associated Rees module, which is naturally a graded
(by degree in z) left (resp. right) D̃X -module. A graded left (or right) D̃X -module M̃ is
called strict if it has no z-torsion. AssociatingR(M, F•) to (M, F•) defines a faithful
functor from the category of filtered left (resp. right) DX -modules to the category of
graded left (resp. right) D̃X -modules. It is readily verified that a graded left (resp.
right) D̃X -module M̃ is the Rees module of a filtered left (resp. right) DX -module
(M, F•) iff it has no z-torsion. Notice that in this case we naturally have

M̃/(z − 1)M̃ ∼= M and M̃/zM̃ ∼= GrF• M. (9)

Moreover, for a sequence of filtered DX -modules

(M′, F ′•)
i−→ (M, F•)

p−→ (M′′, F ′′• ), with p ◦ i = 0,

the following properties are equivalent:

1. The underlying sequence of DX -modules M′ i−→ M p−→ M′′ is exact and strict
with respect to F• (i.e. FkM ∩ (ker p) = i(F ′

kM′) for all k ∈ Z).

2. The associated sequence of D̃X -modules RF ′M′ R i−−→ RFM R p−−→ RF ′′M′′ is
exact.

3. The associated sequence of GrF• DX -modules GrF
′

• M′ Gr i−−→ GrF• M
Gr p−−→

GrF
′′

• M′′ is exact.
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The left DX -module OX will be always endowed with the trivial filtration

FkOX =
{
0 if k < 0
OX if k ≥ 0,

such that RFOX = OX [z] is a graded left D̃X -module with the usual z-grading, that
will be denoted by ÕX .

The canonical right D̃X -module (see [46, Example 8.1.9])

ω̃X :=
n∧

(z�X [z])∗ = z−nωX [z],

can also be seen as the Rees module RFωX associated with the canonical right DX -
module ωX endowed with the filtration

FkωX =
{
0 if k < −n
ωX if k ≥ −n.

(10)

The main advantage to work with (graded) D̃X -modules rather than with filteredDX -
modules is that the former category is abelian whereas the latter is not.

Let k be a commutative graded ring (e.g., k = C[z]) and B̃ a sheaf of graded
k-algebras over a topological space X (e.g., B̃ = D̃X or B̃ = ÕX for X a complex
manifold). We recall the sheaf version of some well-known definitions for graded
modules over graded rings (cf. [16, §1]).

For any graded left resp. right B̃-modules M̃, Ñ , let us denote by ∗HomB̃(M̃, Ñ )

the sheaf of graded k-modules

⊕
i∈Z

HomgrB̃(M̃, Ñ (i)) ⊂ HomB̃(M̃, Ñ ),

where the Ñ (i) is the shifted graded module defined as Ñ (i) j = Ñ (i + j) for
all i, j ∈ Z. The above inclusion is an equality whenever M̃ is locally of finite
presentation.

For any graded right B̃-module Q̃ and any left B̃-module M̃, the graded tensor
product Q̃∗⊗B̃M̃ is the sheaf of k-modules Q̃ ⊗B̃ M̃ endowed with the grading

[
Q̃p

∗⊗B̃p
M̃p

]
d

= 〈x ⊗ y | x ∈ [Q̃p]i , y ∈ [M̃p] j , i + j = d〉, ∀p ∈ X .

Clearly,

∗HomB̃(M̃(i), Ñ ( j)) = ∗HomB̃(M̃, Ñ )( j − i)

and

Q̃(i)∗⊗B̃M̃( j) = (Q̃∗⊗B̃M̃
)
(i + j)
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for all integers i, j . IfM̃ is a left resp. right B̃-module, then ∗HomB̃(M̃, B̃) is a graded
right resp. left B̃-module.

The complex R∗HomD̃X
(ÕX , D̃X ) can be computed by means of the Spencer res-

olution of ÕX

Sp•̃
DX

(ÕX ) := · · · → D̃X ⊗ÕX

n∧
z�X [z] → · · · → D̃X ⊗ÕX

z�X [z] → D̃X → 0,

graded by

[
D̃X ⊗ÕX

i∧
z�X [z]

]

k

= [D̃X
]
k−i ⊗OX

i∧
�X , i = 0, . . . , n.

The complex R∗HomD̃X
(ÕX , D̃X ) is concentrated in homological degree n and we

have a canonical isomorphism of graded right D̃X -modules

ω̃X ∼= HnR∗HomD̃X
(ÕX , D̃X ) =: ∗ExtnD̃X

(ÕX , D̃X ).

As for the non-graded case, we have natural equivalences of categories between
graded left D̃X -modules and graded right D̃X -modules:

1. For any graded left D̃X -module M̃, we define

M̃right := ω̃X
∗⊗ÕX

M̃ ∼= ωX ⊗OX M̃

with grading
[M̃right

]
i = ωX ⊗OX M̃i+n .

2. For any graded right D̃X -module M̃, we define

M̃left := ∗HomÕX
(ω̃X ,M̃) ∼= HomOX (ωX ,M̃)

with grading
[M̃left

]
i = HomOX (ωX ,M̃i−n).

For a complex of graded left or right D̃X -modules M̃ (which may not come from
a complex of filtered DX -modules (M, F•)), we define its dual complex to be

∗DM̃ := R∗HomD̃X
(M̃, D̃X )left[dim X ] (11)

∗DM̃:=R∗HomD̃X
(M̃, D̃X )right[dim X ]=R∗HomD̃X

(M̃, ω̃X
∗⊗ÕX

D̃X )[dim X ],
(12)

respectively.We have canonical isomorphisms of graded left (resp. right) D̃X -modules
(actually, complexes concentrated in degree 0)

∗DÕX ∼= ÕX (resp. ∗Dω̃X ∼= ω̃X ). (13)
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We also have canonical isomorphisms

∗D(M̃(i)) ∼= (∗DM̃)(−i) (14)

for all i ∈ Z.
Given a filtered holonomic module, one can consider the dual of its Rees module.

However, this is not in general the Rees module of a filtered module. The next lemma
gives a criterion to know when this is the case.

Lemma 2.6 (see, e.g., [46, 8.8.22]) Let (M, F•) be a filtered left or right holonomic
DX -module, and M̃ := R(M, F•) its associated Rees module. Then we have that
Hi (∗DM̃) = 0 for all i �= 0 and H0(∗DM̃) has no z-torsion iff (M, F•) has the
Cohen-Macaulay property, that is, iff GrF• M is a Cohen-Macaulay GrF• DX -module.

In this case, H0(∗DM̃) is the Rees module of a filtered module, the underlying
DX -module of which isDM and we denote the filtration thus defined by FD• DM. We
call (DM, FD• ) the dual filtered module, and FD• DM the dual filtration on F•M.

From (13), the canonical left (resp. right) DX -module OX (resp. ωX ) is self-dual
as filtered module with the trivial filtration (resp. with the filtration (10)).

It is clear that if (M, F•) is a filtered holonomic DX -module having the Cohen-
Macaulay property, then (M, F(i)•) also has the Cohen-Macaulay property and (see
(14) above)

(F•+i )
D = FD•−i (15)

for any integer i .
Let us come back to the situation of a free divisor D ⊂ X . The sheaf of logarith-

mic differential operators VD
X ⊂ DX is the enveloping algebra of the Lie algebroid

�X (− log D) ⊂ �X over theC-algebraOX (this is basically [7, Corollary 2.2.6]). The
Rees ring ṼD

X of the filtered ring (VD
X , F•) turns out to be the enveloping algebra of the

Lie algebroid z�X (− log D)[z] ⊂ DerC[z](OX [z]) of rank n over the (C[z],OX [z]).
The Lie algebroids z�X [z] and z�X (− log D)[z] with their z-grading are graded

Lie algebroids in the sense that they are graded as OX [z]-modules and as sheaves of
C[z]-Lie algebras, and that their anchor maps

z�X (− log D)[z], z�X [z] nat.−−→ ∗DerC[z](OX [z])

are graded too. Moreover, the inclusion z�X (− log D)[z] ⊂ z�X [z] is graded and so
is a map of graded Lie algebroids in the sense we leave the reader to write down.

We know that the relative dualizing module (see Definition (A.28) of [32]) for
the inclusion of Lie algebroids L0 := �X (− log D) ⊂ L := �X is ωL/L0 =
HomOX

(
ωL, ωL0

)
with ωL = ∧n L∗ = ωX , ωL0 = ∧n L∗

0 = ωX (log D), and
so ωL/L0 = OX (D).

In a completely similar way, the relative dualizing module of the inclusion L̃0 :=
z�X (− log D)[z] ⊂ L̃ := z�X [z] is ωL̃/L̃0

= HomÕX

(
ωL̃, ωL̃0

)
with ωL̃ =∧n L̃∗ = z−nωX [z] = ω̃X , ωL̃0

= ∧n L̃∗
0 = z−nωX (log D)[z]) =: ω̃X (log D),
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and so we have a canonical isomorphism ωL̃/L̃0
= OX (D)[z], but in this case, due

to the graded structures, this relative dualizing module is also naturally graded since
it can be defined by using ∗HomÕX

instead of HomÕX
, and of course, this grading

coincides with the z-grading of OX (D)[z].
We have seen before (see Theorem 2.1) that if D ⊂ X is such that the LCT

holds (e.g. if D is strongly Koszul), then there is an isomorphism of left DX -modules
DX ⊗VD

X
OX (D) ∼= OX (∗D). Clearly,OX (D) is a left VD

X -module that is locally free
(actually, of rank one) over OX .

This situation can be generalized by replacingOX (D) by an integrable logarithmic
connection (ILC) E with respect to D, which by definition is a locally freeOX -module
of finite rank endowed with a left VD

X -module structure. This notion is useful when
one aims at studying the cohomology of X\D with respect to some local coefficient
system (i.e., the local system of horizontal sections of E). The next two results will
be stated and proved in this greater generality. Although we will use them in this
paper only for the case E = OX (D), we believe that they may be useful for future
applications. Moreover, for the final proof of Proposition 2.9 below (even if we are
only interested in the case E = OX (D)) some intermediate steps need to be carried
out for an arbitrary ILC.

Given an ILC E with respect to D, we define (in complete analogy to Definition 2.2)
the order filtration on DX ⊗VD

X
E to be:

Ford
k

(
DX ⊗VD

X
E
)

:= im
(
FkDX ⊗OX E) ⊂ DX ⊗VD

X
E .

In other words, (DX ⊗VD
X
E, Ford• ) is the filtered tensor product of DX with its order

filtration and E with its trivial filtration given by FkE = E for k ≥ 0 and FkE = 0 for
k < 0.

We have a natural D̃X -linear graded map

D̃X
∗⊗ṼD

X
Ẽ −→ R(DX ⊗VD

X
E, Ford• ) (16)

induced by the ṼD
X -linear graded map

Ẽ = E[z] −→ R(DX ⊗VD
X
E, Ford• )

∑
i

ei z
i �−→

∑
i

(1 ⊗ ei )z
i .

Notice that R(DX ⊗VD
X
E, Ford• ) is a left graded ṼD

X -module through the inclusion

ṼD
X ⊂ D̃X .

Lemma 2.7 Let D be a Koszul free divisor, and let E be an ILC with respect to D.
Then:

1. The map (16) is an isomorphism of graded D̃X -modules
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2. The complex D̃X

L∗⊗ṼD
X
Ẽ is concentrated in degree 0 and so we have an isomor-

phism in the derived category of complexes of left graded D̃X -modules

D̃X

L∗⊗ṼD
X
Ẽ ∼=−→ D̃X

∗⊗ṼD
X
Ẽ .

Proof Both properties can be proved by forgetting the graded structures. It is easy to
see that under the Koszul hypothesis on D, the inclusion of Lie algebroids (over the
C[z]-algebra OX [z])

z�X (− log D)[z] ⊂ z�X [z]

is a Koszul pair in the sense of [10, Definition 1.16], i.e., some (or any) local OX [z]-
basis of z�X (− log D)[z] forms a regular sequence in Sym•

OX [z](z�X [z]), namely, by
using the inclusion Sym•

OX [z](z�X [z]) ↪→ Sym•
OX

(�X )[z]) (see diagram (8) above)
and the fact that the Koszul property means exactly that the inclusion of Lie algebroids
(over OX ) �X (− log D) ⊂ �X is a Koszul pair.

Following [10, § 1.1.2], we can define for both inclusions of Lie algebroids
�X (− log D) ⊂ �X and z�X (− log D)[z] ⊂ z�X [z], for an ILC E (which is a
left VD

X -module) and the corresponding Rees module Ẽ (which is a ṼD
X -module) the

Spencer complexes Sp•
VD
X
(E) and Sp•̃

VD
X
(Ẽ), which are, respectively,

· · · → VD
X ⊗OX

n∧
�X (− log D) ⊗OX

E → · · · → VD
X ⊗OX

�X (− log D) ⊗OX
E → VD

X ⊗OX
E → 0

and

· · · → ṼD
X ⊗ÕX

n∧
z�X (− log D)[z] ⊗ÕX

Ẽ → · · · → ṼD
X ⊗ÕX

z�X (− log D)[z] ⊗ÕX
Ẽ → ṼD

X ⊗ÕX
Ẽ → 0.

They have augmentations to E resp. to Ẽ and are a locally freeVD
X - resp. ṼD

X -resolution
of E resp. Ẽ .

We can also consider the complex

Sp•
VD
X ,DX

(E) := DX ⊗VD
X
Sp•

VD
X
(E) resp. Sp•̃

VD
X ,D̃X

(Ẽ) := D̃X ⊗ṼD
X
Sp•̃

VD
X
(Ẽ),

which are

· · · → DX ⊗OX

n∧
�X (− log D) ⊗OX

E → · · · → DX ⊗OX
�X (− log D) ⊗OX

E → DX ⊗OX
E → 0,

resp.

· · · → D̃X ⊗ÕX

n∧
z�X (− log D)[z] ⊗ÕX

Ẽ → · · · → D̃X ⊗ÕX
z�X (− log D)[z] ⊗ÕX

Ẽ → D̃X ⊗ÕX
Ẽ → 0.

According to [10, Proposition 1.18], since both inclusions of Lie algebroids areKoszul
pairs, the cohomology of both complexes is concentrated in degree 0, and equal to
D ⊗VD

X
E and D̃ ⊗ṼD

X
Ẽ , respectively. This proves in particular the second statement.
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But actually the proof of this result in loc. cit. gives us an additional strictness
property for Sp•

VD
X ,DX

(E). Namely, if we filter this complex as

Fi
k

(
DX ⊗OX

i∧
�X (− log D) ⊗OX E

)
= Fk−iDX ⊗OX

i∧
�X (− log D) ⊗OX E,

for i = 0, . . . , n, we obtain that

GrF•
(
DX ⊗VD

X
Sp•

VD
X
(E)

) ∼=
(
GrF• DX ⊗OX

•∧
�X (− log D)

)
⊗OX E,

and this complex is concentrated in degree 0 by the Koszul hypothesis (and so is
Sp•

VD
X ,DX

(E)), but this result also implies that the differentials

DX ⊗OX

i∧
�X (− log D) ⊗OX E d−i−−→ DX ⊗OX

i−1∧
�X (− log D) ⊗OX E,

for i = 1, . . . , n, are strict for the above filtrations. In particular, the right exact
sequence

(
DX ⊗OX

�X (− log D) ⊗OX
E, F1

)
d−1−−→

(
DX ⊗OX

E, F0
)

→
(
DX ⊗VD

X
E, Ford•

)
→ 0

is strict, or equivalently, the sequence

RF1(DX ⊗OX �X (− log D) ⊗OX E)

→ RF0(DX ⊗OX E) → RFord• (DX ⊗VD
X
E) → 0 (17)

is exact. Notice also that we clearly have

RFi

(
DX ⊗OX

i∧
�X (− log D) ⊗OX E

)

∼= D̃X ⊗ÕX

i∧
z�X (− log D)[z] ⊗ÕX

Ẽ (18)

for all i ∈ {0, . . . , n}, since FkDX , �X (− log D) as well as E are OX -locally free
(hence, flat over OX ).

To finish, consider the commutative diagram of graded left D̃X -modules

D̃X ⊗ÕX
(z�X (− log D)[z]) ⊗ÕX

Ẽ D̃X ⊗ÕX
Ẽ D̃X ⊗ṼD

X
Ẽ 0

RF1 (DX ⊗OX
�X (− log D) ⊗OX

E) RF0 (DX ⊗OX
E) RFord• (DX ⊗VD

X
E) 0.
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The first row is exact since Sp•̃
VD
X ,D̃X

(Ẽ) is a resolution of D̃X ⊗ṼD
X
Ẽ , the second row

is so as we have just explained (sequence (17) above). By (18), the first and second
vertical arrows are isomorphisms and so is the third one. �


To prove our main result in this section, we will use a graded (and Lie-algebroid)
version of Theorem (A.32) of [32]. However, instead of stating it in full gener-
ality (for general graded Lie algebroids or Lie-Rinehart algebras), we will only
state it for the case we need, namely, the inclusion of graded Lie algebroids L̃0 =
z�X (− log D)[z] ⊂ L̃ = z�X [z] and the corresponding map of graded enveloping

algebras ṼD
X ⊂ D̃X .

Proposition 2.8 Let F be a graded locally free ÕX -module of finite rank endowed
with a graded left module structure over ṼD

X . We have a canonical isomorphism in the
derived category of graded D̃X -modules

D̃X

L∗⊗ṼD
X

(
OX (D)[z]∗⊗ÕX

F∗) ∼= ∗DD̃X

(
D̃X

L∗⊗ṼD
X
F

)
,

where F∗ = ∗HomÕX
(F , ÕX ) as graded left ṼD

X -module.

Proof (Outline) This proof is a straightforward translation of the proof of Theorem
(A.32) of [32] to the graded case. It essentially consists of replacing functorsHom and
⊗ by ∗Hom and ∗⊗ in all the constructions in the Appendix of loc. cit., as well as the
fact that the relative dualizing module ωL̃/L̃0

is naturally graded. We sketch it for the
convenience of the reader, and, actually, we propose a shorter and slightly different
approach.

Let us recall that ωL̃/L̃0
= ∗HomÕX

(ω̃X , ω̃X (log D)) ∼= OX (D)[z]. For each left

graded ṼD
X -module N , the natural graded ÕX -linear map

ωL̃/L̃0
∗⊗ÕX

∗HomÕX

(
ω̃X (log D), ∗HomṼD

X
(N , ṼD

X )

)
−→ ∗HomÕX

(
ω̃X , ∗HomṼD

X
(N , D̃X )

)

f ⊗ g �−→ i ◦ g ◦ f ,

where i : ṼD
X → D̃X is the inclusion, turns out to be left ṼD

X -linear. It induces a

natural graded D̃X -linear map from D̃X
∗⊗ṼD

X

(
ωL̃/L̃0

∗⊗ÕX

[
∗HomṼD

X
(N , ṼD

X )
]left)

to
[
∗HomṼD

X
(N , D̃X )

]left =
[
∗HomD̃X

(D̃X
∗⊗ṼD

X
N , D̃X )

]left
, and so a natural map

in the derived category of left graded D̃X -modules

D̃X

L∗⊗ṼD
X

(
ωL̃/L̃0

∗⊗ÕX

∗DṼX
(N )

)
−→ ∗DD̃X

(
D̃X

L∗⊗ṼD
X
N

)
,

which, by standard reasons, is an isomorphism whenever N is coherent. To finish,
notice that ifN is a graded locally free ÕX -module, then we have a canonical isomor-
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phism

∗DṼX
(N ) ∼= ∗HomÕX

(N , ÕX ) = N ∗

(cf. Corollary (A.24) of [32]). �

We are now ready to prove the announced result on the dual of the filtered module

(DX ⊗VD
X
E, Ford• ).

Proposition 2.9 Assume that D ⊂ X is a Koszul free divisor and that E is an ILC with
respect to D. Consider the filtered holonomic DX -moduleM := (DX ⊗VD

X
E, Ford• ),

and its corresponding Rees module M̃ := R(DX ⊗VD
X
E, Ford• ). Then the dual module

∗DM̃ is strict, that is, Hi (∗DM̃) = 0 for i �= 0 and H0(∗DM̃) has no z-torsion.
Moreover, we have an isomorphism of graded left DX -modules

H0(∗DM̃) = R(DX ⊗VD
X
E∗(D), Ford• ).

In particular, the filtered module (DX ⊗VD
X
E, Ford• ) satisfies the Cohen-Macaulay

property and its dual filtered module is isomorphic to (DX ⊗VD
X
E∗(D), Ford• ).

Proof By Lemma 2.7, we have

D̃X

L∗⊗ṼD
X
Ẽ ∼−→ D̃X

∗⊗ṼD
X
Ẽ ∼−→ M̃,

and so we have
∗DD̃X

M̃

∼= ∗DD̃X

(
D̃X

L∗⊗ṼD
X

Ẽ
)

Lemma 2.7, 1.+2. applied to the ILC E

∼= D̃X

L∗⊗ṼD
X

(
OX (D)[z]∗⊗ÕX

Ẽ∗)
Proposition 2.8

∼= D̃X

L∗⊗ṼD
X

˜E∗(D)

∼= D̃X
∗⊗ṼD

X
˜E∗(D) Lemma 2.7, 2. applied to the ILC E∗(D)

∼= R(DX ⊗VD
X
E∗(D), Ford• ) Lemma 2.7, 1. applied to the ILC E∗(D).

Notice that we write E∗ = HomOX (E,OX ) and similarly Ẽ∗ = HomÕX
(Ẽ, ÕX ).

In conclusion, the dual D̃X -module of M̃ is strict, and the dual filtration FD• DM
is given as the order filtration Ford• on DM ∼= DX ⊗VD

X
E∗(D). �


Remark 2.10 For the case E = OX (D), we can directly deduce from the local repre-
sentation

DX ,p ⊗VD
X ,p

OX ,p(D) ∼= OX ,p(∗D) ∼= DX ,p/(δ1, . . . , δn−1, χ + 1)
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(see formula (6)) that GrF
ord

•
(DX ⊗VD O(D)

)
is a Cohen-Macaulay GrF• DX -module,

since the symbols in GrF• DX of the operators δ1, . . . , δn−1, χ + 1 form a regular
sequence. However, later (see the proof of Theorem 4.10 below) we need to know that
the dual filtration FD• D(DX ⊗VD

X
OX (D)) is Ford• (DX ⊗VD

X
OX ), which is provided

by the proof above.

The following is an easy variant of Proposition 2.9 which we will need later in
section 4.

Corollary 2.11 Let, as above, D ⊂ X be aKoszul free divisor andE be an ILC. Then for
any k ∈ Z, the filtered holonomic module (D⊗VD

X
E, Ford•+k) has the Cohen-Macaulay

property, and its dual filtered module is given by (DX ⊗VD
X
E∗(D), Ford•−k).

Proof The statement of the corollary follows simply by combining the proof of Propo-
sition 2.9 with formula (15) and the remark that surrounds it. �


3 Canonical and induced V -filtration

In this section we are discussing in detail the V -filtration on ih,+OX (∗D), where ih is
the graph embedding for some local reduced equation h of D ⊂ X . This will be used in
the next section in order to obtain information on the Hodge filtration on ih,+OX (∗D),
and on OX (∗D) itself.

Recall that for any complex manifold M , and for a divisor H ⊂ M with I = I(H),
we have the filtration V •DM defined by

V kDM :=
{
P ∈ DM | PI i ⊂ I i+k

}
.

V 0DM is a sheaf of rings, notice that it equals the sheaf of logarithmic differential
operators (with respect to H ), which was denoted by VH

X in the previous chapter.
Moreover, all V kDM are sheaves of V 0DM -modules. We will usually suppose that H
is smooth, and moreover that it is given by a globally defined equation t ∈ �(M,OM ).

For any holonomic DM -module M, and any section m ∈ M, we write bMm (s) for
the unique monic polynomial of minimal degree satisfying bMm (∂t t)m ∈ tV 0DM ·m.
Moreover, if U •M is a good V -filtration on M, then it has (locally) a Bernstein
polynomial denoted by bMU• (s), which is the minimal monic polynomial satisfying

bMU• (s)(∂t t − k)UkM ⊂ Uk+1M.

We start by recalling the canonical V -filtration on a holonomic DM -module. In
general, it is indexed by the complex numbers, and in order to define it, one needs to
choose an ordering on C such that for all α, β ∈ C, we have α < α + 1, α < β ⇐⇒
α + 1 < β + 1 and α < β + m for some m ∈ Z. Notice however that for Hodge
modules, only rational indices can occur. Moreover, we will later only use the integer
parts of this filtration.
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Definition-Lemma 3.1 Let M and H = {t = 0} as above, and let M be a holonomic
DM-module.

1. (See [37, Definition 3.1.1], [40, Section 1.2] and [27, § 4]) Then there exists a
filtration (V α

canM)α∈C uniquely defined by the following properties:

(a)
⋃

α∈C V αM = M,
(b) (V kDM ) · (V α

canM) ⊂ V α+k
can M,

(c) For all α ∈ C, the module V α
canM is V 0DM-coherent,

(d) t · V α
canM = V α+1

can M for α > 0,
(e) Theactionof the operator ∂t ·t−α onGrαVcanM := V α

canM/V>α
can M is nilpotent,

where V>α
can M := ∪β>αV

β
canM.

V •
canM is called the canonical V -filtration or Kashiwara-Malgrange filtration on

M with respect to H or to t. It can be characterized by

V α
canM =

{
m ∈ M | roots of bMm (s) ⊂ [α,∞}

}
,

where [α,∞) := {c ∈ C | α ≤ c}.
2. If M = DM/I is a cyclic DM-module, where I is a sheaf of left ideals of DM,

then we put for any k ∈ Z

V k
indM := V kDM

I ∩ V kDM

∼= V kDM + I
I ,

and we call the filtration V •
indM the induced V -filtration on M. In particular, if

M is holonomic, then V •
indM has a (minimal and monic) Bernstein polynomial

bMV •
ind

(s) ∈ C[s].
We will mainly use the above definitions for the case where H is the divisor {t =

0} ⊂ M = Ct × X and where M = ih,+OX (∗D), ih being the graph embedding
of a defining equation for a divisor D ⊂ X . Using a construction that goes back to
Malgrange (see [26]), one can find a cyclic generator for this module, so that it has
an induced V -filtration. It is essentially well-known that the Bernstein polynomial of
this filtration is given by the Bernstein polynomial bh(s) of the equation h defining D,
up to a change of variables. However, we recall the proof for the convenience of the
reader. Notice also that this result holds quite generally for any divisor, and does not
depend on freeness or any Koszul assumption.

We therefore let D ⊂ X be a divisor defined locally at a point p ∈ X by a reduced
equation h = 0, and we denote by ih : X → Ct × X its graph embedding. We put

N (h) := (
ih,+OX ,p(∗D)

)
(0,p) ,

then N (h) is a holonomic DCt×X ,(0,p)-module. Since ih is a closed immersion, we
have that

N (h) ∼= (ih,∗OX (∗D))(0,p)[∂t ]
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as OCt×X ,(0,p)-modules. It becomes an isomorphism of DCt×X ,(0,p)-modules when
equipping the right hand side with the DCt×X ,(0,p)-structure given by

a · (m ∂kt ) = (a m) ∂kt , ∂xi · (m ∂kt ) = (∂xi m) ∂kt − (h′
xi m) ∂k+1

t

t · (m ∂kt ) = (h m) ∂kt − (k m) ∂k−1
t , ∂t · (m ∂kt ) = m ∂k+1

t ,
(19)

for any i = 1, . . . , n, any m ∈ OX ,p(∗D) and any a ∈ OX ,p.

Lemma 3.2 In the above situation, write j ∈ Z>0 for the negative of the smallest
integer root of bh(s). Then we have

bh(−s − j) = bN (h)

V •
ind

(s).

Proof Following the constructions in [26, § 4], one can show that N (h) ∼=
(ih,∗OX (∗D))(0,p)[s] · hs , using that t = h is invertible in N (h) and substituting −∂t t
by s, where hs is a symbol on which tangent fields ξ act as ξ(hs) = sh−1ξ(h) · hs .

The fact that − j is the smallest integer root of bh(s) is equivalent to say that
OX ,p(∗D) is generated as a DX ,p-module by h− j . Therefore, N (h) is generated by
h− j · hs , that we will write hs− j from now on. Hence we can consider the filtration
V •
indN (h) = V •DCt×X ,(0,p) · hs− j . The V -filtration on DC×X ,(0,p) can be written

as V 0DC×X ,(0,p) = DX ,p[∂t t], V kDC×X ,(0,p) = V 0DC×X ,(0,p) · tk for k ≥ 0 and
V k = ∑−k

i=0 V
0DC×X ,(0,p) · ∂ it for k ≤ 0. Therefore, we obtain that

V k
indN (h) =

⎧
⎨
⎩

(ih,∗DX )(0,p)[s]hs− j k = 0,
(ih,∗DX )(0,p)[s]hs− j+k k > 0,∑−k

i=0(ih,∗DX )(0,p)[s]si hs− j−i k < 0,

where we have used that s = −∂t t and t = h in our alternative representation of N (h).
As a consequence, we have isomorphisms

(ih,∗DX )(0,p)hs− j+k

(ih,∗DX )(0,p)hs− j+k+1
∼= V k

indN (h)

V k+1
ind N (h)

(20)

for every k ≥ 0. On the other hand, for k ≤ 0, we have that

V k−1
ind N (h) = (ih,∗DX )(0,p)[s]s−k+1hs− j+k−1 + V k

indN (h),

so we obtain surjections

ϕk : (ih,∗DX )(0,p)[s]s−k+1hs− j+k−1 � V k−1
ind N (h)

V k
indN (h)

.

Since

(ih,∗DX )(0,p)[s]s−k+1hs− j+k ⊂ (ih,∗DX )(0,p)[s]s−khs− j−k ⊂ V k
indN (h),
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we see that ϕk
(
(ih,∗DX )(0,p)[s]s−k+1hs− j+k

) = 0. As a consequence, we obtain a
surjection

ϕk : (ih,∗DX )(0,p)[s]s−k+1hs− j+k−1

(ih,∗DX )(0,p)[s]s−k+1hs− j+k
� V k−1

ind N (h)

V k
indN (h)

for any k ≤ 0.
We finally obtain surjections

(ih,∗DX )(0,p)[s]hs− j+k−1

(ih,∗DX )(0,p)[s]hs− j+k
∼= (ih,∗DX )(0,p)[s]s−k+1hs− j+k−1

(ih,∗DX )(0,p)[s]s−k+1hs− j+k

ϕk� V k−1
ind N (h)

V k
indN (h)

(21)

for any k ≤ 0, where the first isomorphism holds because for any l ≥ 0 and any l ′ ∈ Z,
s is a non-zero divisor on the modules (ih,∗DX )(0,p)[s]slhs+l ′ .

By the Bernstein functional equation, we know that bh(s) sends hs toDX ,p[s]hs+1,
hence bh(−∂t t − j + k) annihilates the left-hand side of equation (20) and bh(−∂t t −
j + k − 1) annihilates the left-hand side of the surjection (21), so they annihilate the
respective right-hand sides as well. In other words, bh(−∂t t − j + k) kills the quotient
V k
indN (h)/V k+1

ind N (h) for any k ∈ Z. Thismeans precisely that bh(−s− j) = bN (h)

V •
ind

(s),
as desired. �


The next result gives a precise description of the canonical V -filtration for N (h)

for divisors satisfying the additional assumption that the roots of bh are included in
the open interval (−2, 0).

Proposition 3.3 Let X, D, h and N (h) be as in the previous lemma. Assume moreover
that the roots of bh(s) are contained in (−2, 0). Then for all k ∈ Z, we have

V k
canN (h) = V k+1

ind N (h) +
∏

αi∈B′
h

(∂t t − k + αi )
li V k

indN (h); (22)

recall from the introduction (see Formula (2)) that

B ′
h := {αi ∈ Q ∩ (0, 1) | bh(αi − 1) = 0} .

In particular, we have

V k
canN (h) ⊂ V k

indN (h).

for all k ∈ Z.

Proof Since the roots of bh(s) are in (−2, 0), we know thanks to Lemma 3.2 that the
roots of bN (h)

V •
ind

(s) = bh(−s − 1) are contained in (−1, 1). Now we argue as in the
proof of [22, Theorem I] (cf. also [27, Proposition 4.2-6]): Let λ1 < . . . < λc be the
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set of roots of bN (h)

V •
ind

(s) with −1 < λi < 0, with respective multiplicities l1, . . . , lc.
We write

bN (h)

V •
ind

(s) =
c∏

i=1

(s − λi )
li · b′(s)

with b′(λi ) �= 0 for all i ∈ {1, . . . , c}. Then for each k ∈ Z put

V
k
N (h) := V k+1

ind N (h) +
c∏

i=1

(∂t t − k − λi )
li V k

indN (h) ⊂ V k
indN (h). (23)

Then V
•
N (h) is a good V -filtration on N (h) andmoreover,

∏c
i=1(s−(λi +1))li ·b′(s)

is a Bernstein polynomial for V
•
N (h), namely we have that

c∏
i=1

(∂t t − (λi + 1) − k))li · b′(∂t t − k)
[
V k+1
ind N (h)

]

= b′(∂t t − k)
c∏

i=1

(∂t t − (λi + 1) − k))li V k+1
ind N (h)

∗⊂ b′(∂t t − k)V
k+1

N (h) ⊂ V
k+1

N (h)

and

c∏
i=1

(∂t t − (λi + 1) − k)li · b′(∂t t − k)

[
c∏

i=1

(∂t t − k − λi )
li V k

indN (h)

]

=
c∏

i=1

(∂t t − (λi + 1) − k)li · bN (h)

V •
ind

(∂t t − k)V k
indN (h)

⊂
c∏

i=1

(∂t t − (λi + 1) − k)li V k+1
ind N (h)

∗⊂ V
k+1

N (h),

where the two inclusionsmarked as
∗⊂ are due to the definition of the filtration V

•
N (h),

i.e., due to formula (23). Hence we obtain that

(
c∏

i=1

(∂t t − (λi + 1) − k)li · b′(∂t t − k)

) (
V

k
N (h)

)
⊂ V

k+1
N (h),

that is,
∏c

i=1(s−(λi +1))li ·b′(s) is a Bernstein polynomial for V
•
N (h). We conclude

that V
•
N (h) is a good V -filtration on N (h) such that its Bernstein polynomial has all

its roots in the interval [0, 1).
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Now by [27, Proposition 4.3-5] we conclude that

V k
canN (h) = V

k
N (h).

holds for all k ∈ Z, and this shows Formula (22). �


Remark 3.4 Without the assumption that the roots of bh(s) are in (−2, 0) (i.e., for
general h ∈ OX ,p) the previous result is no longer true in general. Namely, since in
general the roots of bh(s) are negative rational numbers, we know by Lemma 3.2 that
the roots of bN (h)

V •
ind

are contained in (− j,∞), where − j is the smallest integer root

of bh(s). It can thus happen that bN (h)

V •
ind

has roots bigger than 1, and this prevents the

inclusion V k
canN (h) ⊂ V k

indN (h) to hold in general. The roots of bh(s) are contained
in (−2, 0) for the class of SK free divisors (see point 3 of Proposition 2.4 and [32,
Theorem 4.1]), but it also holds for instance when h defines a central hyperplane
arrangement by [42, Theorem 1] (which is not necessarily a free divisor).

In the remaining part of this section, we restrict our attention to SK free divisors.
We study more in detail the induced V -filtration on the module N (h), since as we have
seen, it helps to understand (at least the integer steps of) the canonical V -filtration on
that module. In particular, we will prove (see Proposition 3.10 below) a compatibility
property between the induced V -filtration and the order filtration on that module
(which is similar to the order filtration Ford• OX (∗D) studied in section 2). Its statement
is similar to [35, Proposition 4.9]), although the presentation of the proof is slightly
different.

We first give a concrete cyclic presentation of the graph embedding module for
equations defining an SK free divisor, starting from the presentation for OX (∗D)

discussed in the previous section (see Equation (5) above).

Lemma 3.5 Let D ⊂ X be a free divisor and let p ∈ D be such that D is strongly
Koszul at p. Let h ∈ OX ,p be a reduced equation for D near p. Let ih : X ↪→
Ct × X, x �→ (h(x), x) be the graph embedding of h, then we have an isomorphism
of DCt×X ,(0,p)-modules

(ih,+OX (∗D))(0,p) ∼= DCt×X ,(0,p)

(t − h, δ1, . . . , δn−1, χ + ∂t t + 1)
.

We still denote this module (resp. this cyclic presentation) by N (h).

Proof This is a consequence of the logarithmic comparison theorem, as stated in point
2 of Proposition 2.4. Namely, we know that

OX ,p(∗D) ∼= DX ,p

(δ1, . . . , δn−1, χ + 1)
.
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Now we consider the direct image of this object under the graph embedding. Then we
have

(ih,+OX (∗D))Ct×X ,(0,p) ∼= ih,+
( DX ,p

(δ1, . . . , δn−1, χ + 1)

)

= DCt×X ,(0,p)

(t − h, δ1, . . . , δn−1, χ + h∂t + 1)
,

by taking into account that δi (h) = 0 for every i = 1, . . . , n − 1 and χ(h) = h. The
claim now follows from the fact that in N (h) we have h∂t = ∂t h = ∂t t (here and later
on, we sometimes denote operators and their classes in a cyclic quotient module by
the same symbol). �


We will be later interested in calculating the Hodge filtration on a mixed Hodge
module which has ih,+OX .x (∗D) as underlying DCt×X ,(0,p)-module. For that pur-
pose, we consider the filtration Ford• N (h) which is induced on N (h) by the filtration
F•DCt×X ,(0,p) by the order of differential operators.

For the sake of brevity, let us write O := OCt×X ,(0,p) and D := DCt×X ,(0,p).
Consider the ring

G := OCt×X ,(0,p)[T , X1, . . . , Xn] = C{t, x1, . . . , xn}[T , X1, . . . , Xn].

Then we have G = GrF• D (where, as before, F•D is the filtration on D by the order).
Obviously, G is graded by the degree of the variables T , X1, . . . , Xn , and we write Gl
for the degree l part.

Lemma 3.6 Let D ⊂ X be a free divisor and let p ∈ D such that D is strongly Koszul
at p and locally defined by some h ∈ OX ,p. Write

I (h) := (t − h, δ1, . . . , δn−1, χ + ∂t t + 1) ,

so that N (h) = D/I (h). Then the set {t−h, δ1, . . . , δn−1, χ +∂t t+1} is an involutive
basis of the ideal I (h), that is, we have the equality

σ(I (h)) = (t − h, σ (δ1), . . . , σ (δn−1), σ (χ + ∂t t + 1) = σ(χ) + T · t)

of ideals in G. Recall that we denote for an element P ∈ D its symbol in G by σ(P)

and by σ(I (h)) the ideal {σ(P) | P ∈ I (h)} in G.
Proof The proof basically follows the argument in [7, Proposition 4.1.2] oncewe know
that symbols of the generators of I (h), i.e., the elements

t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · t

form a regular sequence in the ring G. Notice also that Lemma 3.7 below is a similar
statement (in a commutative ring though), and we will give some indications of the
proof there.
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In order to show this regularity statement, first recall that since D is strongly Koszul
at p by assumption, it is in particular Koszul (see Definition 2.3 and the subsequent
remarks). Hence we know that

σ(δ1), . . . , σ (δn−1), σ (χ)

is a regular sequence in the ring GrF• (DX ,p) = C{x1, . . . , xn}[X1, . . . , Xn]. Then
clearly the sequence

σ(δ1), . . . , σ (δn−1), σ (χ), T

is regular in the ring C{x1, . . . , xn}[T , X1, . . . , Xn]. On the other hand, we have the
following equality of ideals of C{x1, . . . , xn}[T , X1, . . . , Xn]:

(σ (δ1), . . . , σ (δn−1), σ (χ), T ) = (σ (δ1), . . . , σ (δn−1), σ (χ) + T · h, T )

so that also the sequence

σ(δ1), . . . , σ (δn−1), σ (χ) + T · h, T

is regular in C{x1, . . . , xn}[T , X1, . . . , Xn]. Since we have an isomorphism of rings

C{x1, . . . , xn}[T , X1, . . . , Xn] −→ C{t, x1, . . . , xn}[T , X1, . . . , Xn]/(t − h),

we obtain that the sequence

t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · h, T

is regular in G = C{t, x1, . . . , xn}[T , X1, . . . , Xn]. Then again by equality of ideals
(
t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · h, T

) = (
t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · t, T )

in G we get that

t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · t, T

is a regular sequence in G, but then also the shorter sequence

t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · t

must be regular in G. �

Wedenote by Ṽ •G the filtration induced by V •D (the V -filtration onDwith respect

to the divisor {t = 0} ⊂ Ct × X ) on the ring G. It can be described as

Ṽ dG =
⎧
⎨
⎩

∑
α,k,β,l

aα,k,β,l x
αtk XβT l ∈ G

∣∣∣ aα,k,β,l ∈ C, k − l ≥ d

⎫
⎬
⎭ .
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For any f ∈ G, we write ordṼ for the maximal b ∈ Z such that f ∈ Ṽ bG. The graded
ring of G with respect to the filtration Ṽ looks quite similar to G itself, namely, we
have

Gr•̃
V
G ∼= C{x1, . . . , xn}[t, T , X1, . . . , Xn],

since Ṽ • induces the t-adic filtration on the ring C{t, x1, . . . , xn}.
As usual, for f ∈ G we denote by σ Ṽ ( f ) ∈ Gr•̃

V
G the symbolwith respect to Ṽ , i.e.,

the class of f in Gr•̃
V
G = ⊕l∈ZGrlṼG. Now consider an ideal I = ( f1, . . . , fk) ⊂ G.

We write

σ Ṽ (I ) :=
{
σ Ṽ ( f ) | f ∈ I

}
.

Then we have the following fact (which is analogous to the statement of Lemma 3.6
above, and in fact holds in a more general setting for certain filtered rings, although
we do not consider such a generality here).

Lemma 3.7 Suppose that σ Ṽ ( f1), . . . , σ Ṽ ( fk) is a regular sequence in Gr•̃
V
G. Then

we have the equality

σ Ṽ (I ) =
(
σ Ṽ ( f1), . . . , σ

Ṽ ( fk)
)

of ideals in Gr•̃
V
G.

Proof We follow the argument given (in a more algebraic situation though) in [47,

Proposition 4.3.2]. We obviously have σ Ṽ (I ) ⊃
(
σ Ṽ ( f1), . . . , σ Ṽ ( fk)

)
and we need

to show the converse inclusion. Assume that it does not hold, that is, take f ∈ I (so that

σ Ṽ ( f ) ∈ σ Ṽ (I )) such that σ Ṽ ( f ) /∈
(
σ Ṽ ( f1), . . . , σ Ṽ ( fk)

)
. For a representation

f =
k∑

i=1

gi · fi (24)

write

o(g) := min
i=1,...,k

(
ordṼ (gi ) + ordṼ ( fi )

)
,

then clearly o(g) ≤ ordṼ ( f ). Choose a representation f = ∑k
i=1 gi · fi such that

o(g) is maximal. Since σ Ṽ ( f ) /∈
(
σ Ṽ ( f1), . . . , σ Ṽ ( fk)

)
, we have ordṼ ( f ) > o(g).

We conclude that

∑

i : ordṼ (gi )+ordṼ ( fi )=o(g)

σ Ṽ (gi ) · σ Ṽ ( fi ) = 0.
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Now by assumption the symbols σ Ṽ ( f1), . . . , σ Ṽ ( fk) form a regular sequence in
Gr•̃

V
G, and this implies that the module of syzygies between these elements of G is

generated by the so-called Koszul relations, i.e.,

(
−σ Ṽ ( fk)

)
· σ Ṽ ( f j ) +

(
σ Ṽ ( f j )

)
· σ Ṽ ( fk) = 0.

In other words, we have an equality

∑

i : ordṼ (gi )+ordṼ ( fi )=o(g)

σ Ṽ (gi ) · ei =
∑

1≤ j<l≤k

h jl

(
σ Ṽ ( f j )el − σ Ṽ ( fl)e j

)

of elements of Gk (where ei is the i-th canonical generator of Gk). Reordering the right
hand side of the above equation yields

∑

i : ordṼ (gi )+ordṼ ( fi )=o(g)

σ Ṽ (gi ) · ei =
k∑

i=1

⎛
⎝∑

l<i

hliσ
Ṽ ( fl) −

∑
i< j

hi jσ
Ṽ ( f j )

⎞
⎠ ei ,

and hence

σ Ṽ (gi ) −
⎛
⎝∑

l<i

hliσ
Ṽ ( fl) −

∑
i< j

hi jσ
Ṽ ( f j )

⎞
⎠ = 0

for all i ∈ {1, . . . , k} such that ordṼ (gi ) + ordṼ ( fi ) = o(g). Hence if we replace

those gi in equation (24) by g′
i := gi −

(∑
l<i hli fl − ∑

i< j hi j f j
)
(and collect all

the fi ), we obtain a new expression f = ∑k
i=1 g

′
i fi such that

min
i=1,...,k

(
ordṼ (g′

i ) + ordṼ ( fi )
)

> o(g)

which contradicts the above choice of a relation g with maximal o(g). Hence we must

have that σ Ṽ ( f ) ∈
(
σ Ṽ ( f1), . . . , σ Ṽ ( fk)

)
and therefore

σ Ṽ (I ) =
(
σ Ṽ ( f1), . . . , σ

Ṽ ( fk)
)

,

as required. �

Weapply the previous lemma in the situationwhere I is given as the idealσ(I (h)) ⊂

G (recall that σ denotes the usual symbol with respect to the order filtration F•D).
For notational convenience, put G0 := t − h, G1 := δ1, . . . ,Gn−1 := δn−1 and
Gn := χ + ∂t t + 1, so that I (h) = (G0, . . . ,Gn) ⊂ D. Then we obtain the following
consequence.
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Corollary 3.8 Let D ⊂ X be a free divisor and let x ∈ D such that D is strongly
Koszul at x and locally defined by some h ∈ OX ,p. Then the set

{σ(G0), . . . , σ (Gn)} = {t − h, σ (δ1), . . . , σ (δn−1), σ (χ) + T · t}

is an involutive basis of the ideal σ(I (h)) ⊂ G with respect to the filtration Ṽ •G
induced from the filtration V •D, that is, we have

σ Ṽ (σ (I (h)) = Gr•̃
V
G · (σ Ṽ (σ (G0)), . . . , σ

Ṽ (σ (Gn)))

= Gr•̃
V
G ·

(
h, σ Ṽ (σ (δ1)), . . . , σ

Ṽ (σ (δn−1)), σ
Ṽ (σ (χ)) + T · t

)
.

As a consequence, any f ∈ σ(I (h)) ⊂ G has a standard representationwith respect
to Ṽ •, that is, there are elements k0, k1, . . . , kn ∈ G with f = ∑n

i=0 ki · σ(Gi ) =
k0 ·(t−h)+∑n−1

i=1 ki ·σ(δi )+kn ·(σ (χ)+T · t) such that ordṼ (ki )+ordṼ (σ (Gi )) ≥
ordṼ ( f ) holds for all i ∈ {0, . . . , n}.

For the last statement, we remind the reader that the filtration Ṽ •G is descending,
and that consequently, for g ∈ G, ordṼ (g) denotes the maximum of all l such that
g ∈ Ṽ lG.
Proof Consider the ring extension

GrT• (D[s]) ∼= C{x1, . . . , xn}[s, X1, . . . , Xn ] ↪→ Gr•̃
V

(G) ∼= C{x1, . . . , xn}[t, T , X1, . . . , Xn ]

sending s to −T · t . Then clearly Gr•̃
V
(G) is a flat GrT• (D[s])-module, since for any

ring R, we have that R[t, T ] is a flat (and even free) R[−T · t]-module.
From the very definition of the strongly Koszul property (see again Definition 2.3),

we know that

h, σ (δ1), . . . , σ (δn−1), σ (χ) − s

is a regular sequence in GrT• (D[s]). Now notice that the elements σ(δ1), . . . , σ (δn−1),
σ(χ) lie in the ring C{x1, . . . , xn}[X1, . . . , Xn], which is a subring of both G and of
Gr•̃

V
(G). Clearly, for p ∈ C{x1, . . . , xn}[X1, . . . , Xn] we have σ Ṽ (p) = p, therefore,

we know that

h, σ Ṽ (σ (δ1)), . . . , σ
Ṽ (σ (δn−1)), σ

Ṽ (σ (χ)) − s

is a regular sequence in GrT• (D[s]). Since the ring extension GrT• (D[s]) ⊂ Gr•̃
V
(G)

is flat, it follows (see, e.g., [4, Proposition 9.6.7 and remark right after it]) that the
elements

h, σ Ṽ (σ (δ1)), . . . , σ
Ṽ (σ (δn−1)), σ

Ṽ (σ (χ)) + T · t

form a regular sequence in Gr•̃
V
(G). Now the assertion of the Corollary follows from

Lemma 3.7 above. �
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The next statement is a rather direct consequence of the previous results.We include
it here since it will be used in section 5 where we discuss techniques for computation
of Hodge ideals.

Corollary 3.9 Let D ⊂ X be a free divisor, let p ∈ D such that D is strongly Koszul
at p and locally defined by some h ∈ OX ,p. Then

I (h) ∩ V 0D = (t − h, δ1, . . . , δn−1, χ + ∂t t + 1) ∩ V 0D
= V 0D(t − h, δ1, . . . , δn−1, χ + ∂t t + 1).

Proof Since the generators of I (h) belong all to V 0D, which is a ring, the inclusion
I (h) ∩ V 0D ⊃ V 0D(t − h, δ1, . . . , δn−1, χ + ∂t t + 1) is trivial. Let us show the
reverse one.

Let P be an operator in I (h) ∩ V 0D and let us prove that it lies within V 0D(t −
h, δ1, . . . , δn−1, χ + ∂t t + 1) by induction on the order of P with respect to F•D,
written ordF (P).

If ordF (P) = −1, the claim is trivial, for then P = 0. Let us now assume that the
statement is true for all Q ∈ Fd−1D for a given non-negative integer d, and let us
prove it for any P ∈ FdD. Since P ∈ I (h), we have the expression

P = A(t − h) +
n−1∑
i=1

Biδi + C(χ + ∂t t + 1).

Thanks to Lemma 3.6, we know that A ∈ FdD and the Bi and C are in Fd−1D and
also that σ(P), which belongs to Ṽ 0G, can be written as

σ(P) = σ(A)(t − h) +
n−1∑
i=1

σ(Bi )σ (δi ) + σ(C)(σ (χ) + T t).

On the other hand, we know after Corollary 3.8 that we can choose Ã ∈ GrFd (D)∩ Ṽ 0G
and some B̃i , C̃ ∈ GrFd−1(D) ∩ Ṽ 0G such that

σ(P) = Ã(t − h) +
n−1∑
i=1

B̃iσ(δi ) + C̃(σ (χ) + T t).

Then we have that

ς := (σ (A) − Ã, σ (B1) − B̃1, . . . , σ (Bn−1) − B̃n−1, σ (C) − C̃) ∈ Gn+1

is a syzygy of the tuple (t−h, σ (δ1), . . . , σ (δn−1), σ (χ̃)+T t).By Lemma 3.6 again,
since this tuple is a regular sequence in G, ς will be a sum of Koszul syzygies (i.e.,
those of the form ai e j −a j ei ∈ Gn+1 for some elements ai , a j of the regular sequence,
ei and e j being the corresponding unit vectors).
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Now notice that for all k, l, the canonical map

FlD ∩ V kD −→ Ṽ kGl

is surjective. Hence, we can choose A′ ∈ FdD ∩ V 0D and B ′
i ,C

′ ∈ Fd−1D ∩ V 0D
such that σ(A′) = Ã, σ(B ′

i ) = B̃i for every i and σ(C ′) = C̃ . Then the tuple
(A − A′, B1 − B ′

1, . . . , Bn−1 − B ′
n−1,C − C ′) can be written as a sum of Spencer

syzygies of (t − h, δ1, . . . , δn−1, χ + ∂t t + 1) (that is, the respective lifts of the
Koszul ones in G that come from the expression of the [Gi ,G j ], for any i, j , as a
linear combination of the form

∑
k αkGk with coefficients in O) plus another tuple

(A′′, B ′′
1 , . . . , B ′′

n−1,C
′′), where now A′′ ∈ Fd−1D and B ′′

i ,C ′′ ∈ Fd−2D.
Let us call now

P ′′ := A′′(t − h) +
n−1∑
i=1

B ′′
i δi + C ′′(χ + ∂t t + 1).

Consequently,

P = A′(t − h) +
n−1∑
i=1

B ′
iδi + C ′(χ + ∂t t + 1) + P ′′.

Summing up, we obtain that P ′′ ∈ Fd−1D∩V 0D∩ I (h), so by the induction hypoth-
esis, it can be written as a linear combination of t − h, δ1, . . . , δn−1, χ + ∂t t + 1 with
coefficients in V 0D and thus P too. �


Now we can show the following result expressing a certain compatibility between
the induced V -filtration and the order filtration on N (h).

Proposition 3.10 For all k, l ∈ Z, the canonical morphism

FlD ∩ V kD −→ Ford
l N (h) ∩ V k

indN (h)

is surjective.

Proof We reformulate the surjectivity we want to prove as a compatibility property
between three filtrations on D, the first two being F•D and V •D. The third one is
defined (somewhat artificially) as

JrD :=
⎧⎨
⎩

I (h) ∀r < 0,

D ∀r ≥ 0.

It is clear that the statement of the proposition is equivalent to the surjectivity of the
map

FlD ∩ V kD ∩ JrD −→ ′FlGrJr D ∩ ′V kGrJr D (25)



Hodge ideals of free divisors Page 33 of 62 57

for r = 0, where we denote by ′F• resp. by ′V • the filtrations induced by F•D resp.
V •D on GrJr D (notice that for r = 0, these are nothing but Ford• N (h) resp. V •

indN (h)).
Since both the J - and the F-filtration are exhaustive, we can now apply [37, Corollaire
1.2.14] from which we conclude that surjectivity of the map (25) holds (for all l, k, r )
if and only if the map

FlD ∩ V kD ∩ JrD −→ Ṽ kGrFl D ∩ J̃rGr
F
l D = Ṽ kGl ∩ J̃rGl . (26)

is surjective for all l, k, r . Again, J̃•Gl is the filtration induced by J•D on Gl , i.e.,
J̃rGl = Gl if r ≥ 0 and J̃rGl = σl(I (h)∩FlD) if r < 0,where, as usual,σl : FlD � Gl
denotes the map sending an operator of degree l to its symbol in Gl . However, the
surjectivity of (26) is a nontrivial condition only for r < 0 (and it is the same condition
for all negative r ): For r ≥ 0, it means that themap FlD∩V kD −→ Ṽ kGl is surjective,
which is true, as we have already noticed in the proof of Corollary 3.9. If r < 0, the
map (26) is nothing but

FlD ∩ V kD ∩ I (h) −→ Ṽ kGl ∩ σl(I (h) ∩ FlD).

Wewill see that the surjectivity of the lattermap follows from the involutivity properties
proved above. Namely, let σ(P) = σl(P) ∈ Ṽ kGl be given, where P ∈ I (h) ∩ FlD.
Then by Lemma 3.6 we have an expression

σ(P) =
n∑

i=0

ki · σ(Gi );

recall thatwe had putG0 := t−h,G1 := δ1, . . . ,Gn−1 := δn−1 andGn := χ+∂t t+1
for the involutive basis of I (h). Since obviously the symbols σ(Gi ) are homogeneous
elements in the ring G = GrF• D, we have that deg(ki ) = l − deg(σ (Gi )) = l −
ord(Gi ). On the other hand, we know by Corollary 3.8 that ordṼ (ki ) ≥ ordṼ (σ (P))−
ordṼ (σ (Gi )), that is,

ki ∈ Ṽ ordṼ (σ (P))−ordṼ (σ (Gi ))G.

Moreover, it follows from the concrete form of the operators G0, . . . ,Gn that

ordṼ (σ (Gi )) = ordV (Gi ) = 0, hence ki ∈ Ṽ ordṼ (σ (P))G. Now choose any lift of

ki to an operator Ki ∈ Fl−ord(Gi )D ∩ V ordṼ (σ (P))D. Such a lift exists since, as we
have already noticed above, the map

FlD ∩ V kD −→ Ṽ kGl

is surjective for all l, k. Then the element P ′ := ∑n
i=0 Ki ·Gi ∈ I (h) is the preimage

we are looking for, i.e., σ(P ′) = σ(P) and we have

P ′ ∈ FlD ∩ V ordṼ (σ (P))D ⊂ FlD ∩ V kD;
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recall that we had chosen σ(P) ∈ Ṽ kGl ∩ σl(I (h) ∩ FlD), meaning that k ≤
ordṼ (σ (P)). Hence we have shown the surjectivity of

FlD ∩ V kD ∩ I (h) −→ Ṽ kGrFl D ∩ σl(I (h) ∩ FlD),

and as we said at the beginning of the proof, using [37, Corollaire 1.2.14], the surjec-
tivity of

FlD ∩ V kD = FlD ∩ V kD ∩ J0 −→ FlGr
J
0D ∩ V kGrJ0D = Ford

l N (h) ∩ V k
indN (h),

as required. �


4 Description of the Hodge filtration

This section is the central piece of the article. We apply the results on the canoni-
cal V -filtration from the last section to compute the Hodge filtration on the mixed
Hodge module which hasOX (∗D) as underlyingDX -module. The main result is The-
orem 4.4, which gives a precise description of FH• OX (∗D). We also complement it
with some statements about the Hodge filtration on the dual moduleOX (!D), see The-
orem 4.10, which we expect to be useful for future applications. We conjecture (see
Conjecture 4.12) some bound for the so-called generating level of the Hodge filtration
(see Definition 4.11 for this notion), which is supported by computation of examples
in section 5 below.

Notice that some of the results in this section (first part of Theorem 4.4 or Theo-
rem 4.12) hold globally on X , however, for most of the proofs we will need to require
that D ⊂ X is defined by an equation h. As already indicated, we will determine the
Hodge filtration using the graph embedding ih : X ↪→ Ct × X and by considering
extensions of Hodge modules from C∗

t × X to Ct × X .
Hence, let again X be an n-dimensional complex manifold and D ⊂ X a reduced

free divisor, which is strongly Koszul at each point p ∈ D. We assume for now (until
and including Corollary 4.3) that D is given by a reduced equation h ∈ �(X ,OX ).
Notice also that contrary to the last section, we will consider all the objects as sheaves
since this is more convenient when applying the functorial constructions from the
theory of mixed Hodge modules.

Put U := X\D, and consider the following basic diagram:

U C∗
t × X

X Ct × X .

i ′h

j j ′

ih

(27)

Here j and j ′ are open embeddings, whereas ih and i ′h (both are given by x �→
(x, h(x)) and may be called graph embeddings) are closed.
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We are considering the pure Hodge module QH
U [n] on U . By the functorial prop-

erties of the category of mixed Hodge modules, we know that there is an object
j∗QH

U [n] ∈ MHM(X), whose underlying DX -module is the module OX (∗D) of
meromorphic functions. We are interested in describing the Hodge filtration FH• on
OX (∗D).

The DU -module underlying QH
U [n] is simply the structure sheaf OU and we have

FH
k OU = 0 for all k < 0 and FH

k OU = OU for all k ≥ 0. We obviously have

�U ∼= j∗DerX (− log D) = OU δ1 ⊕ . . . ⊕ OU δn−1 ⊕ OUχ,

recall fromProposition 2.4 that the basis δ1, . . . , δn−1, χ ofDerX (− log D)was chosen
such that δi (h) = 0 for i = 1, . . . , n − 1 and χ(h) = h. Hence we have the following
presentation

OU ∼= DU

(δ1, . . . , δn−1, χ + 1)
,

identifying the class of 1 ∈ DU on the right-hand side with the function h−1 ∈ OU .
Under this isomorphism, FH• OU ∼= Ford• DU/(δ1, . . . , δn−1, χ +1), here Ford• denotes
the filtration induced on a cyclic D-module by the filtration on D by the order of
differential operators.

From this presentation, we deduce the following statement.

Lemma 4.1 The pure Hodge module i ′h,∗QH
U [n] has the underlying DC∗

t ×X -module

i ′h,+OU ∼= DC∗
t ×X

DC∗
t ×X (t − h, δ1, . . . , δn−1, χ̃ + 1)

,

where χ̃ := χ + ∂t t . Under this isomorphism, we have the following description of
the Hodge filtration on i ′h,∗QH

U [n]:

FH
k (i ′h,+OU ) ∼= Ford

k−1

[
DC∗

t ×X

DC∗
t ×X (t − h, δ1, . . . , δn−1, χ̃ + 1)

]
, (28)

where again Ford• is the filtration induced from F•DC∗
t ×X .

Proof We rewrite the morphism i ′h as the composition i ′h = (2)i ′h ◦ (1)i ′h , where (1)i ′h :
U → C∗

t × U is the graph embedding of the restricted morphism h|U : U → C∗
t (in

particular, it is closed) and where

(2)i ′h : C∗
t ×U −→ C∗

t × X
(t, x) �−→ (t, x)

is the canonical open embedding. Notice however that the composed morphism i ′h :
U → C∗

t × X is closed, since the closure of its image is contained in C∗
t ×U .
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We can extend the above diagram (27) as follows:

C∗
t ×U

U C∗
t × X

X Ct × X .

(2)i ′h(1)i ′h

i ′h

j j ′

ih

We have

(1)i ′h,+OU = (1)i ′h,+
DU

(δ1, . . . , δn−1, χ + 1)
= (1)i ′h,∗

( DU

(δ1, . . . , δn−1, χ + 1)

)
[∂t ]

= DC∗
t ×U

(t − h, δ1, . . . , δn−1, χ̃ + 1)

and (see [39, Formula 1.8.6])

FH
k+1(

(1)i ′h,+OU ) =
∑

k1+k2=k

(1)i ′h,∗FH
k1 (DU/(δ1, . . . , δn−1, χ + 1)) ∂

k2
t

=
∑

k1+k2=k

(1)i ′h,∗Ford
k1 (DU/(δ1, . . . , δn−1, χ + 1)) ∂

k2
t

= Ford
k

(DC∗
t ×U/(t − h, δ1, . . . , δn−1, χ̃ + 1)

)
.

Again, since

Supp
(DC∗

t ×U/(t − h, δ1, . . . , δn−1, χ̃ + 1)
) = im((1)i ′h) ⊂ C∗

t ×U , (29)

we obtain

(2)i ′h,+
(DC∗

t ×U/(t − h, δ1, . . . , δn−1, χ̃ + 1)
) =DC∗

t ×X/(t − h, δ1, . . . , δn−1, χ̃ + 1)

Now we consider the Hodge filtration on the module

i ′h,+OU = ((2)i ′h)+
(DC∗

t ×U/(t − h, δ1, . . . , δn−1, χ̃ + 1)
)

∼= DC∗
t ×X/(t − h, δ1, . . . , δn−1, χ̃ + 1).

We use once more the inclusion in formula (29), which gives, when applying [39,
Formula 4.2.1] to the module M = DC∗

t ×X/(t − h, δ1, . . . , δn−1, χ̃ + 1) and the
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morphism (2)i ′h , that

FH
k+1i

′
h,+OU = ((2)i ′h)∗Ford

k

(DC∗
t ×U/(t − h, δ1, . . . , δn−1, χ̃ + 1)

)

= Ford
k

(DC∗
t ×X/(t − h, δ1, . . . , δn−1, χ̃ + 1)

)
,

where the second equality follows since the closure of

Supp
(
Ford
k (DC∗

t ×U/(t − h, δ1, . . . , δn−1, χ̃ + 1))
)

in C∗
t × X is contained in C∗

t ×U , i.e., from formula (29). �

Next we will deduce from this result a description of the Hodge filtration on the

Hodge module j ′∗(i ′h)∗QH
U [n]. This is the crucial step towards our first main result

(Theorem 4.4 below). We will use the results from the last section concerning the
canonical V -filtration of the graph embedding module ih,+OX (∗D) in an essential
way. The result we are after can be stated as follows.

Proposition 4.2 The mixed Hodge module j ′∗i ′h,∗Q
H
U [n] has ih,+OX (∗D) as underly-

ing DCt×X -module. Under the isomorphism

ih,+OX (∗D) ∼= DCt×X

DCt×X (t − h, δ1, . . . , δn−1, χ̃ + 1)
=: N (h)

from Lemma 3.5 (which, as indicated at the beginning of this section, we write here
as an isomorphism of sheaves of DCt×X -modules rather than of germs) we have the
following inclusion of coherent OCt×X -modules for all k ∈ Z:

FH
k (ih,+OX (∗D)) ⊂ Ford

k−1N (h) (30)

Proof First put for notational convenience

N ′(h) := DC∗
t ×X

DC∗
t ×X (t − h, δ1, . . . , δn−1, χ̃ + 1)

∼= i ′h,+OU .

Now it is known (see [39, Proposition 4.2]) that the Hodge filtration on the Hodge
module j ′∗i ′h,∗Q

H
U [n] ∼= ih,∗ j∗QH

U [n] has the following description (this is due to the
construction of the open direct image for mixed Hodge modules, see [38, Section
2.7-2.8]):

FH
k (ih,+OX (∗D)) =

∑
i≥0

∂ it

(
V 0
canN (h) ∩ j ′∗( j ′)∗FH

k−i ih,+OX (∗D)
)

, (31)

but since

( j ′)∗FH
k−i (ih,+OX (∗D)) = FH

k−i i
′
h,+OU = Ford

k−1−iN ′(h),
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we are left to show that we have

∑
i≥0

∂ it

(
V 0
canN (h) ∩ j ′∗Ford

k−1−iN ′(h)
)

⊂ Ford
k−1N (h).

Since

∂ it F
ord
r N (h) ⊂ Ford

r+iN (h)

holds for all r , i ∈ N, it is sufficient to show the inclusion

V 0
canN (h) ∩ j ′∗Ford

r N ′(h) ⊂ Ford
r N (h)

for all r ∈ N.We have seen in Proposition 3.3 that V k
canN (h) ⊂ V k

indN (h) holds for all
k ∈ Z (recall that since we assume in this section that D is SK free, we know that the
roots of bh(s) are included in (−2, 0) by [32, Theorem 4.1], so that the assumptions
of Proposition 3.3 are satisfied). Thus it suffices to show that we have

V 0
indN (h) ∩ j ′∗Ford

r N ′(h) ⊂ Ford
r N (h)

for all r ∈ N. Let an element m ∈ V 0
indN (h) ∩ j ′∗Ford

r N ′(h) be given. Then there
is some p ∈ N such that t p · m ∈ V p

indN (h) ∩ Ford
r N (h) (see also the proof of

[37, Proposition 3.2.2], especially the implication (3.2.1.2) ⇒ (3.2.2.1)): Since the
filtration Ford• is exhaustive on V 0

indN (h) we know that there is some l ∈ N such that
m ∈ Ford

l N (h) ∩ V 0
indN (h), if l ≤ r , we are done by putting p = 0. Otherwise, since

m ∈ j ′∗Ford
r N ′(h) (which means by definition that m|C∗

t ×X ∈ Ford
r N ′(h)) it follows

that the class of m in the quotient Ford
l N (h)/Ford

r N (h) is a t-torsion element in that
module. Notice that Ford

l N (h)/Ford
r N (h) isOCt×X -coherent, hence there is some p

such that the class of t p · m is zero in this quotient, that is t p · m ∈ Ford
r N (h), and

obviously we have t p · m ∈ V p
indN (h) since m ∈ V 0

indN (h).
Now by Proposition 3.10 we know that there exists an operator P ′ ∈ V pDCt×X ∩

FrDCt×X projecting to t p · m ∈ V p
indN (h) ∩ Ford

r N (h). By definition, P ′ can be
written as P ′ = t p · P , where P ∈ V 0DCt×X ∩ FrDCt×X . Then the class [P] of P in
N (h) satisfies [P] ∈ Ford

r N (h) and obviously we have [P] = m. Hence the inclusion
V 0
indN (h) ∩ j ′∗Ford

r N ′(h) ⊂ Ford
r N (h) is proved. �


Using the description of the canonical V -filtration on the module N (h) along
the divisor {t = 0} from Corollary 3.3, we can give a more precise description of
the Hodge filtration on that module. We also recall from such corollary that B ′

h :=
{α ∈ Q ∩ (0, 1) | bh(α − 1) = 0}, and for α ∈ B ′

h , we write lα for the multiplicity of
α − 1 in bh(s).

For the sake of brevity, wewill sometimes write in the following FHN (h), translat-
ing theHodge filtration on ih,+OX (∗D) using the isomorphismN (h) ∼= ih,+OX (∗D).
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Corollary 4.3 Under the isomorphism ih,+OX (∗D) ∼= N (h), we have the following
(equivalent) descriptions of the Hodge filtration steps FH

k OX (∗D) for all k ∈ Z:

FH
k ih,+OX (∗D) =

∑
i≥0

∂ it

(
V 0
canN (h) ∩ Ford

k−1−iN (h)
)

=
k−1∑
i=0

∂ it

(
V 0
canN (h) ∩ Ford

k−1−iN (h)
)

,

(32)

FH
k ih,+OX (∗D) = ∂t F

H
k−1ih,+OX (∗D) + V 0

canN (h) ∩ Ford
k−1N (h) (33)

∼= ∂t F
H
k−1ih,+OX (∗D) +

(
V 1
indN (h) +

∏

α∈B′
h

(∂t t + α)lα V 0
indN (h)

)
∩ Ford

k−1N (h).

(34)

Proof From the proof of the last lemma we know already that

FH
k (ih,+OX (∗D)) =

∑
i≥0

∂ it

(
V 0
canN (h) ∩ j ′∗Ford

k−1−iN ′(h)
)

(35)

so that in particular FH
k ih,+OX (∗D) = 0 for all k < 1 since Ford

l N ′(h) = 0 for
negative l. The same holds for Ford

l N (h), hence, the above formulas are proved when
k < 1. We rewrite formula (35) in a recursive way, namely

FH
k (ih,+OX (∗D)) =

∑
i>0

∂ it

(
V 0
canN (h) ∩ j ′∗Ford

k−1−iN ′(h)
)

+ V 0
canN (h) ∩ j ′∗Ford

k−1N ′(h)

= ∂t

⎛
⎝∑
i≥0

∂ it

(
V 0
canN (h) ∩ j ′∗Ford

k−2−iN ′(h)
)⎞
⎠

+ V 0
canN (h) ∩ j ′∗Ford

k−1N ′(h)

= ∂t F
H
k−1(ih,+OX (∗D)) + V 0

canN (h) ∩ j ′∗Ford
k−1N ′(h) (36)

where the last equality uses again formula (35).
Now we conclude using Proposition 4.2: Thanks to equation (30), we can claim

that FH
k (ih,+OX (∗D)) ⊂ Ford

k−1N (h), hence we obtain

V 0
canN (h) ∩ Ford

k−1N (h) ⊂ V 0
canN (h)

∩ j ′∗Ford
k−1N ′(h)

∗⊂ FH
k (ih,+OX (∗D)) ⊂ Ford

k−1N (h).

since we clearly have Ford
k−1N (h) ⊂ j ′∗Ford

k−1N ′(h) by the very definition of the functor

( j ′)∗ and where the inclusion
∗⊂ follows from equation (36) above. As a consequence,

the first inclusion V 0
canN (h) ∩ Ford

k−1N (h) ⊂ V 0
canN (h) ∩ j ′∗Ford

k−1N ′(h) is in fact an
equality, and therefore equation (36) becomes

FH
k (ih,+OX (∗D)) = ∂t F

H
k−1(ih,+OX (∗D)) + V 0

canN (h) ∩ Ford
k−1N (h),

so that the recursive Formula (33) is shown. Formula (34) follows by replacing the
term V 0

canN (h)with the expression from Proposition 3.3. Moreover, it is clear that the
non-recursive Formula (32) follows from the recursive one (33) by induction. �
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Our main purpose is to describe the Hodge filtration on OX (∗D). This description
will be obtained as a consequence of Proposition 4.2 and Corollary 4.3. Recall that the
graph embedding module N (h) can be alternatively described as M(h)[∂t ], where
the left action by DCt×X on M(h)[∂t ] is given by Formula (19).

We then have the following result.

Theorem 4.4 Consider a strongly Koszul free divisor D ⊂ X. Then we have the
following inclusion of coherentOX -modules (which holds globally on X and does not
require that D is given by a global equation)

FH
k OX (∗D) ⊂ Ford

k OX (∗D),

where FH• OX (∗D) is the filtration such that the filtered DX -module (OX (∗D), FH• )

underlies the mixed Hodge module j∗QH
U [n].

If h = 0 is a local reduced equation for D and using the local isomorphism
M(h) ∼= OX (∗D), we have the recursive formula

FH
k OX (∗D) ∼= FH

k M(h)

∼=

⎡
⎢⎣∂t F

H
k N (h) +

⎛
⎜⎝V 1

indN (h) +
∏

α∈B′
h

(∂t t + α)lα V 0
indN (h)

⎞
⎟⎠

⎤
⎥⎦ ∩

(
Ford
k M(h) ⊗ 1

)
,

(37)

where the intersection takes place inM(h)[∂t ] ∼= N (h).

Formula (37) is recursive despite the appearance of the same index k on both
sides: in order to calculate (locally) the k-th filtration step of the Hodge filtration on
OX (∗D), we need to know the k-th filtration step of the Hodge filtration onN (h), the
knowledge of which is equivalent to the knowledge of FH

k−1M(h) ∼= FH
k−1OX (∗D)

(see the discussion in the proof below, in particular, Formula (39)).

Proof It is sufficient to prove the second statement, since locally, where D is defined by
an equation h = 0, formula (37) exhibits FH

k OX (∗D) as a submodule of Ford
k M(h).

However, the statement FH
k OX (∗D) ⊂ Ford

k OX (∗D) (where Ford• OX (∗D) is as in
Definition 2.2) holds globally on X , once it is shown at each p ∈ D.

First notice that we have the equality

ih,∗ j∗QH
U [n] = j ′∗i ′h,∗QH

U [n]

of objects in MHM(Ct × X). It follows that the filtered module (N (h), FH• ) (where
FH• is the filtration considered in Proposition 4.2 and Corollary 4.3) underlies the
mixed Hodge module ih,∗ j∗QH

U [n]. Then [39, Formula (1.8.6)] yields the following
relation between the filtration FH• N (h) and the Hodge filtration on j∗QH

U [n] (which is
FH• OX (∗D), and again we will freely denote it by FH• M(h) using the isomorphism
M(h) ∼= OX (∗D)):

FH
k N (h) =

∑
j≥0

FH
k−1− jM(h) ⊗ ∂

j
t , (38)
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in other words, we obtain

FH
k−1OX (∗D) ∼= FH

k−1M(h) ∼= FH
k N (h) ∩ (M(h) ⊗ 1) (39)

for all k > 1. As we have noticed in Corollary 4.3, we have the inclusion

FH
k ih,+OX (∗D) ∼= FH

k N (h) ⊂ Ford
k−1N (h),

and since obviously Ford
k−1N (h) ∩ (M(h) ⊗ 1) = Ford

k−1N (h) ∩ (
Ford
k−1M(h) ⊗ 1

)
, we

obtain by plugging in formula (34) that FH
k−1OX (∗D) is isomorphic to

⎡
⎢⎣∂t F

H
k−1N (h) +

⎛
⎜⎝V 1

indN (h) +
∏

α∈B′
h

(∂t t + α)lα V 0
indN (h)

⎞
⎟⎠ ∩ Ford

k−1N (h)

⎤
⎥⎦ ∩

(
Ford
k−1M(h) ⊗ 1

)
.

Shifting the indices by one, the inclusion

FH
k OX (∗D) ⊂

⎡
⎢⎣∂t F

H
k N (h) +

⎛
⎜⎝V 1

indN (h) +
∏

α∈B′
h

(∂t t + α)lα V 0
indN (h)

⎞
⎟⎠

⎤
⎥⎦ ∩

(
Ford
k M(h) ⊗ 1

)

is then clear. But we also have the inclusion in the other direction: Let a ∈ ∂t F H
k N (h)

and b ∈ V 1
indN (h)+∏

α∈B′
h
(∂t t+α)lαV 0

indN (h) and assume that a+b ∈ Ford
k M(h)⊗

1 ⊂ Ford
k N (h). Then since ∂t F H

k N (h) ⊂ ∂t Ford
k−1N (h) ⊂ Ford

k N (h), we must
necessarily have b ∈ Ford

k N (h), so that a + b belongs to

⎡
⎢⎣∂t F

H
k N (h) +

⎛
⎜⎝V 1

indN (h) +
∏

α∈B′
h

(∂t t + α)lα V 0
indN (h)

⎞
⎟⎠ ∩ Ford

k N (h)

⎤
⎥⎦ ∩

(
Ford
k M(h) ⊗ 1

)
,

that is, to FH
k OX (∗D), as required. �


Remark 4.5 (see also subsection 5.1 below) As shown in [39, Proposition 0.9] we have

FH• OX (∗D) ⊂ P•OX (∗D)

for any reduceddivisor,where PkOX (∗D) := OX ((k+1)D) is the pole order filtration.
In our situation of a strongly Koszul free divisor, we obviously have

FH
k OX (∗D) ⊂ Ford

k OX (∗D) ⊂ PkOX (∗D), k ≥ 0,

with FH
0 OX (∗D) ⊂ Ford

0 OX (∗D) = P0OX (∗D). Therefore, one can consider
Ford
k OX (∗D), in the current situation, as a better approximation to the Hodge fil-

tration than the pole order filtration P•OX (∗D) (though both are equal at level
k = 0) . A very special example is the case where D has normal crossings,
then for any local reduced equation h = 0 for D the only root of bh(s) is −1,
and one easily obtains FH

k OX (∗D) = Ford
k OX (∗D). Correspondingly, we have
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FH
0 OX (∗D) = Ford

0 OX (∗D) = P0O(∗D) = O(D), so that I0(D) = OX , but
the higher Hodge ideals are non-trivial even for the normal crossing case, precisely
because we have Ford

k OX (∗D) � PkO(∗D) for k > 0.

We have seen so far that FH• OX (∗D) ⊂ Ford• OX (∗D), with equality iff −1 is the
only root of bh(s) for any local reduced equation h of D. However, we can actually give
an inclusion in the reverse direction, but with a specific shift, which we conjecture
to be the generating level of the Hodge filtration on OX (∗D) (see Conjecture 4.12
below). As a preparation, we need the following result.

Lemma 4.6 Let (D, p) ⊂ (X , p)beagermof stronglyKoszul free divisorwith reduced
equation h = 0, let β(s) = ∏

α∈B′
h
(s + α)lα , where lα is the multiplicity of α − 1 in

bh(s) and put r := degβ(s). Consider the generator [1] ∈ N (h), then we have

[1] ∈ FH
r+1N (h).

Proof Write β(s) = ∑r
i=0 ai s

i with a0, . . . , ar ∈ C. We have [t · (∂t t)i−1] ∈
V 1
indN (h) ∩ Ford

i−1N (h) for all i ∈ {1, . . . , r}. Now we may rewrite Formula (34)
as

FH
k+1N (h) ∼= ∂t

(
∂t F

H
k−1N (h) +

(
β(∂t t)V

0
indN (h) + V 1

indN (h)
)

∩ Ford
k−1N (h)

)

+
(
β(∂t t)V

0
indN (h) + V 1

indN (h)
)

∩ Ford
k N (h).

Then we have for all i ∈ {1, . . . , r}

[(∂t t)i ] = ∂t · [t(∂t t)i−1] ∈ ∂t

[
V 1
indN (h) ∩ Ford

i−1N (h)
]

⊂ FH
i+1N (h) ⊂ FH

r+1N (h).

On the other hand, we have β(∂t t) · [1] ∈ β(∂t t)V 0
indN (h)∩ Ford

r N (h) ⊂ FH
r+1N (h).

Since β(∂t t) − ∑r
i=1 ai (∂t t)

i = a0 we find that a0[1] ∈ FH
r+1N (h). By definition of

the set B ′
h , we have β(0) �= 0 and hence a0 �= 0, so that finally [1] ∈ FH

r+1N (h), as
required. �

We obtain the following two consequences that we will use below to discuss the dual
Hodge filtration.

Corollary 4.7 With the aforementioned notations, we have

1. [1] ∈ FH
r M(h),

2. For all k ∈ Z≥0, we have the inclusion of coherent OX -modules Ford
k−rM(h) ⊂

FH
k M(h).

Proof 1. Recall Formula (39), which says that

FH
k−1M(h) ∼= FH

k N (h) ∩ (M(h) ⊗ 1) .

Now obviously the element [1] ∈ N (h) belongs to the submodule M(h) ⊗ 1 ⊂
N (h), hence we obtain from Lemma 4.6 that the element [1] ∈ M(h) lies in
FH
r M(h).
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2. The statement is trivial for k < r . On the other hand, we have by definition that for
any k ≥ r any class [P] ∈ Ford

k−rM(h) can be represented by an operator P ∈ DX

of order k − r . Moreover, FH• M(h) is a good filtration (in particular, compatible
with F•DX ), so [P] = P ·[1] ∈ Fk−rDX ·[1] ⊂ Fk−rDX ·FH

r M(h) ⊂ FH
k M(h).

Hence Ford
k−rM(h) ⊂ FH

k M(h), as required.
�


Let us call bD(s) the least common multiple of the local b-functions of all reduced
local equations of D at p, for p ∈ D, whenever it exists (it always exists if D ⊂
X is algebraic or if X is compact), B ′

D := {αi ∈ Q ∩ (0, 1) | bD(αi − 1) = 0} and
βD(s) = ∏

α∈B′
D
(s + α)lα , where lα is the multiplicity of α − 1 in bD(s) and put

r := degβD(s). The strong Koszul hypothesis on D then implies the symmetry
property bD(−s − 2) = ±bD(s) and so r = 1

2

(
deg(bD(s)) − multbD(s)(−1)

)
. The

following global result about the divisor D ⊂ X is a consequence of the first point of
Theorem 4.4 and of Corollary 4.7.

Corollary 4.8 Under the above conditions, we have:

Ford•−rOX (∗D) ⊂ FH• OX (∗D) ⊂ Ford• OX (∗D). (40)

Wewill finish this section by showing some results about the Hodge filtration on the
dual Hodge module D j∗QH

U [n]. Its underlying DX -module is DOX (∗D), which we
denote byOX (!D). From the logarithmic comparison theorem we know thatDX ⊗VD

XOX (D) ∼= OX (∗D), and so we can apply Proposition 2.9 (for the case E = OX (D)) to
obtain that the holonomic filtered module (OX (∗D), Ford• ) has the Cohen-Macaulay
property and moreover that the dual filtered module of (OX (∗D), Ford• ) is isomorphic
to (OX (!D) ∼= DX ⊗VD

X
OX , Ford• ). We recall that a similar property holds for the

Hodge filtration, more precisely, we have the following.

Theorem 4.9 ([37, Section 2.4], [37, Lemme 5.1.13], see also [43, Theorem 29.3])
Let (M, F•) be a filtered left or right DX -module underlying a pure Hodge module
M of weight w, then (M, F•) has the Cohen-Macaulay property. In particular, its
dual module is strict, and underlies a pure Hodge module DM of weight −w. Simi-
larly, if (M,W•M) is a mixed Hodge module, then so is the object (DM,DW−•M).
In particular, if (M, F•) underlies a mixed Hodge module M, then it also fulfills
the Cohen-Macaulay property. Its dual filtration FH ,D• (DM) is the Hodge filtration
FD,H• (DM) of DM up to a shift, i.e., we have

FH ,D• (DM) = FD,H
•+dim(X)(DM). (41)

With these preparations, we obtain the following result concerning theHodge filtration
on the dual module OX (!D).

Theorem 4.10 Let, as above, D ⊂ X be a strongly Koszul free divisor, then we have
the following inclusions of coherent OX -submodules of OX (!D):

Ford• OX (!D) ⊂ FH ,D• OX (!D) ⊂ Ford•+rOX (!D).
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In particular, since Ford−1 O(!D) = 0, we obtain the vanishing

FH ,D
−r−1OX (!D) = FD,H

n−r−1OX (!D) = 0.

Proof Equation (40) from Corollary 4.8 says

Ford•−rOX (∗D) ⊂ FH• OX (∗D) ⊂ Ford• OX (∗D).

Applying the Rees functor R(−) defined on page 11 to the first inclusion yields a
short exact sequence of graded D̃X -modules

0 −→ (RFordOX (∗D))(−r) −→ RFHOX (∗D) −→ C −→ 0, (42)

recall that for a graded D̃X -module M̃, we write M̃(l) for the samemodule with grad-
ing M̃(l)k = M̃k+l . Notice that the cokernel C is a z-torsion module, since, e.g., for
any section s ∈ FH

k OX (∗D) we have s ∈ Ford
k OX (∗D) (due to the second inclusion

from Formula (4.8)). Hence [s] · zk ∈ (RFordOX (∗D))k = (RFordOX (∗D)(−r))k+r

and therefore [s] · zk maps to 0 in C.
Now apply the duality functor for graded left D̃X -modules (defined by formula

(11)) to the short exact sequence (42). From Corollary 2.11 we deduce that

∗D(RFordOX (∗D)(−r)) ∼= H0∗D(RFordOX (∗D))(r) = (RFordOX (!D))(r).

On the other hand, by Theorem 4.9 we know that the filtered module (OX (∗D), FH• )

satisfies the Cohen-Macaulay property as well, and wewrite as before (O(!D), FH ,D• )

for its dual filtered module.
Hence, the triangle resulting from applying ∗D to the sequence (42) has the fol-

lowing long exact cohomology sequence:

0 −→ H0∗DC −→ RFH ,DO(!D) −→ (RFordOX (!D))(r) −→ H1∗DC −→ 0.

(43)

The D̃X -module C is a z-torsion module, which implies that H0∗DC is so (since
z is a central element in D̃X ). The D̃X -module RFH ,DO(!D) (and analogously
(RFordOX (!D))(r)) has no z-torsion, since it is the Rees module of a filtered DX -
module, hence H0∗DC = 0. Notice however that H1∗DC does not necessarily
vanish, since the homological dimension of the rings RU defined in Formula (7)
is bounded from above by 2n+ 1 only (which is the global homological dimension of
GrF• RU = OU [z, ξ1, . . . , ξn], where ξi is the symbol of z∂xi ), see [20, Theorem D.2.6
and Theorem D.4.3 (ii)]. Summing up, the exact sequence (43) yields the injective
morphismRFH ,DO(!D) ↪→ (RFordOX (!D))(r) of graded D̃X -modules, which gives
an inclusion
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FH ,D
k OX (!D) ⊂ Ford

k+rOX (!D) (44)

of coherent OX -modules for any k ∈ Z.
The very same argument, starting from the inclusion FH• OX (∗D) ⊂ Ford• OX (∗D)

(and using theCohen-Macaulay property of (OX (∗D), Ford• ) proved in Proposition 2.9
instead of the one of (OX (∗D), FH• ) as above) yields that

Ford
k OX (!D) ⊂ FH ,D

k OX (!D)

for all k ∈ Z, which completes the proof. �

Finally, we will state a conjecture about the so-called generating level of the Hodge

filtration. Let us recall the following definition from [41].

Definition 4.11 Let X be a complex manifold and let a well filtered module (M, F•)
be given. Then we say that the filtration F•M is generated at level k if

FlDX · FkM = Fk+lM

holds for all l ≥ 0, or, equivalently, if for all k′ ≥ k, we have

F1DX · Fk′M = Fk′+1M.

The smallest integer k with this property is called the generating level of F•M.

Based on our calculations in section 5, we conjecture the following bound for the
generating level of FH• on OX (∗D).

Conjecture 4.12 Under the assumptions of Theorem 4.4 and Corollary 4.8, the Hodge
filtration FH• O(∗D) is generated at level r := 1

2

(
deg(bD(s)) − multbD(s)(−1)

)
.

Remark 4.13 1. As we will see in section 5, this bound for the generating level is not
always better than the known general bound, which is n−2 (see [28, Theorem B]).
For the specific class of linear free divisors, it is known however that deg(bh(s)) =
n, and in this case the bound r would be a drastic improvement, see subsection 5.3
below. Notice also that the general bound n − 1− �α̃D� from [30, Theorem A] is
not helpful in our situation, since the minimal exponent α̃D , which is the negative
of the biggest root of the reduced Bernstein polynomial bh(s)/(s + 1), lies in
(0, 1), so that this bound is again n − 2.

2. There is a criterion in [40, Lemma 2.5] that guarantees generating level smaller or
equal to k for a filtered module (M, F•) satisfying the Cohen-Macaulay property
in terms of vanishing of the dual filtration. It cannot, however, directly be applied in
our situation since for this we would need the vanishing FD,H

2n−r−1OX (!D) instead

of FD,H
n−r−1OX (!D) = 0, which is provided by Theorem 4.10. One may hope

though that some refinement of this argument (see, e.g., [30, Proposition 3.3] for
a statement in a related situation) can give the desired result.
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3. As an immediate consequence of the conjecture, wewould obtain a local vanishing
result for a log resolution of an SK-free divisor, as provided by [28, Theorem 17.1].
Namely, for a log resolution π : X̃ −→ X which is an isomorphism over X\D
and where E := (π−1(D))red (a reduced normal crossing divisor on X̃ ) we would
have (provided that Conjecture 4.12 holds true)

Rkπ∗�n−k
X̃

(log E) = 0

for all k > r .

5 Computations of Hodge ideals and examples

The purpose of this section is to develop some techniques to calculate Hodge ideals of
a strongly Koszul free divisor using our main result (Theorem 4.4). We will illustrate
these methods by concrete computations of Hodge ideals and of the generating level
of the Hodge filtration for some interesting examples. We start with the following
preliminary result.

Lemma 5.1 Let D ⊂ X be a free divisor, let p ∈ D such that D is strongly Koszul at
p and take a reduced local defining equation h ∈ OX ,p of (D, p) ⊂ (X , p). Consider
the vector fields δ1, . . . , δn−1, χ̃ as in Lemma 4.1. Let β(s) be any polynomial inC[s].
Then

V 0DCt×X ,(0,p)(t, β(∂t t), t − h, δ1, . . . , δn−1, χ̃ + 1) ∩ DX ,p[∂t t]
= DX ,p[∂t t](h, β(∂t t), δ1, . . . , δn−1, χ̃ + 1).

(45)

Proof For the sake of simplicity, let us denote DCt×X ,(0,p) just by D. Before starting
the proof, let us explain something we will take for granted throughout it: we know
that V 0D = C{x, t}[∂x , ∂t t] and that any P ∈ V 0D can be expressed in a unique way
as a series

P =
∑

|β|+m≤d

∑
α,�

aβ,m
α,� xαt�∂β

x (∂t t)
m

with constant coefficients, and for each (β,m), the series
∑

α,� a
β,m
α,� xαt� is convergent.

Now, by using the identity t�(∂t t)m = (∂t t − �)mt� we find another unique formal
representation

P =
∑

|β|+i≤d

∑
α,�

cβ,i
α,�x

α∂β
x (∂t t)

i t�

with

cβ,i
α,� =

∑
i≤m≤d

aβ,m
α,�

(
m

i

)
(−�)m−i ,

and one easily sees that for fixed β, i, � the series
∑

α c
β,i
α,�x

α is convergent. So we
have a unique formal expression
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P =
∑

�

P�t
�, with P� =

∑
|β|+i≤d

∑
α

cβ,i
α,�x

α∂β
x (∂t t)

i ∈ DX ,p[∂t t],

and itmakes sense to consider P ∈ DX ,p[∂t t][[t]], where the last ring is the completion
of DX ,p[∂t t][t] with respect to the (t)-adic topology. Here one has to use that the left
ideal generated by t coincides with the right ideal generated by t , and so it is a bilateral
ideal, and also that the monomials t�, � ≥ 0, form a basis ofDX ,p[∂t t][t] as a left and
as a right DX ,p[∂t t]-module.

Let us now begin with the actual proof and denote by Ĩ the ideal (t, β(∂t t), t −
h, δ1, . . . , δn−1, χ̃ + 1) of V 0D. The inclusion ⊃ in equation (45) is trivial, let us
show the reverse one. We will use a more suitable set of generators of Ĩ, namely
{t, β̃, h, δ1, . . . , δn−1, χ + ∂t t + 1}, where β̃ = β(−χ − 1).

Let then P ∈ Ĩ∩DX ,p[∂t t]. Then there exist operatorsQ, R, A, B1, . . . , Bn−1,C ∈
V 0D such that

P = Qt + Rβ̃ + Ah +
n−1∑
i=1

Biδi + C(χ̃ + 1). (46)

Our goal is to show that Q must vanish and that the other operators belong actually to
DX ,p[∂t t]. Let us write Q = ∑

k Qktk , with Qk ∈ DX ,p[∂t t], and analogously for R,
A, the Bi andC . We can express the right-hand side of equation (46) as a new operator
S = ∑

k Skt
k , where again Sk ∈ DX ,p[∂t t]. Moreover, since t , β̃, h, δ1, . . . , δn−1 and

χ̃ + 1, when seen as elements of DX ,p[∂t t][[t]], are homogeneous in t , we have for
every k ≥ 0 that

Sk = Qk−1 + Rk β̃ + Akh +
n−1∑
i=1

Bi
kδi + Ck(χ̃ − k + 1).

Comparing the Sk ∈ DX ,p[∂t t] with the terms of degree k in t at the left-hand side
(recall that P ∈ DX ,p[∂t t]), we find that Sk = 0 for every k > 0.

Let us write now R̄ = R− R0 and similarly with the other operators. Each of them
can be written as a series in t and we have checked that

Qt + R̄β̃ + Āh +
n−1∑
i=0

B̄iδi +
∑
k>0

Ck(χ̃ − k + 1)tk = 0.

Therefore, since
∑

k>0 Ck(χ̃ − k + 1)tk = C̄(χ̃ + 1),

P = R0β̃ + A0h +
n−1∑
i=0

Bi
0δi + C0(χ̃ + 1).

Summing up, we have been able to write P as a linear combination of h, β̃, the δi and
χ̃ + 1 with coefficients in DX ,p[∂t t], as we wanted. �
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Theorem 5.2 Let D ⊂ X be a free divisor, let p ∈ D such that D is strongly
Koszul at p and let h ∈ OX ,p be a reduced local equation of D. Let as before
β(s) = ∏

α∈B′
h
(s + α)lα , where lα is the multiplicity of α − 1 in bh(s), N (h) =

N (h)(0,p) and πp : DX ,p[s] → N (h) the morphism of DX ,p[s]-modules given by
P(s) �→ [P(−∂t t)] (where we give N (h) the DX ,p[s]-module structure coming from
the inclusionDX ,p[s] ↪→ DCt×X ,(0,p) sending s to −∂t t ). Consider also the ideal Jp

of DX ,p[s] defined as

Jp := DX ,p[s](h, β(−s), δ1, . . . , δn−1, χ − s + 1).

Then,

1. DX ,p[s] can be endowed with a structure of V 0DCt×X ,(0,p)-module such that πp

becomes V 0DCt×X ,(0,p)-linear. As a consequence, the terms of the total order
filtration T•DX ,p[s] (see Definition 2.3) are OCt×X ,(0,p)-modules.

2. For any k ≥ 0, we have the following equality of OCt×X ,(0,p)-modules:

(
V 0
canN (h) ∩ Ford

k N (h)
)

(0,p)
= πp(Jp ∩ TkDX ,p[s]), (47)

and so

FH
k N (h)(0,p) = ∂t F

H
k−1N (h)(0,p) + πp(Jp ∩ Tk−1DX ,p[s])

=
k−1∑
i=0

∂kt
(
πp(Jp ∩ Tk−1−iDX ,p[s])

)
.

(48)

Proof Following the same convention as in Lemma 5.1 above, we will writeO andD
for OCt×X ,(0,p) and DCt×X ,(0,p), respectively.

We will define on DX ,p[s] an action of O by putting t · P(s) := P(s + 1)h and
extending it by linearity. Let us check that such an action is well-defined. Indeed, let
a(x, t) = ∑

α,k aαk xαtk be a series inO and let us show that we can multiply by a in
DX ,p[s]. As a first step, we will restrict ourselves to consider an element P ∈ DX ,p.
In order to show that a · P lies within DX ,p[s], it is equivalent by linearity to show it
for P = ∂β , with β ∈ Nn . Then we will have

a · ∂β :=
∑
α,k

aαk x
α∂βhk =

∑
α,k

aαk

∑
γ≤β
γ≤α

(−1)|γ |
(

β

γ

)
α!

(α − γ )!∂
β−γ xα−γ hk

=
∑
γ≤β

(−1)|γ |
(

β

γ

)
∂β−γ

∑
α≥γ,k

α!
(α − γ )!aαk x

α−γ hk

=
∑
γ≤β

(−1)|γ |
(

β

γ

)
∂β−γ · ∂γ (a)(x, h),

(49)

where we use the common componentwise partial ordering and the standard multi-
index notation for the factorial and the binomial numbers. Therefore, a · ∂β is a
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finite sum of monomials in the ∂i times certain convergent series, so it belongs to
DX ,p ⊂ DX ,p[s].

Consider now Ps j ∈ DX ,p[s]. Then,

a · Ps j :=
∑
α,k

aαk x
αP(s + k) j hk =

∑
α,k

aαk x
αP

j∑
r=0

(
j
r

)
sr k j−r hk

=
j∑

r=0

(
j
r

)
sr

∑
α,k

aαkk
j−r xαPhk =

j∑
r=0

(
j
r

)
sr

(
(t∂t )

j−r (a) · P
)

,

(50)

which is another finite sum of elements in DX ,p[s]. Thus a · Ps j belongs clearly to
DX ,p[s], as we wanted to show.

Now the action of O on DX ,p[s] can be extended to an action of V 0D. Indeed,
we have [t, s] · P(s) = P(s + 1)h = t · P(s) for any P(s) ∈ DX ,p[s], so we can
take the action of ∂t t as that of −s. Now using that V 0D ∼= DX ,p[s] ⊗OX ,p O as
OX ,p-modules, we can extend both actions by linearity to get the desired one of V 0D.

Let us check now that πp becomes V 0D-linear with the new structure on DX ,p[s].
Indeed, consider an operator P(s) ∈ DX ,p[s] and a series a = ∑

α,k aαk xαtk ∈ O as
before. Then,

a · πp(P(s)) =
∑
α,k

aαk x
αtk · [P(−∂t t)] =

⎡
⎣∑

α,k

aαk x
αP(−∂t t + k)tk

⎤
⎦

=
⎡
⎣∑

α,k

aαk x
αP(−∂t t + k)hk

⎤
⎦ = πp(a · P(s)).

(51)

Note that we are replacing the powers of t by those of h in the third equality. To justify
this step, let us rewrite

∑
α,k

aαk x
αP(−∂t t + k)tk =

∑
β,m

∂β(∂t t)
m pβ,m(x, t) =: P,

the pβ,m being convergent functions inO. Now dividing all such functions by t−h we
can write them as pβm(x, t) = qβm(x, t)(t − h) + rβm(x). (This is a very particular
instance of the Weierstraß division theorem for convergent power series whose proof
is elementary in this case.) Consequently,

P =
⎛
⎝∑

β,m

∂β(∂t t)
mqβm(x, t)

⎞
⎠ (t − h) +

∑
β,m

∂β(∂t t)
mrβm(x) =: Â · (t − h) + P

′
.
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For every β and m we know that rβm(x) = pβm(x, h), hence, we have an expression

P
′ =

∑
α,k

aαk x
αP(−∂t t + k)hk

and thus [P] = [P ′] in N (h) which shows the third equality in Formula (51).
Let us show the second point of the theorem. Take an element ξ ∈ V 0

canN (h) ∩
Ford
k N (h). Since byProposition 3.3wehaveV 0

canN (h) = V 1
indN (h)+β(∂t t)V 0

indN (h),
we know that there is a representative P̃ ∈ D of ξ and that there are operators
Q̃, R̃ ∈ V 0D and Ã, B̃1, . . . , B̃n−1, C̃ ∈ D such that

P̃ = t Q̃ + β(∂t t)R̃ + Ã(t − h) +
n−1∑
i=1

B̃iδi + C̃(χ̃ + 1)

︸ ︷︷ ︸
∈I (h)

.

It is clear that t Q̃ can be rewritten as Q′t for a suitable Q′ ∈ V 0D. Regarding β(∂t t)R̃,
let us expand R̃ as

∑
k R̃k tk with R̃k ∈ V 0D in an analogous fashion as in the proof

of Lemma 5.1. Then,

β(∂t t)R̃ =
∑
k≥0

R̃k t
kβ(∂t t + k)

= R̃β(∂t t) +
∑
k≥1

R̃k t
k(β(∂t t + k) − β(∂t t))

= R̃β(∂t t)+
∑
k≥1

R̃k t
k−1(β(∂t t+k − 1) − β(∂t t − 1))t=:R̃β(∂t t) + R′t,

where R′ ∈ V 0D. Therefore, renaming Q′ + R′ as Q̃ ∈ V 0D, we have a new
expression

P̃ = Q̃t + R̃β(∂t t) + Ã(t − h) +
n−1∑
i=1

B̃iδi + C̃(χ̃ + 1). (52)

Notice that since

ξ ∈ V 0
canN (h) ∩ Ford

k N (h) ⊂ V 0
indN (h) ∩ Ford

k N (h),

it follows fromProposition 3.10 that we can pick a new representative P̂ ∈ FkD∩V 0D
of ξ , that is, we have P̂ − P̃ ∈ I (h). Moreover, when writing P̂ as an element in
DX ,p[∂t t][[t]], we can replace any positive power of t by h, and this will not change
the order. Hence, there exists an operator P ∈ FkD ∩ DX ,p[∂t t] with P − P̂ =
Â(t − h). It follows that P − P̃ ∈ I (h), or, said otherwise, there are coefficients
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A′, B ′
1, . . . , B

′
n−1,C

′ ∈ D such that

P − P̃ = A′(t − h) +
n−1∑
i=1

B ′
iδi + C ′(χ̃ + 1).

Hence (by replacing P̃ with the expression from equation (52)) we obtain that the class
ξ ∈ V 0

canN (h) ∩ Ford
k N (h) can be represented by an operator P ∈ FkD ∩ DX ,p[∂t t]

which has an expression

P = Qt + Rβ(∂t t) + A(t − h) +
n−1∑
i=1

Biδi + C(χ̃ + 1),

where A := Ã + A′, Bi := B̃i + B ′
i and C := C̃ +C ′. By construction, the operators

P , Q and R are elements in V 0D. Then we apply Corollary 3.9 and conclude that A,
B1, . . . , Bn−1 and C belong to V 0D as well.

Summing up, we can choose P inside

V 0D(t, t − h, β(∂t t), δ1, . . . , δn−1, χ̃ + 1) ∩ FkD ∩ DX ,p[∂t t].

Applying Lemma 5.1 above, we obtain that

P ∈ DX ,p[∂t t](h, β(∂t t), δ1, . . . , δn−1, χ̃ + 1) ∩ TkDX ,p[∂t t],

and replacing ∂t t by −s provides the desired claim. For the last part, Formula (48),
we combine Formula (33) (or its non-recursive version, Formula (32)) with Formula
(47). �

As a first application of Theorem 5.2 and Theorem 4.4, we can give a formula to
calculate the zeroth Hodge ideal I0(D)p.

Corollary 5.3 Under the assumptions of the previous Proposition, let (J0)p be the
ideal of OX ,p defined as

(J0)p := Jp ∩ OX ,p = DX ,p[s](h, β(−s), δ1, . . . , δn−1, χ − s + 1) ∩ OX ,p.

Then

1. FH
1 N (h) = {[ f ] ∈ N (h) : f ∈ (J0)p}.

2. FH
0 M(h) = {[ f ] ∈ M(h) : f ∈ (J0)p}.

3. I0(D)p = (J0)p.

Proof Point 1 is a consequence ofCorollary 4.3 andTheorem5.2 above. For the second
point we use formula (39). We know that FH

0 M(h) = FH
1 N (h) ∩ (M(h) ⊗ 1), where

M(h) is seen as a OX ,p-submodule of N (h). However, since (J0)p ⊂ OX ,p, there is
actually no proper intersection and the claim follows.
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In order to obtain the formula for the zeroth Hodge ideal we just need to recall
its definition and the isomorphism between OX ,p(∗D) and M(h) (see point 2 of
Proposition 2.4). Since FH

0 OX ,p(∗D) = I0(D)p ·OX ,p(D), we just need to multiply
by h the elements of (J0)p ·h−1 ⊂ OX ,p(∗D), but again, (J0)p ⊂ OX ,p , so I0(D)p =
(J0)p and we are done. �


Remark 5.4 Notice that the ideal Jp from Theorem 5.2 equals, up to changing s by
s + 1 the ideal

Ĵp = DX ,p[s](h, β̂(s), δ1, . . . , δn−1, χ − s),

where β̂(s) = ∏
α∈Bh (s − α)lα , with Bh and lα being, respectively, the set of roots of

bh in the interval (−1, 0) and the multiplicity of each root α. Then we have

Ĵ ′
p := DX ,p[s](h, δ1, . . . , δn−1, χ − s) � Ĵp

and it is known (see, e.g., [10, Theorem 1.24] and [32, § 4])) that Ĵ ′
p is the annihilator

of the class hs in DX ,p[s] · hs/DX ,p[s] · hs+1. Hence, by the Bernstein functional
equation, we know that bh(s) ∈ Ĵ ′

p. The polynomial β̂(s), which is a proper factor of

bh(s), is not an element of Ĵ ′
p in general.

Our next aim is to describe an algorithm to calculate effectively the filtration steps
FH
k OX (∗D) resp. the Hodge ideals Ik(D) for an SK-free divisor. The starting point

is Formula (48). Recall (see the explanation before Lemma 3.2) that there is a left
DCt×X ,(0,p)-linear isomorphism

� : N (h) −→ M(h)[∂t ]
[Q] �−→ ∑ord(Q)

k=0 [Qk]∂kt

which we need to make explicit in order to describe our algorithmic procedure to
obtain the modules FH

k OX (∗D).
Let us consider the C-algebra automorphism ϕ : DCt×X ,(0,p) → DCt×X ,(0,p)

defined as

ϕ(a) = a ∀ a ∈ OX ,p, ϕ(t) = t + h,

ϕ(∂xi ) = ∂xi − h′
xi ∂t ∀ i = 1, . . . , n, ϕ(∂t ) = ∂t .

It is clear that ϕ(δ) = δ − δ(h)∂t and ϕ−1(δ) = δ + δ(h)∂t for each δ ∈ �X ,p, and
ϕ−1(t) = t − h. Now given a class [Q] ∈ N (h), by division by t we find unique
operators A ∈ DCt×X ,(0,p) and Q′ ∈ OX ,p〈∂x1 , . . . , ∂xn , ∂t 〉 such that

ϕ(Q) = A t + Q′ (ord(Q′) ≤ ord(Q)).
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Then we write

Q′ =
ord(Q)∑
k=0

Qk∂
k
t , Qk ∈ DX ,p,

and taking classes in M(h) we obtain the element
∑ord(Q)

k=0 [Qk]∂kt =: �([Q]) ∈
M(h)[∂t ] which is readily verified to be well-defined. Notice that the inverse map
�−1 sends an element

∑d
k=0[Qk]∂kt ∈ M(h)[∂t ], with Qk ∈ DX ,p, to

[
d∑

k=0

ϕ−1(Qk)∂
k
t

]
∈ N (h).

Let us define Ford• (M(h)[∂t ]) := �
(
Ford• N (h)

)
. Then we clearly have

Ford
k (M(h)[∂t ]) =

k⊕
i=0

(Ford
k−i M(h)) ∂ it , k ∈ Z.

Similarly, put FH• (M(h)[∂t ]) := �
(
FH• N (h)

)
. Formula (48) becomes:

FH
k (M(h)[∂t ]) = ∂t F

H
k−1 (M(h)[∂t ]) + �(Jp ∩ Tk−1DX ,p[s]) (53)

=
k−1∑
i=0

∂ it �(Jp ∩ Tk−1−iDX ,p[s]). (54)

where we put � = � ◦ πp.

We denote � : M(h)
∼−→ OX ,p(∗D) the isomorphism of left DX ,p-modules given

by�([Q]) = Q(h−1), for each Q ∈ DX ,p (see formula (5)), and by� : M(h)[∂t ] ∼−→
OX ,p(∗D)[∂t ] the induced isomorphism of DCt×X ,(0,p)-modules:

�

(
d∑

k=0

[Qk]∂kt
)

=
d∑

k=0

Qk(h
−1)∂kt .

We recall from Formulas (38) and (39) that the relationship between the Hodge fil-
trations on OX ,p(∗D)[∂t ] ∼= N (h) ∼= (ih,+O(∗D))(0,p) and on OX ,p(∗D) is given
by

FH
k

(OX ,p(∗D)[∂t ]
) =

k−1⊕
i=0

(FH
k−1−iOX ,p(∗D)) ∂ it ,

FH
k OX ,p(∗D) = FH

k+1

(OX ,p(∗D)[∂t ]
) ∩ OX ,p(∗D)
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for all k ∈ Z. We obviously have �(FH• M(h)) = FH• OX ,p(∗D) and

�(FH• (M(h)[∂t ])) = FH• OX ,p(∗D)[∂t ].

The pole order filtration PkOX ,p(∗D) = OX ,p((k + 1)D), k ≥ 0, induces a
filtration on OX ,p(∗D)[∂t ]:

Pk
(OX ,p(∗D)[∂t ]

) :=
k⊕

i=0

OX ,p((k − i + 1)D)∂ it , k ≥ 0.

With these preliminary remarks, we can now explain an effective procedure to compute
a system of generators of the OX ,p-modules FH

k OX ,p(∗D), k ≥ 0:

Step 1: We compute an involutive basis B = {P1, . . . , PN } of Jp with respect to the
total order filtration T on DX ,p[s], i.e. P1, . . . , PN are such that

GrT• (Jp) = GrT• (DX ,p[s])(σ T (P1), . . . , σ
T (PN )),

where for P ∈ DX ,p[s], σ T (P) denotes the symbol of P in GrT• (DX ,p[s]).
Let us write ordT (Pj ) = d j . Consequently, for each k ≥ 0, a system of
generators of the OX ,p-module Jp ∩ TkDX ,p[s] is given by

{
sl∂α

x Pj | l + |α| + d j ≤ k
}

.

Step 2: After equation (54), a system of generators of FH
k+1 (M(h)[∂t ]) as an OX ,p-

module is
{
∂ it �(sl∂α

x Pj ) | l + |α| + d j + i ≤ k
}

.

Step 3: By means of the isomorphism �, we obtain a system of generators of the
OX ,p-module FH

k+1

(OX ,p(∗D)[∂t ]
)
, that we call ξe, e = 1, . . . , R. Since

FH
k+1

(OX ,p(∗D)[∂t ]
)
is a submodule of the rank (k + 1) free OX ,p-module

Pk
(OX ,p(∗D)[∂t ]

)
, we have

ξe =
k∑

i=0

ξe,i∂
i
t ∈ OX ,p((k + 1)D) ⊕ OX ,p(kD)∂t ⊕ · · · ⊕ OX ,p(D)∂kt ,

for any e = 1, . . . , R. Finally, a syzygy computation allows us to compute a
system of generators of the OX ,p-module

OX ,p〈ξ1, . . . , ξR〉 ∩ OX ,p((k + 1)D) = FH
k+1

(OX ,p(∗D)[∂t ]
) ∩ OX ,p(∗D) = FH

k OX ,p(∗D).

In the following subsections we apply this algorithm to calculate the Hodge ideals
and the generating level for some interesting classes of examples. Since it is known
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([28, Proposition 10.1]) that I0(D) = J ((1 − ε)D), and since an algorithm for
the calculation of multiplier ideals exists already (see [2]), our approach first of all
provides an alternative way to compute these multiplier ideals. In some cases our
methods yield results whereas the algorithm in loc. cit. does not terminate. Moreover,
we can effectively calculate higher Hodge ideals, and we indicate them below in some
of the cases for which the generating level of the Hodge filtration FH• OX (∗D) is
positive.

We also determine the generating level of the Hodge filtration, always confirming
Conjecture 4.12. In many cases, the Hodge filtration is even generated at level zero.
This is not always true, however, and we show in particular that for linear free divisors,
the conjectured bound from 4.12 is sharp. Examples with low generating level are
interesting because of the local vanishing conjecture (see point 3 of Remark 4.13 as
well as [28, Theorem 17.1]). Notice that only plane curves, normal crossing divisors
(cf. the introduction of [28]) and surfaces with rational singularities ( [30, Corollary
B]) were previously known to have generating level equal to zero.

5.1 Divisors with normal crossings

If X is any complex manifold and D ⊂ X is a reduced divisor with only normal
crossings, then it is elementary to check that D is free and strongly Koszul at each of
its points. As we have already pointed out in Remark 4.5, it easily follows from the
fact that −1 is the only root of bD(s) that we have

FH• OX (∗D) = Ford• OX (∗D).

Consequently, since obviously the order filtration is generated at level 0, so is the
Hodge filtration (a fact that is of course well known from Saito’s theory). For the
Hodge ideals themselves, we obtain that Ik(D) · Ford

k OX (∗D) = PkOX (∗D), and an
easy local calculation shows that this coincides with [28, Proposition 8.2].

Summarizing, if the divisor D has only normal crossings, then our results easily
imply the known facts about the Hodge filtration resp. the Hodge ideals for such
divisors.

5.2 Surfaces

We consider two kinds of free surfaces in C3, namely (two-dimensional hyper-)plane
arrangements and Sekiguchi’s free divisors ([44]). Let D be a central hyperplane
arrangement

⋃k
i=1 Hi ⊂ X = Cn . It is a longstanding question to detect when an

arrangement is a free divisor; for a recent account, see [12, Chapter 8]. However, if D
is free, then it is strongly Koszul since it is locally quasi-homogeneous (see, e.g., [8]
for this implication), so that the methods from this paper do apply.

Below are some results for low-dimensional free arrangements:
In both cases the Hodge filtration onOX (∗D) is generated at level zero. Of course,

these results do not depend on the fact that dim(D) = 2, similar calculations are
possible for other arrangements, but the ideal I0(D) becomes difficult to print.
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Name Equation I0(D)

A2 (x − y)(x − z)(y − z) (y − z, x − z)

D3 (x2 − y2)(x2 − z2)(y2 − z2)
(
y2z − z3, x2z − z3, y3 − yz2, xy2 − xz2, x2y − yz2, x3 − xz2

)

Let us consider now the examples of divisors in C3 that are discussed in the paper
[44].We refer to loc. cit. for details on their construction and only produce the results of
the calculation of I0(D) here. All these examples are given byweighted homogeneous
equations in three variables, and we write (d; dx , dy, dz) for a weight vector, where
dx , dy and dz are the weights of x , y and z and d is the degree of the defining equation
for the divisor D ⊂ C3.

Name Weight vector Equation/I0(D)

A1 (12; 2, 3, 4) h = 16x4z − 4x3y2 − 128x2z2 + 144xy2z

− 27y4 + 256z3

I0(D) : (9y2 − 32xz, x2 + 12z)
A2 (12; 2, 3, 4) h = 2x6 − 3x4z + 18x3y2 − 18xy2z + 27y4 + z3

I0(D) : (y2, x2 − z)
B1 (9; 1, 2, 3) h = z(x2y2 − 4y3 − 4x3z + 18xyz − 27z2)

I0(D) : (y2 − 3xz, xy − 9z, x2z − 3yz)
B3 (9; 1, 2, 3) h = z(−2y3 + 9xyz + 45z2)

I0(D) : (z, y2)

H2 (15; 1, 3, 5) h = 100x3y4 + y5 + 40x4y2z − 10xy3z + 4x5z2

− 15x2yz2 + z3

I0(D) : (y2 − xz, 12x2yz − z2, 12x3z − yz)
H5 (15; 1, 3, 5) h = x3y4 − y5 + 3xy3z + z3

I0(D) : (y2, yz, z2)

We have managed to perform the analogous calculations for all of Sekiguchi’s
examples but H1. The Hodge filtration on OC3(∗D) is generated at level 0 for all of
them.

5.3 Linear free divisors

The paper [3] introduced a large class of examples of free divisors which appear as
discriminants in pre-homogenous vector spaces. Since the module �(− log D) has a
basis of linear (in the global coordinates) vector fields in these examples, the divisor D
is called linear free. A rich source of linear free divisors comes from representation of
quivers. It can be shown that the strong Koszul assumption is satisfied in these cases
if the underlying graph of the quiver is of ADE-type. Quivers of type A yield free
divisors with normal crossings, so the first non-trivial example is the discriminant in
the representation space of the D4-quiver. Here we have
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D ⊂ Mat(2 × 3,C) =
{(

a11 a12 a13
a21 a22 a23

)
| ai j ∈ C

}
,

where D = V (h) and h = �1 ·�2 ·�3, with �1, �2 and �3 being the three maximal
minors of an element of Mat(2× 3,C) (hence, h is a homogenous equation of degree
6). In this case, we have bh(s) = (s + 1)4(s + 2/3)(s + 4/3) and hence we consider

J = (h, s − 1/3, δ1, . . . , δ5, χ − s + 1) ⊂ DC6[s].

The intersection with OC6 (which can also be calculated as DC6(h, δ1, . . . , δ5, χ +
2/3) ∩ OC6 ) is

I0(D) = (a13a22 − a12a23, a13a21 − a11a23, a12a21 − a11a22).

The Hodge filtration on OX (D) is generated at level 1, and the first Hodge ideal is
minimally generated by 13 polynomials in the variables ai j of degree 7 at most (for
typsetting reasons, we refrain to print it here).

This discriminant is a first example of the series where the underlying graph of the
quiver is of Dn-type. The next example is the D5-quiver, where the discriminant in the
10-dimensional representation space yields a hypersurface of degree 10. A defining
equation h ∈ C[a, b, c, k, e, f , g, h, i, j] for D is given by

h = a2ke3ghi2 − a2ce2 f ghi2 + 2abke2 f ghi2 − 2abce f 2ghi2 + b2ke f 2ghi2 − b2c f 3ghi2

− a2cke2h2i2 − abk2e2h2i2 + a2c2e f h2i2 − b2k2e f h2i2 + abc2 f 2h2i2 + b2ck f 2h2i2

− a2ke3g2i j + a2ce2 f g2i j − 2abke2 f g2i j + 2abce f 2g2i j − b2ke f 2g2i j + b2c f 3g2i j

+ a2c2keh2i j + 2abck2eh2i j + b2k3eh2i j − a2c3 f h2i j − 2abc2k f h2i j − b2ck2 f h2i j

+ a2cke2g2 j2 + abk2e2g2 j2 − a2c2e f g2 j2 + b2k2e f g2 j2 − abc2 f 2g2 j2 − b2ck f 2g2 j2

− a2c2kegh j2 − 2abck2egh j2 − b2k3egh j2 + a2c3 f gh j2 + 2abc2k f gh j2 + b2ck2 f gh j2

and we obtain

I0(D) = (aei + b f i − acj − bk j, aeg + b f g − acr − bkr ,

keri − c f ri − keg j + c f g j).

Notice that for this example, the computation of the multiplier ideal J ((1 − ε)D)

with the methods from [2] does not terminate. The generating level of the Hodge
filtration onOX (∗D) is two here. ThefirstHodge idealI1(D) has aminimal generating
set consisting of 24 polynomials of degree 13 at most, whereas I2(D) is minimally
generated by 124 polynomials, their maximal degree being 22.

In fact, Conjecture 4.12 would yield the following estimate for the generating level
of the full Dn-series.

Conjecture 5.5 Let D ⊂ X = C4n−10 be the linear free divisor Dn. Then, the Hodge
filtration on OX (∗D) is generated at level n − 3.
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Proof assuming Conjecture 4.12 The dimension of the divisors Dn can be found in
[13, p. 1347]. The result then is just a consequence of applying the statement of
Conjecture 4.12, once we know a general formula for the Bernstein–Sato polynomials
of the divisors Dn . It can be found at [45, Table 4.1] that they are, respectively,

(
s + 4

3

)n−3

(s + 1)2n−4
(
s + 2

3

)n−3

. �


Note that this conjecture, if true, would give a bound for the generating level which
is exactly a quarter of the general one given in [28, Theorem B]. We also believe that
such bounds are attained for all of the Dn (i.e. that the generating level is exactly
n − 3), as we have checked for n = 4, 5.

Another typical example of a linear free divisor in low dimensions is the discrim-
inant in the space of binary cubics (see, e.g., [17, Examples 1.4. (2)]). Here we have
D = V(h), where h = −y2z2 + 4xz3 + 4y3w − 18xyzw + 27x2w2 ∈ C[x, y, z, w],
and we obtain that

I0(D) = (z2 − 3yw, yz − 9xw, y2 − 3xz).

In this case the Hodge filtration onOC4(∗D) is generated in level one, with first Hodge
ideal

I1(D) = (y2z2 − 4xz3 − 4y3w + 18xyzw − 27x2w2, 2z5 − 15yz3w + 27y2zw2 + 27xz2w2

− 81xyw3, yz4 − 27xz3w − 18y3w2 + 135xyzw2 − 243x2w3, 2xz4 − y3zw

− 9xyz2w + 27xy2w2 − 27x2zw2, xyz3 − 2y4w + 9xy2zw − 27x2z2w

+ 27x2yw2, y4z − 18x2z3 − 27xy3w + 135x2yzw − 243x3w2, 2y5 − 15xy3z

+ 27x2yz2 + 27x2y2w − 81x3zw).

Notice that similar computations are possible up to some extent for other linear
free divisors of SK-type, such as those given by the E6- and E7-quivers. Under the
assumption of Conjecture 4.12, one could give generating level bounds, using the
calculation of Bernstein polynomials from [1].

We finish this subsection with some examples of non-reductive linear free divisors
in low dimension, as found in [17, Example 5.1, Table 6.1], that we summarize in the
table below.

Name Equation I0(D)

dim 3 (y2 + xz)z (y, z)
dim 4, case 1 (y2 + xz)zw (y, z)
dim 4, case 2 (yz + xw)zw (z, w)

dim 4, case 3 x(y3 − 3xyz + 3x2w) (x, y2)

Sym3(C) x

∣∣∣∣
x y
y u

∣∣∣∣

∣∣∣∣∣∣
x y z
y u v

z v w

∣∣∣∣∣∣
(xv − yz, xu − y2, xzu − xyv)
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In all those cases, the Hodge filtration on the corresponding ring of meromorphic
functions is generated at level 0.

5.4 TheWhitney umbrella and the cross caps

We finish this section by mentioning two examples that slightly fall out of the general
setup of this paper. Namely, consider the Whitney umbrella D = V(h) = V(x2 −
y2z) ⊂ C3. This is not a free divisor, indeed, we have �(− log D) = ∑4

i=1OC3δi
where

δ1 = y∂y − 2z∂z, δ2 = −yz∂x − x∂y, δ3 = −y2∂x − 2x∂z,

δ4 = χ = (1/2)x∂x + (1/3)y∂y + (1/3)z∂z,

so that �(− log D) is not OC3 -locally free. However, the isomorphism

DC3/(δ1, δ2, δ3, χ + 1) ∼= OC3(∗D)

of left DC3 -modules still holds true, and we find that bh(s) = (s + 1)2(s + 3/2).
According to Lemma 3.2 from above, we have bN (h)

V •
ind

= s2(s − 1/2). One checks
that the main results of this paper can also be applied to this example. In particular, it
follows that the integer r appearing in Lemma 4.6 is zero, and hence we deduce from
Corollary 4.7 that

FH• OC3(∗D) ∼= Ford• OC3(∗D).

In particular, in this example the generating level of the Hodge filtration is zero since
Ford• OC3(∗D) is generated at level 0.

A similar reasoning applies to the higher dimensional example D = V(h) ⊂ C5,
where

h = x1x2x
2
3 x4 + x33 x

2
4 − x21 x

2
3 x5 + x32 x4 − x1x

2
2 x5 + 3x2x3x4x5 − 2x1x3x

2
5 − x35 ,

called cross-cap, which again is not free (the module of logarithmic vector fields has
9 generators), here we have

bh(s) = (s + 1)3(s + 3/2)(s + 4/3)(s + 5/3).

As a conclusion, we obtain that for both the Whitney umbrella and the cross-cap we
have I0(D) = OX , but Ik(D) � OX for all k > 1.

Actually, these two examples are the first two of a whole series, which is discussed
in [19]. However, it is unclear at this point whether we always have the equality
FH• OCn (∗D) ∼= Ford• OCn (∗D) since this needs the fact that the roots of bh(s) are
contained in (−2,−1], and a general formula for the Bernstein polynomial for the
elements in this series is not known (actually, it seems computational impossible to
obtain bh(s) even for the next example, which is a divisor in C7).



57 Page 60 of 62 A. Castaño Domínguez et al.

Acknowledgements We would like to thank the anonymous referee for valuable suggestions to improve
the readability, as well as for pointing out a mistake in the proof of Corollary 3.8 in a former version of this
paper.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Barz, C.: Differential invariants of prehomogeneous vector spaces, Ph.D. thesis, TechnischeUniversität
Chemnitz (2018). https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=4894&lng=deu&id=

2. Berkesch, C., Leykin, A.: Algorithms for Bernstein–Sato polynomials and multiplier ideals. In: ISSAC
2010—Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation,
pp. 99–106. ACM, New York (2010)

3. Buchweitz, R.-O., Mond, D.: Linear free divisors and quiver representations, Singularities and com-
puter algebra, LondonMath. Soc. Lecture Note Ser., vol. 324, pp. 41–77. Cambridge University Press,
Cambridge (2006)

4. Bourbaki, N.: Éléments de mathématique. Algèbre. Chapitre 10. Algèbre homologique, Springer-
Verlag, Berlin (2007). Reprint of the 1980 original

5. Budur, N., Saito, M.: Multiplier ideals, V -filtration, and spectrum. J. Algebraic Geom. 14(2), 269–282
(2005)

6. Chemla, S.: A duality property for complex Lie algebroids. Math. Z. 232(2), 367–388 (1999)
7. CalderónMoreno, F.L.: Logarithmic differential operators and logarithmic deRham complexes relative

to a free divisor. Ann. Sci. École Norm. Sup. 32(5), 701–714 (1999)
8. Calderón-Moreno, F., Narváez-Macarro, L.: The module D f s for locally quasi-homogeneous free

divisors. Compositio Math. 134(1), 59–74 (2002)
9. Calderón-Moreno, F.J., Narváez-Macarro, L.: Dualité et comparaison sur les complexes de de Rham

logarithmiques par rapport aux diviseurs libres. Ann. Inst. Fourier (Grenoble) 55(1), 47–75 (2005)
10. Calderón-Moreno, F.J., Narváez-Macarro, L.: On the logarithmic comparison theorem for integrable

logarithmic connections. Proc. Lond. Math. Soc. 98(3), 585–606 (2009)
11. Castro-Jiménez, F., Narváez-Macarro, L., Mond, D.: Cohomology of the complement of a free divisor.

Trans. Am. Math. Soc. 348(8), 3037–3049 (1996)
12. Dimca, A.: Hyperplane Arrangements. An introduction. Universitext, Springer, Cham (2017)
13. de Gregorio, I., Mond, D., Sevenheck, C.: Linear free divisors and Frobenius manifolds. Compos.

Math. 145(5), 1305–1350 (2009)
14. Denham, G., Schenck, H., Schulze, M., Wakefield, M., Walther, U.: Local cohomology of logarithmic

forms. Ann. Inst. Fourier (Grenoble) 63(3), 1177–1203 (2013)
15. Dutta, Y.: Vanishing for Hodge ideals on toric varieties. Math. Nachr. 293(1), 79–87 (2020)
16. Fossum, R., Foxby, H.-B.: The category of graded modules. Math. Scand. 35, 288–300 (1974)
17. Granger, M., Mond, D., Nieto, A., Schulze, M.: Linear free divisors and the global logarithmic com-

parison theorem. Ann. Inst. Fourier (Grenoble) 59(1), 811–850 (2009)
18. Granger, M., Schulze, M.: On the symmetry of b-functions of linear free divisors. Publ. Res. Inst.

Math. Sci. 46(3), 479–506 (2010)
19. Houston, K., Littlestone, D.: Vector fields liftable over corank 1 stable maps (2009). Preprint

arXiv:0905.0556

http://creativecommons.org/licenses/by/4.0/
https://www.logos-verlag.de/cgi-bin/engbuchmid?isbn=4894&lng=deu&id=
http://arxiv.org/abs/0905.0556


Hodge ideals of free divisors Page 61 of 62 57

20. Hotta, R., Takeuchi, K., Tanisaki, T.:D-modules, perverse sheaves, and representation theory, Progress
in Mathematics, vol. 236, Birkhäuser Boston Inc., Boston, MA (2008). Translated from the 1995
Japanese edition by Takeuchi

21. Jung, S.-J., Kim, I.-K., Yoon, Y., Saito, M.: Hodge ideals and spectrum of isolated hypersurface
singularities (2019). Preprint arXiv:1904.02453, to appear in “Annales de l’Institut Fourier”

22. Kashiwara,M.: Vanishing cycle sheaves and holonomic systems of differential equations. In: Raynaud,
M., Shioda, T. (eds.) Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes in Math., vol. 1016, pp.
134–142. Springer, Berlin (1983)

23. Lazarsfeld, R.: Positivity in algebraic geometry. II, Ergebnisse derMathematik und ihrer Grenzgebiete.
3. Folge. A Series of Modern Surveys in Mathematics, Positivity for vector bundles, and multiplier
ideals, vol. 49. Springer-Verlag, Berlin (2004)

24. Looijenga, E.J.N.: Isolated singular points on complete intersections, London Mathematical Society
Lecture Note Series, vol. 77. Cambridge University Press, Cambridge (1984)

25. Mackenzie, K.C.H.: General theory of Lie groupoids andLie algebroids, LondonMathematical Society
Lecture Note Series, vol. 213. Cambridge University Press, Cambridge (2005)

26. Malgrange, B.: Le polynôme de Bernstein d’une singularité isolée, Fourier integral operators and
partial differential equations (Colloq. Internat., Univ. Nice, Nice, 1974). Lecture Notes in Math., vol.
459, pp. 98–119. Springer, Berlin (1975)

27. Maisonobe, P., Mebkhout, Z.: Le théorème de comparaison pour les cycles évanescents, Éléments de
la théorie des systèmes différentiels géométriques, Sémin. Congr., vol. 8, pp. 311–389. Soc. Math.
France, Paris (2004)
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