Skip to main content
Log in

Transmission Dynamics of a High Dimensional Rabies Epidemic Model in a Markovian Random Environment

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper develops the spread dynamics of a 11-dimensional stochastic multi-host zoonotic model for the dog-CFB-human transmission of rabies, which is formulated as a piecewise deterministic Markov process. We firstly prove the existence of the global unique positive solution. Then we obtain sufficient conditions for the extinction and persistence of disease. One of the distinct features of this paper is that we prove the positive recurrence of the solution to the model by constructing a series of appropriate Lyapunov functions. Finally, numerical simulations are carried out to illustrate our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

The authors declare that the manuscript has no associated data.

References

  1. CDC, Rabies-how is rabies transmitted? 2010, http://www.cdc.gov/rabies/transmission/index.html

  2. Tenzin, M.P.: Ward, review of rabies epidemiology and control in south, southeast and east Asia: past, present and prospects for elimination. Zoonoses Public Health 59, 451–467 (2012)

    Article  Google Scholar 

  3. Hampson, K., Dushoff, J., Bingham, J., Bruckner, G., Ali, Y., Dobson, A.: Synchronous cycles of domestic dog rabies in sub-saharan Africa (in capitals) and the impact of control effort. Proc. Natl. Acad. Sci. USA 104, 7717–7722 (2007)

    Article  Google Scholar 

  4. Zinsstag, J., Durr, S., Penny, M., Mindekem, R., Roth, F., Gonzalez, S., Naissengar, S., Hattendorf, J.: Transmission dynamic and economics of rabies control in dogs and humans in an African city. Proc. Natl. Acad. Sci. USA 106, 14996–15001 (2009)

    Article  Google Scholar 

  5. Anderson, R.M., Jackson, H.C., May, R.M., Smith, A.M.: Population dynamics of fox rabies in Europe. Nature 289, 765–771 (1981)

    Article  Google Scholar 

  6. Coyne, M.J., Smith, G., McAllister, F.E.: Mathematic model for the population biology of rabies in raccoons in the Mid-Atlantic states. Am. J. Vet. Res. 50, 2148–2154 (1989)

    Google Scholar 

  7. Childs, J.E., Curns, A.T., Dey, M.E., Real, L.A., Feinstein, L., et al.: Predicting the local dynamics of epizootic rabies among raccoons in the United States. Proc. Natl. Acad. Sci. USA 97, 13666–13671 (2000)

    Article  Google Scholar 

  8. Clayton, T., Duke-Sylvester, S., Gross, L.J., Lenhart, S., Real, L.A.: Optimal control of a rabies epidemic model with a birth pulse. J. Biol. Dyn. 4, 43–58 (2010)

    Article  MathSciNet  Google Scholar 

  9. Allen, L.J.S., Flores, D.A., Ratnayake, R.K., Herbold, J.R.: Discrete-time deterministic and stochastic models for the spread of rabies. Appl. Math. Comput. 132, 271–292 (2002)

    MathSciNet  MATH  Google Scholar 

  10. Artois, M., Langlais, M., Suppo, C.: Simulation of rabies control within an increasing fox population. Ecol. Model. 97, 23–34 (1997)

    Article  Google Scholar 

  11. Kallen, A., Arcuri, P., Murray, J.D.: A simple model for the spatial spread and control of rabies. J. Theor. Biol. 116, 377–393 (1985)

    Article  MathSciNet  Google Scholar 

  12. Smith, D.L., Lucey, B., Waller, L.A., Childs, J.E., Real, L.A.: Predicting the spatial dynamics of rabies epidemic on heterogeneous landscapes. Proc. Natl. Acad. Sci. USA 99, 3668–3672 (2002)

    Article  Google Scholar 

  13. Huang, J., Ruan, S., Shu, Y., Wu, X.: Modeling the transmission dynamics of Rabies for Dog, Chinese Ferret Badger and human interactions in Zhejiang Province, China. Bull. Math. Biol. 81, 939–962 (2019)

    Article  MathSciNet  Google Scholar 

  14. Liu, Q., Jiang, D.: Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching. Appl. Math. Comput. 316, 310–325 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Wang, L., Jiang, D.: Ergodic property of the chemostat: a stochastic model under regime switching and with general response function. Nonlinear Anal.-Hybrid Syst. 27, 341–352 (2018)

  16. Settati, A., Lahrouz, A.: Stationary distribution of stochastic population systems under regime switching. Appl. Math. Comput. 244, 235–243 (2014)

    MathSciNet  MATH  Google Scholar 

  17. Zhang, X., Jiang, D., Ahmed, A., Hayat, T.: Stationary distribution of stochastic SIS epidemic model with vaccination under regime switching. Appl. Math. Lett. 59, 87–93 (2016)

    Article  MathSciNet  Google Scholar 

  18. Gray, A., Greenhalgh, D., Mao, X., Pan, J.: The SIS epidemic model with Markovian switching. J. Math. Anal. Appl. 394, 496–516 (2012)

    Article  MathSciNet  Google Scholar 

  19. Mao, X.: Stability of stochastic differential equations with Markovian switching. Stochastic Process. Appl. 79, 45–67 (1999)

    Article  MathSciNet  Google Scholar 

  20. Mao, X., Marion, G., Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics. Stochastic Process. Appl. 97, 95–110 (2002)

    Article  MathSciNet  Google Scholar 

  21. Mao, X., Yuan, C.: Stochastic Differential Equations With Markovian Switching. Imperial College Press, London (2006)

    Book  Google Scholar 

  22. Ji, C., Jiang, D., Shi, N.: Multigroup SIR epidemic model with stochastic perturbation. Physica A. 390, 1747–1762 (2011)

    Article  Google Scholar 

  23. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)

    MATH  Google Scholar 

  24. Khasminskii, R., Zhu, C., Yin, G.: Stability of regime-switching diffusions. Stochastic Process. Appl. 117, 1037–1051 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grant nos. 11801566 , 11871473 ) and the Fundamental Research Funds for the Central Universities of China (No. 19CX02059A ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinhong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, H., Yang, Q., Zhang, X. et al. Transmission Dynamics of a High Dimensional Rabies Epidemic Model in a Markovian Random Environment. Qual. Theory Dyn. Syst. 21, 46 (2022). https://doi.org/10.1007/s12346-022-00577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00577-y

Keywords

Navigation