Skip to main content
Log in

Persistence of Invariant Tori in Infinite-Dimensional Hamiltonian Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider the persistence of invariant tori in infinite-dimensional Hamiltonian systems

$$\begin{aligned} H=\langle \omega ,I \rangle +P(\theta ,I,\omega ), \end{aligned}$$

where \(\theta \in \mathbb {T}^\Lambda \), \(I\in \mathbb {R}^\Lambda \), the frequency \({\omega }=(\cdots ,{\omega }_\lambda ,\cdots )_{\lambda \in \Lambda }\) is regarded as parameters varying freely over some subset \(\ell ^\infty (\Lambda ,\mathbb {R})\) of the parameter space \(\mathbb {R}^\Lambda \), \({\omega }=(\cdots ,{\omega }_\lambda ,\cdots )_{\lambda \in \Lambda }\) is a bilateral infinite sequence of rationally independent frequency, in other words, any finite segments of \({\omega }=(\cdots ,{\omega }_\lambda ,\cdots )_{\lambda \in \Lambda }\) are rationally independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, V.I.: Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspekhi Matematicheskikh Nauk 18, 13–40 (1963)

    MathSciNet  Google Scholar 

  2. Biasco, L., Massetti, J., Procesi, M.: An abstract Birkhoff normal form theorem and exponential type stability of the 1D NLS. Commun. Math. Phys. 375, 2089–2153 (2020)

    Article  MathSciNet  Google Scholar 

  3. Bourgain, J.: On invariant tori of full dimension for 1D periodic NLS. J. Funct. Anal. 229, 62–94 (2005)

    Article  MathSciNet  Google Scholar 

  4. Cheng, C.Q., Sun, Y.S.: Existence of KAM tori in degenerate Hamiltonian systems. J. Differ. Equ. 114, 288–335 (1994)

    Article  MathSciNet  Google Scholar 

  5. Chierchia, L., Perfetti, P.: Maximal almost-periodic solutions for Lagrangian equations on infinite dimensional tori. In: Seminar on Dynamical Systems. Birkhäuser, Basel (1994)

  6. Chow, S.-N., Li, Y., Yi, Y.: Persistence of invariant tori on submanifolds in Hamiltonian systems. J. Nonlinear Sci. 12, 585–617 (2002)

    Article  MathSciNet  Google Scholar 

  7. Eliasson, L.H.: Perturbations of stable invariant tori for Hamiltonian systems. Annali della Scuola Normale Superiore di Pisa 15, 115–147 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Fröhlich, J., Spencer, T., Wayne, C.E.: Localization in disordered, nonlinear dynamical systems. J. Stat. Phys. 42, 247–274 (1986)

    Article  MathSciNet  Google Scholar 

  9. Huang, P., Li, X.: Persistence of invariant tori in integrable Hamiltonian systems under almost periodic perturbations. J. Nonlinear Sci. 28, 1865–1900 (2018)

    Article  MathSciNet  Google Scholar 

  10. Kolmogorov, A.N.: On the conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR 98, 525–530 (1954)

  11. Kuksin, S.B.: Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum. Funct. Anal. Appl. 21(3), 192–205 (1987)

    Article  MathSciNet  Google Scholar 

  12. Moser, J.: Convergent series expansions for quasi-periodic motions. Math. Ann. 169, 136–176 (1967)

    Article  MathSciNet  Google Scholar 

  13. Montalto, R., Procesi, M.: Linear Schrödinger equation with an almost periodic potential. SIAM J. Math. Anal. 53, 386–434 (2021)

    Article  MathSciNet  Google Scholar 

  14. Pöschel, J.: On elliptic lower dimensional tori in Hamiltonian systems. Math. Z. 202, 559–608 (1989)

    Article  MathSciNet  Google Scholar 

  15. Pöschel, J.: Small divisors with spatial structure in infinite dimensional Hamiltonian systems. Commun. Math. Phys. 127, 351–393 (1990)

    Article  MathSciNet  Google Scholar 

  16. Pöschel, J.: A lecture on the classical KAM theorem. Proc. Symp. Pure Math. 69, 701–732 (2001)

    MathSciNet  MATH  Google Scholar 

  17. Pöschel, J.: On the construction of almost periodic solutions for a nonlinear Schrödinger equation. Ergod. Theory Dyn. Syst. 22(5), 1537–1549 (2002)

    Article  Google Scholar 

  18. Rüssmann, H.: Nondegeneracy in the perturbation theory of integrable dynamical systems. In: Stochastics Algebra and Analysis in Classical and Quantum Dynamics (Marseille 1988), pp. 211–223. Springer, Dordrecht (1990)

  19. Rüssmann, H.: Invariant tori in non-degenerate nearly integrable Hamiltonian systems. Regul. Chaotic Dyn. 6, 119–204 (2001)

    Article  MathSciNet  Google Scholar 

  20. Sevryuk, M.B.: KAM-stable Hamiltonians. J. Dyn. Control Syst. 1, 351–366 (1995)

    Article  MathSciNet  Google Scholar 

  21. Sevryuk, M.B.: Partial preservation of frequencies in KAM theory. Nonlinearity 19, 1099–1140 (2006)

    Article  MathSciNet  Google Scholar 

  22. Vittot, M., Bellissard, J.: Invariant tori for an infinite lattice of coupled classical rotators. CPT-Marseille, Preprint (1985)

  23. Wayne, C.E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127(3), 479–528 (1990)

    Article  MathSciNet  Google Scholar 

  24. Wu, Y., Yuan, X.: On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range. Nonlinear Anal. 202, Paper No. 112120, 34 (2021)

  25. Xu, J., You, J., Qiu, Q.: Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z. 226, 375–387 (1997)

    Article  MathSciNet  Google Scholar 

  26. Xu, J., You, J.: Persistence of the non-twist torus in nearly integrable Hamiltonian systems. Proc. Am. Math. Soc. 138, 2385–2395 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by the National Natural Science Foundation of China (11901131), Science and Technology Foundation of Guizhou Province ([2020]1Y006).

Appendix A: Some Useful Lemmas

Appendix A: Some Useful Lemmas

In this appendix, we give some useful lemmas, which are used in proving Theorem 3.1.

Lemma A.1

(Lemma B.1 in [13])

  1. (i)

    Let \(\mu _1, \mu _2>0\). Then

    $$\begin{aligned} \sup \limits _{\begin{array}{c} \ell \in \mathbb {Z}_*^\infty \\ |\ell |_\eta <\infty \end{array}}\prod \limits _{i} (1+\langle i\rangle ^{\mu _1} |\ell _i|^{\mu _2})e^{-\rho |\ell |_\eta }\le \exp \Bigg ({\tau \over {\rho ^{1\over \eta }}}\ln {\tau \over \rho }\Bigg ) \end{aligned}$$

    for some constant \(\tau =\tau (\eta , \mu _1, \mu _2)>0\).

  2. (ii)

    Let \(\rho >0\). Then \(\sum \nolimits _{\ell \in \mathbb {Z}_*^\infty }e^{-\rho |\ell |_\eta }\lesssim \exp \Bigg ({\tau \over {\rho ^{1\over \eta }}}\ln {\tau \over \rho }\Bigg )\) for some constant \(\tau =\tau (\eta )>0\).

Lemma A.2

(Cauchy estimates, Lemma 2.7 in [13]) Let \(\sigma ,\rho >0\) and \(u\in \mathcal {H}(\mathbb {T}_{\sigma +\rho }^\infty ,X).\) Then for any \(k\in \mathbb {N}\), the kth differential \(d_\varphi ^k u\) satisfies the estimate

$$\begin{aligned} \Vert d_\varphi ^k u\Vert _{\mathcal {H}(\mathbb {T}_{\sigma }^\infty ,\mathcal {M}_k)}\lesssim _k \rho ^{-k}\Vert u\Vert _{\sigma +\rho }. \end{aligned}$$

Lemma A.3

(Lemma 10 in [15]) Suppose that for some \(v\ge w\),

$$\begin{aligned} \rho _0^{-1}|||F|||_{v,r_0-\rho _0,s_0},\ \ \ \sum \limits _\lambda |||F_{\theta _\lambda }|||_{v,r_0-\rho _0,s_0}\le M<{s\over 8}. \end{aligned}$$

Then

$$\begin{aligned} |||G\circ \Phi |||_{v,r-\rho ,s/2}\le {1\over {1-8M/s}}|||G|||_{v,r,s} \end{aligned}$$

for \(0<\rho _0\le \rho <r\le \rho _0-s_0\) and \(0<s\le s_0/2\), where \(\Phi \) denotes the time-1-map of the hamiltonian vectorfield \(X_F\).

Lemma A.4

(Lemma 11 in [15]) Suppose f is real analytic from \({\mathcal {W}}_h\) into \(\mathbb {C}^\Lambda \). If

$$\begin{aligned} |f-id|_\infty \le \delta \le h/4 \end{aligned}$$

on \({\mathcal {W}}_h\), then f has a real analytic inverse \(\varphi \) on \({\mathcal {W}}_{h/4}\). Moreover,

$$\begin{aligned} |\varphi -id|_\infty ,\ \ \ \ {h\over 4}|\partial \varphi -I|_\infty \le \delta \end{aligned}$$

on this domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, P. Persistence of Invariant Tori in Infinite-Dimensional Hamiltonian Systems. Qual. Theory Dyn. Syst. 21, 50 (2022). https://doi.org/10.1007/s12346-022-00581-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00581-2

Keywords

Navigation