Skip to main content
Log in

On the Consistency of the Matrix Equation \(X^\top A X=B\) when B is Symmetric

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We provide necessary and sufficient conditions for the matrix equation \(X^\top A X=B\) to be consistent when B is a symmetric matrix, for all matrices A with a few exceptions. The matrices AB, and X (unknown) are matrices with complex entries. We first see that we can restrict ourselves to the case where A and B are given in canonical form for congruence and, then, we address the equation with A and B in such form. The characterization strongly depends on the canonical form for congruence of A. The problem we solve is equivalent to: given a complex bilinear form (represented by A) find the maximum dimension of a subspace such that the restriction of the bilinear form to this subspace is a symmetric non-degenerate bilinear form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benner, P., Palitta, D.: On the solution of the non-symmetric \(T\)-Riccati equation. Preprint. https://arxiv.org/pdf/2003.03693.pdf

  2. Buckhiester, P.G.: Rank \(r\) solutions to the matrix equation \(XAX^t=C\), \(A\) alternate, over GF(\(2^y\)). Trans. Am. Math. Soc. 189, 201–209 (1974)

    MathSciNet  MATH  Google Scholar 

  3. Buckhiester, P.G.: Rank \(r\) solutions to the matrix equation \(XAX^t=C\), \(A\) non-alternate, \(C\) alternate, over GF(\(2^y\)). Can. J. Math. 26, 78–90 (1974)

    Article  MathSciNet  Google Scholar 

  4. Buckhiester, P.G.: The number of solutions to the matrix equation \(XAX^{\prime }= C\), \(A\) and \(C\) nonalternate and of full rank, over GF(\(2^y\)). Math. Nachr. 63, 37–41 (1974)

    Article  MathSciNet  Google Scholar 

  5. Carlitz, L.: Representations by skew forms in a finite field. Arch. Math. 5, 19–31 (1954)

    Article  MathSciNet  Google Scholar 

  6. De Terán, F., Dopico, F.M.: The solution of the equation \(XA + AX^T = 0\) and its application to the theory of orbits. Linear Algebra Appl. 434, 44–67 (2011)

    Article  MathSciNet  Google Scholar 

  7. De Terán, F., Dopico, F.M.: Consistency and efficient solution for the Sylvester equation for \(*\)-congruence: \(AX+X^*B=C\). Electron. J. Linear Algebra 22, 849–863 (2011)

    MathSciNet  MATH  Google Scholar 

  8. De Terán, F., Dopico, F.M., Guillery, N., Montealegre, D., Reyes, N.Z.: The solution of the equation \(AX+X^\star B=0\). Linear Algebra Appl. 438, 2817–2860 (2010)

    Article  Google Scholar 

  9. De Terán, F., Iannazzo, B.: Uniqueness of solution of a generalized \(*\)-Sylvester matrix equation. Linear Algebra Appl. 493, 323–335 (2016)

    Article  MathSciNet  Google Scholar 

  10. De Terán, F., Iannazo, B., Poloni, F., Robol, L.: Solvability and uniqueness criteria for generalized Sylvester-type equations. Linear Algebra Appl. 542, 501–521 (2018)

    Article  MathSciNet  Google Scholar 

  11. De Terán, F., Iannazo, B., Poloni, F., Robol, L.: Nonsingular systems of generalized Sylvester equations: an algorithmic approach. Numer. Linear Algebra Appl. 26, e2261 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ding, J., Rhee, N.H.: Spectral solutions of the Yang–Baxter matrix equation. J. Math. Anal. Appl. 402, 567–573 (2013)

    Article  MathSciNet  Google Scholar 

  13. Estatico, C., Di Benedetto, F.: Shift-invariant approximations of structured shift-variant blurring matrices. Numer. Algorithm 62, 615–635 (2013)

    Article  MathSciNet  Google Scholar 

  14. Fulton, J.D.: Generalized inverses of matrices over fields of characteristic two. Linear Algebra Appl. 28, 69–76 (1979)

    Article  MathSciNet  Google Scholar 

  15. Hodges, J.H.: A skew matrix equation over a finite field. Math. Nachr. 17, 49–55 (1966)

    MathSciNet  MATH  Google Scholar 

  16. Horn, R.A., Johnson, C.R.: Matrix Analysis, 2nd edn. Cambridge University Press, New York (2013)

    MATH  Google Scholar 

  17. Horn, R.A., Sergeichuk, V.V.: Canonical forms for complex matrix congruence and \(*\)-congruence. Linear Algebra Appl. 416, 1010–1032 (2006)

    Article  MathSciNet  Google Scholar 

  18. Kressner, D., Liu, X.: Structured canonical forms for products of (skew-) symmetric matrices and the matrix equation \(XAX=B\). Electron. J. Linear Algebra 26, 215–230 (2013)

    Article  MathSciNet  Google Scholar 

  19. Turnbull, H.W., Aitken, A.C.: An Introduction to the Theory of Canonical Matrices. Dover, New York (1961). (First published by: Blackie & Son Limited, (1932))

    MATH  Google Scholar 

  20. Wei, H., Zhang, Y.: The number of solutions to the alternate matrix equation over a finite field and a \(q\)-identity. J. Stat. Plan. Inference 94, 349–358 (2001)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for several comments that allowed us to improve the original version. This work has been partially supported by the Ministerio de Economía y Competitividad of Spain through Grant MTM2015-65798-P (Secretaría de Estado de Investigación, Desarrollo e Innovación) (F. De Terán), and by the Ministerio de Ciencia, Innovación y Universidades of Spain through Grant MTM2017–90682–REDT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando De Terán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borobia, A., Canogar, R. & De Terán, F. On the Consistency of the Matrix Equation \(X^\top A X=B\) when B is Symmetric. Mediterr. J. Math. 18, 40 (2021). https://doi.org/10.1007/s00009-020-01656-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01656-7

Keywords

Mathematics Subject Classification

Navigation