Skip to main content
Log in

Rips Complexes as Nerves and a Functorial Dowker-Nerve Diagram

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Using ideas related to Dowker duality, we prove that the Rips complex at scale r is homotopy equivalent to the nerve of a cover consisting of sets of prescribed diameter. We then develop a functorial version of the Nerve theorem coupled with Dowker duality, which is presented as a Functorial Dowker-Nerve Diagram. These results are incorporated into a systematic theory of filtrations arising from covers. As a result, we provide a general framework for reconstruction of spaces by Rips complexes, a short proof of the reconstruction result of Hausmann, and completely classify reconstruction scales for metric graphs. Furthermore, we introduce a new extraction method for homology of a space based on nested Rips complexes at a single scale, which requires no conditions on neighboring scales nor the Euclidean structure of the ambient space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adamaszek, M., Adams, H.: The Vietoris-Rips complexes of a circle. Pacific Journal of Mathematics 290, 1–40 (2017)

    Article  MathSciNet  Google Scholar 

  2. Attali, D., Lieutier, A., Salinas, D.: Vietoris–Rips complexes also provide topologically correct reconstructions of sampled shapes. In: Proceedings of the 27th Annual ACM Symposium on Computational Geometry, SoCG ’11, pp. 491–500. ACM, New York (2011)

  3. Barmak, J.A., Minian, E.G.: Strong homotopy types. Nerves and collapses. Discrete Comput. Geom. 47, 301–328 (2012)

    Article  MathSciNet  Google Scholar 

  4. Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fundam. Math. 35, 217–234 (1948). https://doi.org/10.4064/fm-35-1-217-234

    Article  MathSciNet  MATH  Google Scholar 

  5. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. AMS, Providence (2001)

    MATH  Google Scholar 

  6. Cavanna, N., Sheehy, D.: The Generalized Persistent Nerve Theorem. arXiv:1807.07920

  7. Cencelj, M., Dydak, J., Vavpetič, A., Virk, Ž.: A combinatorial approach to coarse geometry. Topol. Appl. 159, 646–658 (2012)

    Article  MathSciNet  Google Scholar 

  8. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space. Discrete Comput. Geom. 41, 461–479 (2009). https://doi.org/10.1007/s00454-009-9144-8

    Article  MathSciNet  MATH  Google Scholar 

  9. Chazal, F., Oudot, S.: Towards persistence-based reconstruction in Euclidean spaces. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry. ACM, pp. 232–241 (2008)

  10. Chowdhury, S., Mémoli, F.: A functorial Dowker theorem and persistent homology of asymmetric networks. J. Appl. Comput. Topol. 2, 115–175 (2018)

    Article  MathSciNet  Google Scholar 

  11. Dekster, B.V.: The Jung theorem in metric spaces of curvature bounded above. Proc. Am. Math. Soc. 125(8), 2425–2433 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dieck, Tammo Tom: Partitions of unity in homotopy theory. Compos. Math. 23(2), 159–167 (1971)

    MathSciNet  MATH  Google Scholar 

  13. Dold, A.: Lectures on Algebraic Topology, 2nd edn. Grundlehren der mathematischen Wissenschaften. Springer, New York (1995)

  14. Dowker, C.H.: Homology groups of relations. Ann. Math. 56(1), 84–95 (1952)

    Article  MathSciNet  Google Scholar 

  15. Dydak, J.: Extension theory: the interface between set-theoretic and algebraic topology. Topol. Appl. 74, 225–258 (1996)

    Article  MathSciNet  Google Scholar 

  16. Edelsbrunner, H., Harer, J.L.: Computational Topology. An Introduction. American Mathematical Society, Providence (2010)

  17. Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: A complete characterization of the \(1\)-dimensional intrinsic Čech persistence diagrams for metric graphs. In: Chambers, E., Fasy, B., Ziegelmeier, L. (eds): Research in Computational Topology. Association for Women in Mathematics Series, vol. 13. Springer, Cham (2018)

  18. Ghrist, R.: Elementary Applied Topology. Createspace (2014)

  19. Govc, D., Škraba, P.: An approximate nerve theorem. Found. Comput. Math. 18(5), 1245–1297 (2018)

    Article  MathSciNet  Google Scholar 

  20. Gromov, M.: Hyperbolic groups in essays in group theory. In: Gersten, S.M. (ed.) MSRI Publ., vol. 8, pp. 75–263 (1987)

  21. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  22. Hausmann, Jean-Claude: On the Vietoris–Rips complexes and a cohomology theory for metric spaces. Ann. Math. Stud. 138, 175–188 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Katz, M.: Jung’s theorem in complex projective geometry. Q. J. Math. Oxf. 36(4), 451–466 (1985)

    Article  MathSciNet  Google Scholar 

  24. Latschev, J.: Vietoris–Rips complexes of metric spaces near a closed Riemannian manifold. Arch. Math. 77(6), 522–528 (2001)

    Article  MathSciNet  Google Scholar 

  25. Lefschetz, S.: Algebraic Topology. AMS Coll. Publ., vol. 27 (1942)

  26. Leray, J.: Sur la forme des espaces topologiques et sur les points fixes des représentations. J. Math. Pures Appl. 24, 95–167 (1945)

    MathSciNet  MATH  Google Scholar 

  27. Mardešić, S., Segal, J.: Shape Theory. North-Holland, Amsterdam (1982)

    MATH  Google Scholar 

  28. Mugnolo, D.: What is actually a metric graph? arXiv:1912.07549

  29. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39, 419–441 (2008)

    Article  MathSciNet  Google Scholar 

  30. Oudot, S.Y.: Persistence theory: from quiver representations to data analysis. American Mathematical Society, Providence (2015)

  31. Roe, J.: Coarse cohomology and index theory for complete Riemannian manifolds. Memoirs Amer. Math. Soc. No., vol. 497 (1993)

  32. Sakai, K.: Geometric Aspects of General Topology. Springer Monographs in Mathematics. Springer, Tokyo (2013)

  33. Vietoris, L.: Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen. Math. Ann. 97, 454–472 (1927)

    Article  MathSciNet  Google Scholar 

  34. Virk, Ž.: 1-Dimensional intrinsic persistence of geodesic spaces. J. Topol. Anal. 12, 169–207 (2020)

    Article  MathSciNet  Google Scholar 

  35. Virk, Ž.: Approximations of \(1\)-dimensional intrinsic persistence of geodesic spaces and their stability. Revista Matemática Complutense 32, 195–213 (2019)

    Article  MathSciNet  Google Scholar 

  36. Virk, Ž.: Footprints of geodesics in persistent homology (in preparation)

  37. Zeeman, E.C.: Dihomology I: relations between homology theories. Proc. Lond. Math. Soc. s3-12(1), 609–638 (1962)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žiga Virk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was supported by Slovenian Research Agency grants No. N1-0114, P1-0292, J1-8131, and N1-0064. The author would like to thank the referee for careful reading and helpful suggestions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virk, Ž. Rips Complexes as Nerves and a Functorial Dowker-Nerve Diagram. Mediterr. J. Math. 18, 58 (2021). https://doi.org/10.1007/s00009-021-01699-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01699-4

Mathematics Subject Classification

Navigation