
SPANISH JOURNAL OF STATISTICS

Vol. 3 No. 1 2021, Pages 7–35
doi:https://doi.org/10.37830/SJS.2021.1.02

INVITED ARTICLE

Some recent methods for analyzing high
dimensional time series

Daniel Peña

Universidad Carlos III de Madrid, e-mail:daniel.pena@uc3m.es

Received: May 15, 2021. Accepted: June 28, 2021.

Abstract: This article analyzes six recent advances in the analyses of high dimensional time series.
The first two procedures have the objective of understanding the structure of the set of series: dy-
namic quantiles for data visualization and clustering by dependency to split the series into homo-
geneous groups. The other four methods are oriented to modeling and forecasting large sets of
time series by dynamic factor models (DFM): procedures for determining the number of factors, for
estimating DFM with cluster structure, for forecasting generalized dynamic factor models and for
modeling matrices of time series are described. Some comments about the future evolution of the
field of dependent high dimensional data are included in the conclusions.
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1 Introduction

Statistical methods have been changing depending on the available data and the computing possibil-
ities. Nowadays, data is generated continuously when working, exercising or resting, by automatic
devices, as sensors in mobile phones, computers surfing Internet or social networks web pages. As a
result of all these activities, large sets of data are stored, including location and time, forming huge
spatio-temporal data bases.

Almost a century ago, Fisher (1925) proposed the first general statistical approach to obtain in-
formation from the data. At that time, data were a very scarce resource and a crucial problem was
to draw all the information from small random samples. Now, we are in a different environment
and new methods are required to deal with our increasing data availability. These new approaches
are not only developed in statistics, but, also, in computer science, machine learning, artificial in-
telligence, operations research and applied mathematics. A new field of Data Science is emerging
that will integrate the different methodologies for data analysis. Several works have analyzed the
changes in Statistics due to the big data revolution: see, for instance, Breiman (2001), Bühlmann and
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Van De Geer (2011), Fan et al. (2014), Efron and Hastie (2016), Donoho (2017), Cao (2017), Bühlmann
and van de Geer (2018), Torrecilla and Romo (2018), Galeano and Peña (2019), Peña and Tsay (2021)
and Peña et al. (2021), among others.

In this work we present some advances made in the last few years in the analysis of large sets
of time series in which the author of this article and his coauthors have been involved. Thus, this
article does not pretend to be a comprehensive survey on recent advances in the analysis of high
dimensional time series that can be found in the books by Tsay (2014) and Peña and Tsay (2021). His
objective is to summarize a few practical procedures that, according to the author’s experience, have
proved to be useful for generating knowledge with this type of data.

The article is organized as follows. Section 2 introduces plots to reveal the dynamic evolution of
the set of time series, including the empirical dynamic quantiles (Peña et al., 2019) and other plots
recommended in Peña and Tsay (2021) for the visualization of large sets of time series. Section 3
explains a procedure for clustering time series by their linear dependency, developed by Alonso and
Peña (2019) . Section 4 introduces Dynamic Factor models and a new proposal for finding the number
of factors due to Caro and Peña (2021) . Section 5 describes a procedure for building Dynamic Factor
models when the series have cluster structure, proposed by Alonso et al. (2020) . Section 6 introduces
Generalized Dynamic Factor models and the estimation method developed by Peña et al. (2019)
by using Dynamic principal components. Section 7 presents the generalization of DFM for matrix
and tensor data and Section 8 concludes with some final remarks on the evolution of the field of
high dimensional dependent data. The presentation of the methods is oriented to their practical
applications and does not include technical details that can be found in the original references. The
plots and the computations presented in this article have been made with the R package SLBDD,
available from CRAN, that has been developed as supplementary material for the book by Peña and
Tsay (2021).

2 Visualization of many time series: Empirical Dynamics Quantiles and
other plots

The visualization of a large set of time series is important for having a first understanding of the data.
Useful plots may suggest heterogeneity, as measurement errors at some time points in one or more
series, series that seems to be outliers from the others, or cluster structure. Given a set ofm time series
with length T observations we can represent it as a matrix where each column contains one of the
time series and each row the values of all the series at a time point. Peña and Tsay (2021) proposed
two types of plots to reveal the structure of the data. The first type is called dynamic, because shows
the evolution over time of selected summaries of all series. The second type is called static, because
shows some summaries of the behavior of each series over the period of observation.

Quantiles have shown to be useful to summarize the distribution of a set of independent data.
Therefore, we may try to reveal the dynamics of a set of time series by plotting over time some
selected quantiles computed at each time point. Given a random sample {xi}mi=1 of a scalar random
variable X with empirical cumulative distribution function (CDF) F̂m(x) the empirical p-th quantile
q∗(p) is defined as

q∗(p) = inf
x∈R

{
x|F̂m(x) ≥ p

}
, (1)
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Figure 1: Time-wise quantiles for p =0.95 (green), 0.5 (red) and 0.05 (yellow) of a 1000-dimensional
time series generated from a VAR(1) model

and it is well-known, see for instance Ferguson (1967), that this quantile can be computed by

q∗(p) = arg min
y∈R

p∑
xi≥y
|xi − y|+ (1− p)

∑
xi<y

|xi − y|

 . (2)

Quantiles for a set of m independent time series, {zi,t}Tt=1 with the same marginal distribution at
every time can be defined in a similar way by using the common marginal distribution Ft(z) of zt.
Assuming that Ft(z) is time-varying, the theoretical p-th quantile at time t, Q(p)

t , is defined as in (1)
by infx∈R {z|Ft(z) ≥ p}. Applying this procedure to all time points, 1 ≤ t ≤ T, the resulting values
at each time t are called empirical time-wise quantiles (ETQ). This definition can be extended to a
vector of m dependent time series considering the distribution of the m values at a given time point
and obtaining a time series of time-wise quantiles {q∗(p)t } over time. However, these quantiles time
series only convey information about the marginal behavior of the data and ignore the dynamics of
the underlying stochastic process. For instance, if the vector process is strictly stationary the empirical
quantiles q∗(p)t for a given pwill roughly be a constant straight line. As an illustration, Figure 1 shows
the 0.95, 0.5 and 0.05 EDQ for 1000 time series generated by a stationary VAR(1) process. As expected,
they do not give much information about the dynamics of the series.

A more informative measure of the dynamics of the series can be obtained in high dimensional
data when the quantiles are defined as one of the observed time series. Let Cm be the set of observed
time series. Peña et al. (2019) define the p-th empirical dynamic quantile (EDQ) as the series {q(p)t } in
Cm that satisfies the optimization problem:

{q(p)t } = arg min
{yt}∈Cm

p T∑
t=1

∑
zit≥yt

|zit − yt|+ (1− p)
T∑
t=1

∑
zit≤yt

|zit − yt|

 (3)
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Figure 2: Empirical Dynamic Quantiles for p =0.95 (green), 0.5 (red) and 0.05 (yellow) for 1000 time
series generated from a VAR(1) model

Note that the ETQ satisfies equation 3 without the restriction that {yt} ∈ Cm. Thus, the EDQ are
always observed time series and, therefore, they show an observed dynamic evolution of the set of
time series.

In order to compute the EDQ we need to try the m time series in equation (3). A fast algorithm
to speed up the computations and a proof of the consistency of the proposed method under general
assumptions are presented in Peña et al. (2019)

We will compare the EDQ to the ETQ first with simulated data and, in the next subsection, with a
real data set. Figure 2 shows the 0.95, 0.5 and 0.05 EDQ for 1000 time series generated by the same sta-
tionary VAR(1) process used to compute Figure 1. As expected, the EDQs in Figure 2 exhibit clearly
the dynamic dependence of the observed time series, that cannot be seen by examining the ETQ in
Figure 1. Also, since the EDQs are always one of the observed time series they can be interpreted:
we can obtain the median series and use it as a representative value of the whole set. This average
value together with the extreme .01 and .99 EDQ series give some preliminary conclusion about the
dynamic variability of the data.

In addition to these dynamic plots, static plots, that summarize the behavior of each series over
the whole observation period, are also useful. The first static plot we propose is a boxplot of selected
quantiles of each series. That is, calling pi to the p− th quantile of the values {zit}Tt=1 of the ith series
we can compute this quantile for the m series in the set and summarize the distribution of these
values by a boxplot. For instance, if we compute the median of each series this boxplot will describe
how the median value of each series varies over the set of series. We will call quantile-boxplot to a
figure that includes five boxplots: those of the maximum and minimum values and the .25, .50 and
.75 quantiles of each of the series in the set. When the order of the series is informative, for instance,
they are ordered by different latitude locations, the quantiles can be represented with respect to the
order of the series. The resulting plot is called a ordered-quantile plot.

Two other useful static plots are the scatter plot of the variability/location of the series and the
autocorrelation plot of the two first autocorrelations. The variability/location plot shows how a mea-
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Figure 3: Time plots of three EDQ with probabilities p = 0.05, 0.50, and 0.95 of weekly electricity price
in New England.

sure of variability (as the standard deviation or some robust scale, as the median absolute deviation)
changes with the location (as the mean, or some robust location measure, as the median) in the series.
This figure can identify series that have higher variability, or unusual sample means. The autocor-
relation plot shows the scatter plot of lag-1 sample autocorrelation coefficients versus lag-2 sample
autocorrelation coefficients for all the series and provides information concerning the dynamic de-
pendence of individual series. If the series share a similar dynamic dependence, then the scatter plot
should show a cluster of points along a straight line, whereas with different types of dependency
clusters of points will be found. These plots will be illustrated in the next section.

2.1 An Example of Visualizing Electricity Data

We study the hourly day-ahead electricity prices in the New England electric market, also considered
by Peña et al. (2019). There are m = 1344 (24 × 8 × 7) time series of hourly price of electricity each
day of the week. The series are ordered, so that the first one is the price in the first region at 1 a.m., of
January 1st, 2004. The second one is the price, the same day and hour, in the second region and the
9th series the price at 2 a.m. in the same day in the first region, and so on. Thus, the first 8× 24 = 196
series are the prices of the 24 hours of the first day in the sample, that is Thursday January 1st, 2004,
in the eight regions of New England (USA). The series are weekly, with an observation every week
from January 2004 to December 2016, and a length of T = 678 weeks. We analyze the series in logs.

Figure 3 includes all the series in black and three EDQ in color (.05 green, .5 red, and .95 blue)
that indicate the dynamic evolution of the set of time series. The variability of the EDQ (.95) is higher
than the others and the data shows some large positive outliers. There seems to be two periods in the
prices with a drop about t = 250 and a decreasing trend in the second period.

In order to compare the properties of each series over the period observed, Figure 4 shows two
static plots of this data. The first one, in the left hand side, is a quantile Boxplot of the series, with
boxplots of the .25, .50 and .75 quantiles as well as the extreme values of the series. It shows large

SJS, VOL. 3, NO. 1 (2021), PP. 7 - 35
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Figure 4: Static plots of quantiles for log electricity price in New England. The left plot shows the
distribution of the extremes and the three quantiles (.25,.50,.75) and the right plot the values of the
quantiles (.05,.50,.95) with respect to the order of the series.

outliers in the maximum of the series, that were also shown in the dynamic plot of the EDQ in
Figure 3. As in the data the order of the series is informative, they are ordered forming blocks of 196
consecutive series corresponding to one day of the week, the three quantiles p = 0.05, 0.50, 0.95 have
been represented in the right hand side as a function of the order of the series, forming an ordered-
quantile plot. This plot reveals clearly the pattern of every day, starting on Thursday, that is similar
in the eight regions. Inside a given day each sequence of eight observations corresponds to the eight
regions. The structure of the seven days of the weeks are clearly shown: larger variability in the
four full working days (Thu., Mon., Tue., and Wen.) and smaller in Sat, and Sun., with Fri., as an
intermediate day.

To see the evolution inside a given day with more detail Figure 5 shows the same plots but only
for the first 196 consecutive series that correspond to Thursday, including the 24 hours and the 8
regions. The pattern of the hours of the day with a maximum price around 19h in all the regions is
clearly shown.

Finally, Figure 6 gives the scatter plots of the mean and standard deviation of each series and
the two first autocorrelation coefficients. The first plot shows large variability with the mean level
of the series; the second one a similar relationship between the dynamic indicated by the two first
autocorrelation coefficients with no clear signs of heterogeneity in the data.

3 Clustering Time series by Dependency

An important tool in multivariate analysis is clustering the data in homogeneous groups. Clustering
time series is usually carried out by choosing a similarity measure between two time series that takes
into account their univariate features, as autocorrelation coefficients, periodogram ordinates or coef-
ficients of an autorregresive representation. See Peña and Tsay (2021) for a revision and comparison



METHODS FOR HIGH DIMENSIONAL TIME SERIES 13

mini 25% 50% 75% maxi

3
4

5
6

24 hours, 8 regions, Thursday

number of the series

Q
ua

nt
ile

s

0 50 100 150

3.
5

4.
0

4.
5

5.
0

Figure 5: Static plots of quantiles log electricity price in New England for Thursday. The left plot
shows the distribution of the extremes and the quantiles .25,.50,.75, and the right plot the values of
three quantiles (.05,.50,.95) with respect to the order of the series.
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Figure 6: Static plots for the log electricity price in New England. The left plot shows the relationship
between mean and standard deviation in each series and the right plot that of the two first autocor-
relation coefficients of the series.
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of these measures. This approach is useful when we have independent time series and the objec-
tive is to cluster them by similarity of their univariate properties. A different approach, proposed
by Alonso and Peña (2019), is to cluster the time series by their dependency or association. These
authors showed that clustering time series by their univariate properties may classify two series
strongly related in different groups, and put together independent series that follow similar models,
so that these methods will not be useful if we want to find clusters of related series, as it is usually
the objective in many applications.

In order to cluster series for their association a general measure of linear dependency between two
stationary time series has to be defined. This can be made as follows. Suppose that, without loss of
generality, the series xt and yt are standardized to zero mean and unit variance. We can summarize
the linear dependency between these series for lags between 0 and k by means of the symmetric
non negative definite matrix Ryx,k that corresponds to the covariance matrix of the vector stationary
process (yt, yt−1, . . . , yt−k, xt, xt−1, . . . , xt−k)

′, as

Ryx,k =



1 ρy(1) . . . ρy(k) ρxy(0) ρxy(1) . . . ρxy(k)
ρy(1) 1 . . . ρy(k − 1) ρxy(−1) ρxy(0) . . . ρxy(k − 1)
. . . . . . . . . . . . . . . . . . . . . . . .
ρy(k) ρy(k − 1) . . . 1 ρxy(−k) ρxy(−k + 1) . . . ρxy(0)
ρxy(0) ρxy(−1) . . . ρxy(−k) 1 ρx(1) . . . ρx(k)
ρxy(1) ρxy(0) . . . ρxy(−k + 1) ρx(1) 1 . . . ρx(k − 1)
. . . . . . . . . . . . . . . . . . . . . . . .

ρxy(k) ρxy(k − 1) . . . ρxy(0) ρx(k) ρx(k − 1) . . . 1


(4)

=

(
Ryy,k CT

xy,k

Cxy,k Rxx,k

)
, (5)

where Rxx,k is the (k+ 1) squared and positive definite covariance matrix of the standardized vector
of seriesXt,k = (xt, xt−1, . . . , xt−k)

′, Ryy,k corresponds to Yt,k = (yt, yt−1, . . . , yt−k)
′ and Cxy,k include

the cross correlations between both vectors of series. A global measure of the size of a matrix is its
determinant, because, 0 ≤ |Ryx,k| ≤ 1, with equality to one holding when Ryx,k is diagonal and the
two series are both serially uncorrelated and not linearly related; and |Ryx,k| = 0 when there exists a
linear combination a′Zt = 0 so that the series are exactly linearly related.

Thus, it may seem that 1− |Ryx,k| could be a global measure of the dependency, with a value of 1
indicating perfect correlation and a value of 0 uncorrelated series. However, it is not so because the
determinant depends on both the cross correlations and the autocorrelations of both series. As

|Ryx,k| = |Rxx,k|
∣∣∣Ryy,k −Cxy,kR

−1
xx,kC

T
xy,k

∣∣∣ (6)

if Cxy,k = 0, and the series are uncorrelated, |Ryx,k| = |Rxx,k| |Ryy,k| and |Ryx,k| can be very small
when each of the two determinants, or both, are small because the series have strong autocorrelations
and 1 − |Ryx,k| will be close to one although the series are uncorrelated. For instance, |Rxx,1| =
1 − ρ2x will be very small if the first autocorrelation coefficient is close to one. Note that an exact
relationship between the two series implies |Ryx,k| = 0, but this determinant can also be very small
for uncorrelated series that have strong autocorrelations, by (6).

These properties of |Ryx,k| suggests the following alternative similarity measure proposed by
Alonso and Peña (2019)

GCC(xt, yt) = 1−
(

|Ryx,k|
|Rxx,k| |Ryy,k|

)1/(k+1)

= 1−

∣∣∣Ryy,k −Cxy,kR
−1
xx,kC

T
xy,k

∣∣∣1/(k+1)

|Ryy,k|1/(k+1)
, (7)
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that was named generalized cross correlation measure, GCC(xt, yt) between two time series. It can be
shown that the GCC verifies: (1) GCC(xt, yt) = GCC(yt, xt) and the measure is symmetric; (2)
0 ≤ GCC(xt, yt) ≤ 1 ; (3) GCC(xt, yt) = 1 if and only if there is a perfect linear dependency among
the series and (4) GCC(xt, yt) = 0 if and only if all the cross correlation coefficients are zero.

Notice that for k = 0 the GCC(xt, yt) is just the squared correlation coefficient between the two
variables. Also, for any k, when both series are white noise and ρxy(h) 6= 0 for some h 6= 0, k > h.
and ρxy(j) = 0 for all j 6= h, then GCC(xt, yt) = ρ2xy(h). In general, for k > 0, it can be shown (see
Alonso and Peña, 2019) that the GCC(xt, yt) represents the increase in accuracy in prediction of the
bivariate model with respect to the univariate models and it can be interpreted as an average squared
correlation coefficient when we explain the residuals of an autoregressive fitting of one variable by
the values of the other.

Alonso and Peña (2019) proposed a procedure to decide about the value of k, the number of
lags to be used; estimate the GCC from the data and build a dissimilarity matrix of the series and
hierarchical clustering to find the groups.

3.1 Example: Clusters in Electricity Prices

As an example, we consider again the set of time series of hourly day-ahead prices for the New
England electric market presented in section 2.1. A hierarchical clustering procedure is applied to
the GCC measures for the 1344 regular differentiated series, obtaining the dendrogram presented in
Figure 7. This figure shows first seven groups associated by the same weekday. This is to be expected,
since the 24 hourly prices of a given day are simultaneously fixed in the daily market, producing a
high cross-dependency. The Silhouette statistics provide fourteen groups, that in addition to the
weekday take into account two groups of hours in each day: (i) sleeping hours, 01th-06th (or 01th-
07th on weekend), and (ii) the awake hours, 07th-24th (08th to 24th on weekend). There is a cluster
conformed by a single series (Monday, 10am, Maine) due to the presence of a few very large outliers.

The univariate clustering procedures fail to detect this structure and make two or three groups
with no clear interpretation and not related to the weekdays.

4 Dynamic Factor Models

Dynamic Factor Models (DFMs) are a useful approach to model and forecast large sets of big depen-
dent data. Note that the number of parameters in a VARMA model grows with the square of the
number of series and, therefore, fitting these models is not feasible when m is large, and even larger
than T . In this case, sparse VAR can be fitted by regularization, but DFM provide a good alternative
easier to work with. A DFM assumes that the dynamics of the m-dimensional vector of time series
variables, zt, for t = 1, ..., T , are explained by the sum of two orthogonal components: the common
component, that is a low dimensional process with dimension much smaller than m, r << m, which
is responsible for most of the variability and the idiosyncratic component, which includes the weak
specific dynamics of each series. A simple representation of these models is:

zt = Pf t + et (8)

where, r is the number of latent factors, P is a (m× r) matrix of factor loadings, ft is a (r × 1) vector
of factors, and et is a (m × 1) vector of idiosyncratic disturbances or errors. We assume for model
identification that P′P = I. Also, we consider factors that are not all of them white noise and assume
that the lag k covariance matrices of the factors Γf (k) 6= 0, for some k > 0, so that at least one of the
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Figure 7: Dendrogram obtained with the regular differentiated series of the eight load zones.

factors presents serial correlation. With the additional assumption that et is a white noise process the
model in (8) is identified in finite samples and is called the Exact DFM or EDFM and was studied
by Peña and Box (1987). However, the hypothesis of white noise for the idiosyncratic part is often
unrealistic in practice. Thus, we can allow weak autocorrelation and cross-section correlation in the
idiosyncratic term under assumptions that imply that the noise dynamic vanishes asymptotically,
whereas the factors’ dynamics remains. See Stock and Watson (2002) and Bai and Ng (2002). The
approximate DFM (ADFM) allows the errors, et, to be autocorrelated and heteroscedastic, and, also,
to present some weak cross-section correlation, but all this dynamic must disappear asymptotically.

The eigenstructure of the covariance matrices can be used to find the number of factors. Note that
from (8) and assuming independence between the factors and the errors,

Γz(k) = PΓf (k)P′ + Γe(k), (9)

and the properties of the covariance matrices of the data Γz(k) depend on the hypothesis made about
the covariance matrices of the noise, Γe(k). Under the EDFM with white noise, Γe(k) = 0 for k 6= 0,
and if Γe(0) = σ2I, the homoscedastic case, the matrix Γz(0) has r large eigenvalues related to the
variance of the factors, and m− r small eigenvalues σ2. The matrices Γz(k), for k > 0, will have rank
at most r with eigenvalues equal to the covariance of lag k of the factors. If Γe(0) = D, where D is
a diagonal matrix, then the number of large eigenvalues in Γz(0) depends on the relative size of the
minimum variance of the factors and the maximum variance of the noises. If there is autocorrelation
and Γe(k) 6= 0 for k 6= 0, this will not affect the eigenvalues of Γz(0) but will affect those of Γz(k).
Finally, in the more general case, with heteroscedasticity and cross-sectional and serial correlations
in the errors, the eigenvalues of all the covariance matrices depend on the assumed structure.
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Model (8) can be generalized in several ways. First, for non stationary factors, see Bai and Ng
(2004) and Peña and Poncela (2006). Second, for seasonal time series, see Nieto et al. (2016). Third, by
allowing lags in the relation between the series and the factors, as proposed by Geweke (1977) and
Forni et al. (2000). These last authors proposed the generalized dynamic factor model (GDFM), given
by

zt =
∞∑
j=0

Pjft−j + et, (10)

where, for identification, the factors are assumed to be white noise. Other types of generalizations of
the DFM have been proposed. For instance, Correal and Peña (2008) proposed to consider threshold
effects, so that the model for the factors changes with a threshold variable and in each threshold
regime the series follow a different factor model. These models have been further studied by Liu
and Chen (2020) assuming changes in the loading matrices. Some authors have proposed other
formulations of the DFM assuming, for instance, that the factors are linear combinations of the data.
See Gao and Tsay (2019, 2021a) for a recent proposal in this direction. Finally, the DFM can be applied
to the quantiles of the distribution of the data, see Chen et al. (2021). In this article we will concentrate
in the basic DFM with stationary time series. The estimation of model (8) will be discussed in the
next section, whereas model (10) will be considered in section 6.

4.1 Testing the number of factors in DFM

The estimation of model (8) can be carried out by principal components (PC) or by using the eigen-
vectors of a combination of lagged covariance matrices (see Peña and Tsay (2021)). An important
problem is to determine the number of factors. The three more often used approaches to find them
are: (1) Canonical correlation analyses, see Bolívar et al. (2021) for a recent proposal in this direction;
(2) Information criteria (see Bai and Ng, 2002); or (3) Eigenvalues, or ratios of consecutive eigenval-
ues, of an appropriate matrix. For instance, Lam and Yao (2012) proposed to compute the ordered
estimated eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂m of the pooled covariance matrix

M1,k0 =

k0∑
k=1

Γ̂z(k)Γ̂z(k)′, (11)

where k0 is a pre-specified positive integer, and select r as

r̂ = arg min
1≤i≤r∗

λ̂i+1

λ̂i
,

for some r∗ = αm, where m is the number of series and 0 < α < 1 (an often used value is α = 0.2).
Suppose that the first r eigenvalues are large and the remaining eigenvalues are small. Then, the
ratios λi+1/λi ≤ 1 would have a big decrease for i = r.

A similar test has been proposed by Ahn and Horenstein (2013) by using the ordered estimated
eigenvalues ν̂1 ≥ ν̂2 ≥ ... ≥ ν̂m of the covariance matrix Γ̂z(0). The criterion is

r̂ = arg max
1≤i≤r∗

ν̂i
ν̂i+1

.

A problem of these two tests is their lack of robustness to a few atypical series. Suppose that one of
the series is affected by some large measurement errors, as often happen in time series automatically
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collected by sensor devices. Then: (1) the variance of this atypical series will be much larger than
the variance of the other series and, (2) the large outliers due to measurement errors will destroy the
cross-section correlation between this atypical series and the others in the set. In the limit, the largest
eigenvalue of the covariance matrix of the series will be equal to the variance of the atypical series
and the corresponding eigenvector will have small values for the uncontaminated series and a value
close to one for this outlying series. This problem will not appear if instead of the autocovariances
we work with the autocorrelation matrices. See Fan et al. (2020) for other reasons in this direction.

An additional advantage of using autocorrelations is to avoid the heteroscedasticity of the series.
Note that when the idiosyncratic terms are white noise but the series have different variances, the
eigenvectors of Γz(k) for k > 1 are different from those of Γz(0). For that reason, Lam and Yao (2012)
do not include the covariance matrix in the sum of lagged symmetrized matrices. Caro and Peña
(2021) proposed an eigenvalue test based on the weighted combination of the sum of contempora-
neous and lagged correlation matrices of the observed data. They define the combined symmetrized
correlation matrix as

Rk0 =

k0∑
k=0

wkRz(k)Rz(k)′ (12)

where k0 is a pre-specified positive integer, the coefficients wk > 0 are weights which verify∑k0
k=0wk = 1, and Rz(k) is the lag k correlation matrix of the series.
A simple solution to select the weights is to use the asymptotic variance of the autocorrelation

and cross correlation coefficients for white noise stationary process, var(rij(k)) ≈ (T − k)−1. Then,
as in the Box-Ljung portmanteau test of goodness of fit, we can standardize the squared correlations
by their variance and define the weights as (T − k)/c, where c is chosen so that the weights add up
to one by

c =

k0∑
k=0

(T − k),

which implies c = (k0 + 1)(T − k0/2) and wk = (T − k)/[(k0 + 1)(T − k0/2)]. Let α̂1 ≥ α̂2 ≥ ... ≥ α̂m
be the ordered estimated eigenvalues of the matrix Rk0 . This test selects the number of factors as

r̂ = arg max
1≤i≤r∗

α̂i
α̂i+1

.

Caro and Peña (2021) showed that this test is expected to be more powerful than those based
on covarience matrices. The reason is that when one of the series has a variance larger than the
others the ratio of consecutive eigenvalues of the correlation matrix is expected to be larger than this
ratio in the covariance matrix, and the difference between these two ratios will increase with the het-
eroscedasticity (the value of σ) and in the larger ratios in the covariance matrix. Thus, standardizing
the variables will increase the expected ratio in the correlation matrices when this ratio is already
large in the covariance matrices. On the other hand, when these ratios are small in the covariance
matrices the expected change will be small in the correlation matrices. This result implies that the
standardization of the variables when the series are heteroscedastic is expected to increase the ratio of
eigenvalues at the exact number of factors in the correlation matrices with respect to the covariance
matrices, increasing, therefore, the power of the ratio of eigenvalues test.

4.2 An Example of Estimating the Business cycle in EMU Countries by DFM

In order to estimate the global business cycle in Europe we analyze the total GDP, the private con-
sumption expenditure (CON) and the gross fixed capital formation (INV) of the 19 countries in the
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Figure 8: UME growth rate data

euro area, the European Monetary Union (EMU). The data include 57 time series of 76 quarterly
observation from 2000 to 2018 and can be downloaded from the SLBDD R package. We analyze here
the stationary series, in logs and first difference.

Figure 8 shows a plot of the UME rate of growth data and it is seen that some series have a
much large variance of the others. This is corrected in Figure 9, where the series are standardized
to zero mean and unit variance. Applying the Caro and Peña (2021) procedure a factor is found
and is presented in Figure 10. This factor is able to capture the EMU business cycle taking negative
values during the financial crisis in 2008 and during the European Sovereign debt crisis in 2011. It
also represents the slow recovery of the EMU economies after 2015. Figure 11 shows that this first
factor is an average of all the series with different weights. However, see Caro and Peña (2021), the
methods based on ratios of eigenvalues of covariance matrices fail to find a reasonable factor in this
case and are dominated by one series of larger variance than the others.

5 Building Factor models with Cluster Structure

Often, there are factors that affect all the series, whereas others are group specific, that is, they af-
fect only to the series included in some clusters but have no effect on the series belonging to other
clusters. For instance, the cost of energy in a set of countries may depend on different factors accord-
ing to groups of countries with similar degree of economic developments, or the evolution of the
a pollution indicator measured in different cities may be explained by different factors that depend
on the location of the cities. In general, we have a DFM with cluster structure (DFMCS) when the
evolution of the time series depends on some general factors, that have influence on all or most of the
series, and some specific factors, that are group-dependent. Such models have been studied, among
others, by Kose et al. (2003), Wang (2010), Hallin and Liška (2011), Lin and Ng (2012), Bonhomme
and Manresa (2015), Ando and Bai (2016, 2017), and Alonso et al. (2020).

We assume that the m-dimensional time series, zt can be partitioned as
zt = (z′1t, z

′
2t, . . . , z

′
ct)
′, where zit is a mi-dimensional time series such that

∑c
i=1mi = m. In other
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words, we assume c clusters of time series where the ith cluster contains mi time series. The DFMCS
can be written as

zt = P0f0t +
c∑
i=1

Pifit + nt, (13)

where nt is the vector of noises, f0t = (f0,1t, . . . , f0,r0t)
′ is an r0-dimensional vector of global factors,

P0 is a m× r0 global loading matrix, fit = (fi,1t, . . . , fi,rit)
′ is an ri-dimensional common factor of the

ith cluster and Pi is a m× ri loading matrix for the ith cluster such that Pi = [0′i−1,w
′
i,0
′
c−i]
′, where

0i−1 is a zero matrix of dimension (
∑i−1

j=1mi)× ri provided that i > 1, wi is a mi × ri loading matrix
for the ith cluster, and 0c−i is another zero matrix of dimension (

∑c
j=i+1mi)× ri provided that i < c.

The first and the last matrices, P1 and Pc, have the non zero loadings in the extremes. In this way,
Pifit only affects time series in the ith cluster. The total number of factors is r = r0 + r1 + · · ·+ rc.

The identification conditions of the DFMCS in Equation (13) have been studied by Wang (2010)
and are as follows : (1) P′0P0 = Ir0 , where Ir0 is the identity matrix of order r0; (2) P′iPi = w′iwi = Iri
for i = 1, . . . , c; (3) P′0Pi = 0r0×ri for i = 1, ..., c, and (4) the covariance matrix of the r =

∑c
j=0 rj

factors is diagonal. Note that, also, by definition, P′iPj = 0ri×rj , for i 6= j. We can write this model as
a standard factor model. Letting ft = (f ′0t, f

′
1t, . . . , f

′
ct)
′, and P = [P0|P1| · · · |Pc], we obtain model (8).

The idiosyncratic term, or noise, nt = (n1t, . . . , nmt)
′, is a general sequence of stationary time

series with mean 0m and weak serial dependency as in the ADFM. The global and specific factors
are orthogonal to each other and follow a diagonal vector autoregressive moving average, VARMA.
Additionally, we assume that both innovation processes appearing in the factor model are uncorre-
lated for all lags. However, the number of clusters and the allocation of the series to the clusters are
unknown.

The estimation of a DFMCS requires obtaining: (1) The number of global factors, r0, groups, c, and
specific factors in each of the c groups, r1, . . . , rc; (2) The label variable gi ∈ {1, . . . , c}, indicating to
which group the series belongs, and we call G the m× 1 vector with components gi, for i = 1, . . . ,m;
(3) The loading matrices of the global and specific factors, P0,P1, . . . ,Pc and the time series of these
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factors, f0t, f1t, . . . , fct. Given the estimated factors and noises, where n̂t = zt − P̂f̂t, estimators of the
parameters of the scalar ARMA models for the factors and noises can be obtained.

Alonso and Peña (2019) proposed a robust procedure for the estimation of this model that can be
summarized as follows: (1) Using all the series compute an initial set of factors and their loadings,
build the common component of each time series and cluster these common components by using
their dependency with the GCC measures; (2) In each of the groups found compute a new set of fac-
tors and their loadings, and classify all the factors found in steps (1) and (2) as global or specific using
the empirical canonical correlation between them ; (3) Remove from each time series the estimated
common component and, in the group-specific residuals, re-estimate a new set of specific factors; (4)
Check whether each group has at least one specific factor for possible group recombinations. This
four steps are described now.

In the first step the initial estimation of the factors and loadings can be made with PCA applied
to the sample autocorrelations matrices of the time series and the number of factors, r∗, can be de-
termined by using the test proposed by Caro and Peña (2021) based on the ratios of consecutive
eigenvalues of the matrix Rk0 in (12). Note that in this step we expect to find all the global factors
and some (or all) of the group-specific factors, so that the number of factors in this matrix, r∗, is in
general larger than the true number of global factors, r0. Then, the common component is estimated
by ct = P̂f̂t = P̂P̂′zt. The groups are now built applying a hierarchical clustering algorithm with
single linkage to the dissimilarity matrix of the ct series using the GCC measure.

In the second step the series in the groups are used to estimate new sets of factors and their
loadings. Let rs1, . . . , r

s
c be the number of factors found in each group. The specific loading matrices P̂i

of dimension m× rsi and columns p̂i1, . . . , p̂irsi are built by adding to the eigenvectors corresponding
to the largest rsi eigenvalues in the ith group, a set of zero values for the observations not included in
the group. The factors in each group are estimated by f̂ sij,t = p̂′ijzt, with j = 1, . . . , rsi . These group
factors are expected to include all the specific factors and some (or all) of the global factors.

Next, in order to decide whether a factor is global or specific, we compare the set of r∗ factors
found in step-1 and the set of

∑c
i=1 r

s
i factors found in this second step. Note that the factors con-

tained in the first set may be a rotation of the factors contained in the second set and, therefore, it is
not evident which ones should be classified as global and which one as specific. Consequently, we
first decide if each factor ft in the first set of r∗ factors is global or specific by applying the following
three simple rules: (1) If ft does not belong to any of the second set of factors then it is a global factor;
(2) If ft belongs to only one of the sets of the second set of factors then it is a specific factor in this
group; (3) If ft belongs to more than one of the second set of factors then it is a global factor.

We decide if a factor, ft, belongs to a set of specific factors by computing the empirical canonical
correlation between the factor, ft, and the ones in the set, f̂ si1,t, . . . , f̂

s
irsi ,t

, with i = 1, . . . , c. When the
empirical canonical correlation of factor ft with elements of the set is higher than some threshold
value, ρ0, we say that ft belongs to this set. The threshold value of ρ0 = 0.9 seems to work well in
our Monte Carlo exercise. Afterwards, we check if any of the groups with rs1, . . . , r

s
c factors include

any factor that does not belong to the set of factors found in step-2. If this is the case, the factor is
classified as specific factor in the corresponding group.

In the third step the residuals vt = zt − P̂0f̂0t are computed, where f̂0t is the vector of estimated
global factors obtained in step-3 and P̂0 is the corresponding loading matrix to these factors, and
the specific factors are re-estimated using the series vit corresponding to each group. Then, we verify
that the groups obtained are due to different specific factors and not due to differences between factor
loadings in a global factor. This is made by checking whether all the groups have at least one specific
factor. We may face the following cases: (1) All the c groups found include at least one specific factor,
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Figure 12: Estimated loadings for the two initial factors for the outlier corrected series. The loadings
are shown as functions of the 24 hours of the day and each of the eight curves represents one of the
zones.

and we conclude that we have a DFMCS with c groups; (2) c1 groups, (1 ≤ c1 < c) contain specific
factors, and c2 = c−c1 groups only contain global factors, then we have a DFMCS with c1+1 groups;
and (3) All the groups only contain global factors, then we have the standard DFM.

Finally, given the estimated factors, loadings, and groups,
(
P̂0, f̂0t, P̂1, f̂1t, . . . , P̂c, f̂ct

)
, estimate

AR models for the factors and compute the residuals or idiosyncratic component, n̂t = zt − P̂0f̂0t −
c∑
i=1

P̂if̂it, and fit AR(p) models to the idiosyncratic time series.

5.1 An Example of Cluster Specific Factors in Electricity prices

We analyze again the data set of hourly day-ahead demand for the ISO New England electricity
market studied in sections 2.1 and 3.1. Here a cleaning procedure for outlier detection is applied to
the data as described in Alonso et al. (2020). A proportion of 2.38% of the total number of data points
are identified as outliers and they are interpolated to obtain a corrected set of series. With these
series two initial factors are found that explain 77.1% and 8.8% of the total variability, respectively.
The loadings of these two factors are shown as curves in Figure 12. The first factor is essentially a
weighted average of all the series with similar weights (in the range from 0.037 to 0.100) across the
24 hours. Therefore, it reproduces the average global dynamic of the differentiated series. Regarding
the effect of each hour, the first estimated factor gives more relative weights to the afternoon (13:00
to 19:00). The second factor gives negative weights to series from 1st to the 11th hours and positive
weights to series from the 12nd to 24th hours. Also, it differentiates between the night (1:00 to 7:00)
and the rest of the hours, with a peak in 17:00 to 19:00. Note that these factors are not the same across
regions, because the loadings for the second (ME) and seventh (SEMA) zones are different from the
others. Thus, if we do not consider the presence of clusters in the data, we may conclude that a DFM
with two factors seems to be appropriate for the data.

We search for clusters using the GCC measure of the series and two groups are found: the first
one broadly includes series in daylight hours and the second one in the night hours. Then, seven
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factors are obtained in each of the two groups. These seven factors explain approximately 96.8% and
97.6% of the variability of the series at the first and the second cluster, respectively.

As some of these factors may be global and others are specific, we compare the two initial factors
found considering all the series and the fourteen factors found in the two clusters. The conclusion is
that the two initial factors are classified as global factors. The first one has 0.984 and 0.967 canonical
correlations with the factors in the two clusters, respectively. The second one has weaker correlations,
0.673 and 0.799, respectively, but its canonical correlation with the set of all the specific factors is
almost one. This implies that its effect is distributed among several factors found in the groups.
Now, we obtain the residuals Rit = zcit − P̂0f̂0t, where P̂0 and f̂0t are the estimated loadings and
factors, respectively, for the two global factors. With these residuals six and five factors for the first
and the second cluster, respectively, are found. These factors are clearly specific and orthogonal to
the two global factors.

Figures 13 and 14 show the loadings for these specific factors in the two groups. Note that two
extreme zones from the geographical point of view, Maine (ME) and Southeastern Massachusetts
(SEMA), have the largest effect in almost all the specific factors in both clusters, whereas for the
global factors the situation was just the opposite: these zones have the smallest weights in the two
global factors in Figure 12. Regarding the effect of each hour, a richer picture appears in the structure
of these group factors with respect to the global ones. In group one, the first three factors give more
weights to hours from 11:00 to 18:00 than those from 19:00 to 24:00, and factors four and six account
for a peak in electricity demand when most people return home, hours 17:00-18:00. In the second
cluster the first two factors have opposite peaks of demand around 1:00-2:00 and 7:00-8:00. The other
three factors have small variability in the hours but they differentiate strongly among the eight zones.
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Figure 13: Estimated loadings for the six specific factors in the first group (Hours 11:00 to 24:00) using
the outlier corrected series.

6 Generalized Dynamic Factor Models and their Estimation

The DFM assumes a contemporaneous relationship between the series and the common factors. This
model can be generalized, see Forni et al. (2000), by assuming that the observed time series are af-
fected by the factors and all their past values. The resulting model is called the Generalized Dynamic
Factor Model (GDFM). Assuming a finite number of lags, the representation of the m-dimensional
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Figure 14: Estimated loadings for the five specific factors of the second group (Hours 1:00 to 10:00)
using the outlier corrected series.

vector of time series is:

zt =
L−1∑
l=0

Plft−l + nt, (14)

where L is a positive integer, ft is a q-dimensional stationary vector of uncorrelated common factors,
the L matrices Pl are m × q factor loading matrices and nt is the noise or idiosyncratic part, that is
stationary and follows the conditions of the approximate DFM. We denote the number of factors by
q in Equation (14) whenever L > 1 and return to the notation r if L = 1. The reason for this change
will be clear shortly. The common component of the series zt is ct =

∑L−1
l=0 Plft−l and is generated

by the q < m unobserved factor series. The conditions for identification of the loading matrices and
the factors are similar to the DFM studied in section 4 : P′lPl = Iq for l = 0, 1, . . . , L − 1, and E(ftf

′
t)

is diagonal.
Model (14) can be written with factors without lags, as in (8), by defining a m× r loading matrix

B = [P0, ...,PL−1], where now r = qL and a r × 1 vector of series FD
t = [f ′t , ..., f

′
t−L+1]

′.
The estimation of GDFM was initially carried out by Forni et al. (2000; 2005) with dynamic prin-

cipal component analysis in the frequency domain. More recently Peña and Yohai (2016) and Peña
et al. (2019) proposed a new approach to dynamic principal components in the time domain that can
be used in the estimation of these models.

6.1 Dynamic Principal Components

The standard principal components provide an optimal reconstruction of the time series data using
only contemporaneous information. Brillinger (1981) addressed the reconstruction problem in a more
general form, allowing the use of lagged values, and defined the dynamic principal components
(DPC) as linear combinations of the time series that provide an optimal reconstruction using all leads
and lags of the data. Formally, consider a zero-mean m-dimensional stationary process {zt| − ∞ <
t <∞}. Define the first dynamic principal component as a linear combination of all the values of the
series
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ft =
∞∑

h=−∞
c′hzt−h, (15)

where the ch are m-dimensional vectors such that ft provides an optimal reconstruction of the data
using all of its lags and leads, that is, the first DPC minimizes:

minE

(zt −
∞∑

j=−∞
βjft+j)

′(zt −
∞∑

j=−∞
βjft+j)

 , (16)

using some m× 1 vectors βj ,−∞ < j <∞. Brillinger elegantly solved this problem in the frequency
domain. When this procedure is adapted to finite samples, the number of lags in Equation (15) and
in the reconstruction of the series in Equation (16) are to be defined. These DPC have been used by
Forni et al. (2000; 2005) for estimation of GDFMs.

These components have been generalized as follows. First, Peña and Yohai (2016) proposed DPC
without the assumption that they are computed as linear functions of the data. This generalized
DPC were shown to be useful for the estimation of non stationary dynamic factors. Second, Peña
et al. (2019) proposed a way to compute the DPC in the time domain using a one side filter, instead
of the Brillinger’s filter that uses past, present and future values of the data and it is not appropriate
for forecasting. They call these new estimates one-sided dynamic principal component (ODPC) and
showed that they are very useful for forecasting.

These authors define the first dynamic principal component as,

ft(â) =

c1∑
h=0

z′t−hâh, t = c1 + 1, . . . , T, (17)

which is a linear combination of the present and lagged values of the series. The m × 1 vectors a′h
can be aggregated to form a m(c1 + 1)-dimensional vector a = (a′0, . . . ,a

′
c1)′. The component has the

property that the reconstruction of the original data via

zRt (a,B) =

c2∑
h=0

bhft−h(a), t = c1 + c2 + 1, . . . , T, (18)

where B is a (c2 + 1) ×m matrix of the form B′ = [b0, ...,bc2 ], where each bi ∈ Rm , minimizes the
mean squared error in the reconstruction. That is, the vector a and the matrix B are such that

(a,B) = arg min
‖a‖=1,B

1

T ∗,1k

T∑
t=(c1+c2)+1

∥∥zt − zRt (a,B)
∥∥2 , (19)

where T ∗,1 = T − (c1 +c2) is the effective number of observations we can reconstruct with the ODPC.
Note that by (17), we can compute the component for t = c1 + 1, . . . , T, and by (18), the first value
we can reconstruct is t = c1 + c2 + 1. The constraint ‖a‖ = 1 is included for identification purpose,
because if we multiply ah in Equation (17) by any positive number, g, and divide bh by g, the solution
remains the same.

The second ODPC is then defined as a linear combination of the present and lagged series that
can be used to optimally reconstruct the residuals rt = zt − zRt (a,B) from the first component, and
the next components are defined in the same way.

An alternating estimation algorithm can be done as follows. For the first component:
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Figure 15: First dynamic factor for the growth rates of GDP series for the 19 countries in the European
Monetary Union. The factor was built with 3 lags and entered with 3 lags.

1. Given an estimation of the component f (i), compute a value for the coefficients of the matrix
B(i) by the multivariate linear regression equation (18).

2. Given the value B(i) compute a(i+1) by the equation resulting of taking the derivative with
respect to a in equation (19).

The iteration stops when the relative decrease in the MSE is smaller than δ. Clearly in this algo-
rithm at each step the MSE decreases and, therefore, it converges to a local minimum. To obtain a
global minimum, the initial value f (0) should be sufficiently close to the optimal one. We propose to
take f (0) as the last T − c1 coordinates of the first ordinary principal component of the data.

In practice, the number of components and lags in each component need to be chosen. This is
carried out by cross validation and provides a useful way to estimate GDFM, see Peña et al. (2019).
With many time series a sparse solution can be computed by regularization of the estimation criterion
(Peña et al., 2021).

6.2 Dynamic Factors in EMU countries

Consider, again, the growth rates of standardized GDP series of the 19 Euro countries from 2000.II to
2018.IV. We will illustrate the estimation of one sided dynamic principal components (ODPC) using
the R package odpc (see Peña et al. (2020)), that is also included in the SLBDD R package. Figure 15
shows the time plot of the first estimated ODPC and Figure 16 the second factor or second ODPC.
These results are computed with three lags. Figure 17 plots the coefficients of a1 of the first dynamic
principal component whereas Figure 18 shows the loading in B also for the 1st dynamic principal
component.

7 Tensor Dynamic Factor Models

High dimensional data often appear when instead of measuring the aggregate of a variable we split
it into many components. For instance, the total sales in a set of d1 cities are split into the sales in
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Figure 16: Second dynamic factor for the growth rates of GDP series for the 19 countries in the
European Monetary Union. The factor was built with 3 lags and entered with 3 lags.
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Figure 17: Weights of the lag series, a coefficient, to build the first dynamic factor of the GDP growth
rates of the 19 countries of the European Monetary Union. The weights apply to lags from zero to
three.
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Figure 18: Loadings, (B coefficients) of the lag 1st DF to reconstruct the GDP growth of the European
Monetary Union. The loadings apply to lags of the 1st DF from zero to three.

each city of different products, types of shops and sales channel. Then, instead of having a vector
of m = d1 components, we have d2 time series of products, in d3 type of shops and using d4 sales
channels. The data can be organized as an array, or tensor, of dimension d1 × d2 × d3 × d4 and in
each cell of this tensor we have a time series. This kind of situation appears in all fields: pollution
time series data can be classified by type of pollution agent, location where the data are measured
and method used to collect them. In clinical treatments time series of patients body temperature can
be classified by patient age, sex, initial conditions before the illness, family health history and so on.
Thus, analyzing these sets of high dimensional time series of several dimensions is becoming and
important problem in data analysis.

Wang et al. (2019) proposed a DFM for matrix-valued high-dimensional time series, Gao and
Tsay (2021b) a transformed factor model for these data and Chen et al. (2019) allow for constrains in
a matrix-variate factor model for time series. These matrix factor models have been generalized to
any dimensional array in the tensor DFM proposed by Chen et al. (2020), from a a semiparametric
point of view, and Chen et al. (2021), generalizing the approach of Wang et al. (2019). Lam (2021) has
studied methods for rank determination in Tensor DFM and a main effect plus interaction integrated
proposal for tensor DFM building has been suggested by Peña et al. (2021). Tensor models have also
been proposed for vector autoregressive time series modeling (Wang et al., 2021). To simplify the
presentation of these models we will concentrate here in the matrix case, the general tensor case can
be seen in Chen et al. (2020), Chen et al. (2021) and Peña et al. (2021).

7.1 The Matrix Dynamic Factor Model, MDFM

Suppose that, at each time 1 ≤ t ≤ T ,we observed a matrix of time series Yt ∈ Rd1×d2 , where yt,ij
represents the scalar time series at the position (ith, jth) of the data matrix. The simplest way to
analyze these data is to assume a factor model for each dimension. Starting with the columns in the
data matrix, yjt = Ajf

c
jt + εjt, for j = 1, ..., d2, where Aj ∈ Rd1×rj , f cjt ∈ Rrj×1 and rj is the number of

factors in the model for jth column. We can write all these models together as a matrix factor model
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defining A = [A1,A2, ...,Ad2 ], so that A ∈ Rd1×rc and rc =
d2∑
j=1

rj , and write

Yt = AFc
t + Et, (20)

where, Fc
t ∈ Rrc×d2 , is

Fc
t =

 f c1t 0, ..., 0 0
0 0, .., f cjt, ., 0 0

0 0, ..., 0 f cd2t


and Et ∈ Rd1×d2 . This model can be written also in the equivalent way, vec(Yt) = (I ⊗A)vec(Ft) +
vec(Et), where ⊗ is the Kronecker product.

A similar approach can be applied to the rows of the matrices Yt. Thus, once the column factors
have been found we can obtain the residual matrix Et = Yt−AFc

t , in (20), that is expected to be free
from column factors, and build the models for the row factors, y′it = f c′itB

′
i + υ′it. We can join all this

model together as
Et = Fr

tB
′ + Vt,

where Fr
t ∈ Rd1×sT , sT is the total number of row factors, and B′ ∈ RsT×d2 is the row factors matrix

loadings. Adding both effects, the complete model will be:

Yt = AFc
t + Fr

tB
′ + Ut, (21)

where A ∈ Rd1×rc and rc =
d2∑
j=1

rj . Note that each series is affected only by the factors corresponding

to the row and column of its location in the data matrix.
As this model may require a large number of parameters in high dimensional settings, an alterna-

tive, proposed by Peña et al. (2021), is to assume a two step model in which, first we assume that all
the factor models for the rows (columns) are the same and, second, we add some interaction terms to
deal with groups of series that do not follow these additive assumptions. Calling A0 ∈ Rd1×m1 and
B0 ∈ Rd2×m2 to the common loading matrices for columns and rows with m1 and m2 factors, f ct , f rt
and 1d2 ∈ Rd2×1 to the vector of ones, we can write the constrained model (21) as

Yt = 1′d2 ⊗ (A0f
c
t ) + 1d1 ⊗ (f rt B0) + Ut.

We will call this model the constrained main effects model. Calling ai` and bj` the elements of the
ith and jth rows of A0 and B0, we have that, in this model, each series is explained by

yij,t =

m1∑
`=1

ai`f
c
`,t +

m2∑
`=1

bj`f
r
`,t + uijt. (22)

This constrained main effect model may be too restrictive for some sets of series. Wang et al. (2019)
proposed a different formulation of the matrix model assuming that the data are generated by

Yt = RFtC
′ + Et, (23)

where R∈Rd1×r1 ,Ft ∈Rr1×r2 ,C ∈ Rd2×r2 ,Et ∈Rd1×d2 .Note that this formulation has two important
implications. First, all the factors included in the Ft matrix affect all the series, in all rows and
columns. Thus, it is hard to define the factors as associated to columns or rows effects. Second, the
loadings in the series yijt of each factor depend on the position of the series in the data matrix Yt and
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on the position of the factor in the factor matrix Ft. For instance, if we assume a single factor for all
the data and r1 = r2 = 1 the loading of the factor in the series yijt is the product of the coefficients
Ri1, common for all the series in the ith row, and C1j , common for all the series in the jth column.
In general, the loadings of the factor fkh, where k ∈ (1, ..., r1) indicate the row and h ∈ (1, ..., r2) the
column of the location of this factor in the Ft matrix, we have

yijt =

r1∑
k=1

r2∑
h=1

RikChjfkht + uijt.

I have called interaction effect to this factor model because it is based on the combination of
loading defined as product of effects of the common factors affecting all the series.

The factors in this interaction model have only a clear interpretation when they are defined by
one of the dimensions. First, assume that r1 = d1, the model reduces to

Yt = F1tC
′ + Et (24)

where that matrix F1t ∈ Rd1×r2 . In this model each column of Yt, that we represent by y.jt , for
j = 1, ..., d2, is given by

y.jt = cj1f.1t + ...+ cjrJ f.rjt + e.jt (25)

and is a linear combination of the columns of F1t with different loadings, that depend on the column.
Note that the columns of F1t cannot be interpreted as column factors as the r2 columns column
vectors f.lt are not linked to any of the d2 columns of the data. However, consider now the ith row of
Yt, y

′
i.t. Then

y′i.t = f ′i.tC
′ + e′i.t (26)

and the ith row follows a standard factor model with loading matrix C and rj factors fi.t. Therefore,
model (24) can be seen as collecting the factor models for all the rows together and assuming that,
although the factors are different for different rows, their number is the same for all rows and the
loading matrix of all the rows is also the same.

A similar analysis can be made assuming r2 = d2, and C = Id2 to obtain

Yt = RF2t + Et (27)

where F2t ∈ RrI×d2 and each column y.jt can be written as

y.jt = Rf jt + e.jt

where fjt ∈ RrI×1 is jth column vector of factors. We see that, again, we assume the same loading
matrix for all the columns and the same number of factors, rI , in all the columns.

The proposal of Peña (2021) is to incorporate the interaction model to the residual of the common
main effect model, so that the final model is

Yt = 1′d2 ⊗ (A0f
c
t ) + 1d1 ⊗ (f rt B0) + RFtC

′ + Ut,

where each particular time series is explained as

yij,t =

m1∑
`=1

ai`f
c
`,t +

m2∑
`=1

bj`f
r
`,t +

r1∑
k=1

r1∑
h=1

RikChjfkht + uijt. (28)
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This model can be considered a main effects plus interaction model and although the number of
parameters seems to be larger than (23) in practice, it may not be the case. For instance, if we have
series with just main effects model the model (23) may require a larger model to fit the series correctly.

The estimation of the model depends on the hypothesis made for the idiosyncratic components.
Assuming that the noises are white noise, as in Wang et al. (2019), the estimation can be carried out
by first, finding the number of factors by the rank of some symmetrized sum of lagged covariance
matrices and then computing a normalized version of the loading matrices by the eigenvectors of
appropriate matrices. If the noises are not white, other approaches, discussed in Peña et al. (2021),
can be applied.

8 Conclusions

In the last century most available data were samples of independent observations. Now, with in-
creasing frequency, we observe sequences of dependent data, on time or space. In this article some of
the recent procedures created for analyzing these type of data have been reviewed, but many other
advances are needed for a better understanding and forecasting of these data. First, we expect new
important contributions in the area of spatio-temporal models, with tensor dynamic factor models
having and important role for multi-level dependent data. Second, in some fields, as for instance
in speech recognition, the data observed is expected to follow some functional form and methods
for high dimensional functional data analysis are needed. Also, stronger connections between this
literature and the one on time series analysis are required. Third, non linear methods incorporating
deep learning and random forests for time series can be very useful for forecasting very disaggre-
gated data, when linearity is not expected. Deep neural networks can be interpreted as continuos
non linear version of DFM whereas random forest are very useful with non linear threshold effects,
an area in which linear DFM have been already developed. All these advances will increase our
accuracy in understanding and forecasting high dimensional dependent data sets.
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