Skip to main content
Log in

Bifurcations, Permanence and Local Behavior of the Plant-Herbivore Model with Logistic Growth of Plant Biomass

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper investigates the plant-herbivore model’s dynamics. The plant’s biomass without herbivores growth with logistic equation assuming that the herbivore (parasitization) occurs after the host’s density-dependent growth regulation occurs. We give a topological classification of the equilibrium points. We show that the boundary equilibrium undergoes the transcritical, fold, and period-doubling bifurcation, whereas the interior equilibrium undergoes a Neimark-Sacker bifurcation. We use the OGY method to control chaos produced by period-doubling bifurcation. The system exhibits bistability between the stable interior attractors in the interior and the stable attractors in the \(x-\)boundary logistic dynamics (periodic orbits and strange attractors) for particular numerical values of parameters. Sufficient conditions for the permanence of the plant-herbivores system are obtained, ensuring the coexistence of both species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abbott, K.C., Dwyer, G.: Food limitation and insect outbreaks: complex dynamics in plant-herbivore models. J. Anim. Ecol. 76, 1004–1014 (2007)

    Article  Google Scholar 

  2. Asfaw, M.D., Kassa, S.M., Lungu, E.M.: Coexistence thresholds in the dynamics of the plant-herbivore interaction with Allee effect and harvest. Int. J. Biomath. 11, 27 (2018)

    Article  Google Scholar 

  3. Bravermana, E., Rodkina, A.: Difference equations of Ricker and logistic types under bounded stochastic perturbations with positive mean. Comput. Math. Appl. 66, 2281–2294 (2013)

    Article  MathSciNet  Google Scholar 

  4. Caughley, G., Lawton, J.H.: Plant-herbivore systems. Theor. Ecol. 132–166 (1981)

  5. Comins, H.N., McMurtrie, R.E.: Long-term response of nutrient-limited forests to CO002 enrichment, equilibrium behavior of plant-soil models. Ecol. Appl. 3(4), 666–681 (1993)

    Article  Google Scholar 

  6. Din, Q., Shabbir, M.S., Asif, M., Ahmad, K.: Bifurcation analysis and chaos control for a plant-herbivore model with weak predator functional response. J. Biol. Dyn. 13, 481–501 (2019)

  7. Din, Q.: Global behavior of a plant-herbivore model. Adv. Differ. Equ. 2015, 119 (2015). https://doi.org/10.1186/s13662-015-0458-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Elaydi, S.: An Introduction to Difference Equations, 3rd edn. Springer (2005)

  9. Elsayed, E.M., Din, Q.: Period-doubling and Neimark-Sacker bifurcations of plant-herbivore models. Adv. Differ. Equ. 2019, 271 (2019). https://doi.org/10.1186/s13662-019-2200-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Feng, Z., DeAngelis, D.L.: Mathematical Models of Plant-Herbivore Interactions. Chapman & Hall/CRC (2018)

  11. Gotelli, N.J.: A Primer of Ecology. Sinauer Associates (2001)

  12. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  Google Scholar 

  13. Hale, J. K., Kocak, J. K.: Dynamics and Bifurcations. Texts in Applied Mathematics, Springer-Verlag, New York (1991)

  14. Hofbauer, J.: A general cooperation theorem for hypereycles. Mh. Math. 91, 233–240 (1981)

    Article  Google Scholar 

  15. Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference equations of Lotka-Volterra type. J. Math. Biol. 25, 553–570 (1987)

    Article  MathSciNet  Google Scholar 

  16. Hutson, V.: A theorem on average Liapunov functions. Monatshefte für Mathematik 98, 267–275 (1984)

    Article  MathSciNet  Google Scholar 

  17. Hutson, V., Moran, W.: Persistence of species obeying difference equations. J. Math. Biol. 15, 203–213 (1982)

    Article  MathSciNet  Google Scholar 

  18. Jothi, S.S., Gunasekaran, M.: Chaos and bifurcation analysis of plant-herbivore system with intra-specific competitions. Int. J. Adv. Res. 3, 1359–1363 (2015)

    Google Scholar 

  19. Kalabušić, S., Drino, D., Pilav, E.: Global behavior and bifurcation in a class of host-parasitoid models with a constanthost refuge. Qual. Theory Dyn. Syst 19, 66 (2020). https://doi.org/10.1007/s12346-020-00403-3

  20. Kalabušić, S., Drino, D., Pilav, E.: Period-doubling and Neimark-Sacker bifurcations of a Beddington host-parasitoid model with a host refuge effect. Int. J. Bifurc. Chaos 30(16) (2020). https://doi.org/10.1142/S0218127420502545

  21. Kang, Y., Armbruster, D.: Noise and seasonal effects on the dynamics of plant-herbivore models with monotonic plant growth functions. Int. J. Biomath. 04, 255–274 (2011)

    Article  MathSciNet  Google Scholar 

  22. Kang, Y., Armbruster, D., Kuang, Y.: Dynamics of a plant-herbivore model. J. Biol. Dyn. 2, 89–101 (2008)

    Article  MathSciNet  Google Scholar 

  23. Kapitaniak, T.: Chaos for Engineers: Theory, Applications & Control, 2nd edn. Springer-Verlag, New York (2000)

  24. Kapitaniak, T.: Controlling Chaos: Theoretical and Practical Methods in Non-linear Dynamics. Academic Press (1996)

  25. Kartal, S.: Dynamics of a plant-herbivore model with differential-difference equations. CogentMath 3 (2016). https://doi.org/10.1080/23311835.2015.1136198

  26. Kon, R., Takeuchi, Y.: Permanence of host-parasitoid system. Nonlinear Anal. 47, 1383–1393 (2001)

    Article  MathSciNet  Google Scholar 

  27. Liu, R., Feng, Z., Zhu, H., DeAngelis, D.: Bifurcation analysis of a plant-herbivore model with toxin-determined functional response. J. Differ. Equ. 245, 442–467 (2008)

    Article  MathSciNet  Google Scholar 

  28. Lynch, S.: Dynamical Systems with Applications using Mathematica, 2nd edn. Birkha\(\ddot{u}\) (2010)

  29. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)

    Article  MathSciNet  Google Scholar 

  30. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Can. 11, 559–623 (1954)

    Article  Google Scholar 

  31. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press, USA (1995)

    MATH  Google Scholar 

  32. Saha, T., Bandyopadhyay, M.: Dynamical analysis of a plant-herbivore model: analysis of: bifurcation and global stability. J. Appl. Math. Comput. 19, 327–344 (2005)

    Article  MathSciNet  Google Scholar 

  33. Shabbir, M.S., Din, Q., Ahmad, K., Tassaddiq, A., Hassan Soori, A., Khan, Mu.A.: Stability, bifurcation, and chaos control of a novel discrete-time model involving Allee effect and cannibalism. Adv. Differ. Equ. 2020, 379 (2020). https://doi.org/10.1186/s13662-020-02838-z

  34. Turchin, P.: Complex Population Dynamics: A Theoretical/empirical Synthesis, vol. 35. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  35. Ufuktepe, \(\rm \ddot{U}.\), Kapçak, S.: Applications of Discrete Dynamical Systems with Mathematica, Conference: RIMS vol. 1909 (2014)

  36. Weiss, J.N., Garfinkel, A., Spano, M.L., Ditto, W.L.: Chaos and chaos control in biology. Clin. Invest 93, 1355–1360 (1994)

  37. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, Second Edition, Texts in Applied Mathematics, vol. 2. Springer-Verlag, New York (2003)

    MATH  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to S. Kalabušić.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalabušić, S., Pilav, E. Bifurcations, Permanence and Local Behavior of the Plant-Herbivore Model with Logistic Growth of Plant Biomass. Qual. Theory Dyn. Syst. 21, 26 (2022). https://doi.org/10.1007/s12346-022-00561-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00561-6

Keywords

Mathematics Subject Classification

Navigation