Skip to main content
Log in

Influence of Fear Effect on Bifurcation Dynamics of Predator-prey System in a Predator-poisoned Environment

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we propose a predator-prey system with fear effect and predator death due to toxins based on the phenomenon that African predators death due to eating toxin-carrying carcasses. First, the existence and stability of equilibria are proved. Second, the conditions for the occurrence of different types of bifurcations are established by varying parameters. Our results indicate that (1) when the cost of minimum fear is taken as the bifurcation parameter, it can determine the stability and direction of periodic solution of Hopf bifurcation; (2) when the predation rate and the cost of minimum fear are taken as the bifurcation parameters, the system undergoes Bogdanov-Takens (BT) bifurcation of codimension two, and the BT bifurcation will disappear when the system is not affected by toxins. At last, some numerical simulations verify the validity of theoretical results, and we obtain that toxins not only inhibit the survival of predator populations but also affect the density of prey populations. Moreover, only an appropriate cost of minimum fear maintains long-term coexistence of prey and predator populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availibility statement

All data generated or analysed during this study are included in this published article.

References

  1. Berryman, A.A., Gutierrez, A.P., Arditi, R.: Credible, parsimonious and useful predator-prey Models - A reply to Abrams, Gleeson, and Sarnelle. Ecology 76, 1980–1985 (1995)

    Article  Google Scholar 

  2. Freedman, H.I.: Deterministic Mathematical Model in Population Ecology. Marcel Dekker (1980)

  3. Turchin, P.: Complex population dynamics. A theoretical/empirical synthesis. Mongraphs in Population Biology 35 Princeton University Press (2003)

  4. Bacaër, N.: A short history of Mathematical Population Dynamics. SpringerVerlag (2011)

  5. Getz, W.M.: Metaphysiological and evolutionary dynamics of populations exploiting constant and interactive resources: \(r-K\) selection revisited. Evol. Ecol. 7, 287–305 (1993)

    Article  Google Scholar 

  6. Sáez, E., González-Olivares, E.: Dynamics of a Predator-Prey Model. SIAM J. Appl. Math. 59(5), 1867–1878 (1999)

    Article  MathSciNet  Google Scholar 

  7. Berezovskaya, F., Karev, G., Arditi, R.: Parametric analysis of the ratio-dependent predator-prey model. J. Math. Biol. 43, 221–246 (2001)

    Article  MathSciNet  Google Scholar 

  8. Kar, T.K.: Stability analysis of a prey-predator model incorporating a prey refuge. Commun. Nonlinear Sci. Numer. Simulat. 10, 681–691 (2005)

    Article  MathSciNet  Google Scholar 

  9. McNair, J.N.: Stability effects of prey refuges with entry-exit dynamics. J. Theor. Biol. 125, 449–464 (1987)

    Article  MathSciNet  Google Scholar 

  10. Ko, W., Ryu, K.: Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J. Differ. Equations. 231(2), 534–550 (2006)

    Article  MathSciNet  Google Scholar 

  11. Zhou, Y., Sun, W., Song, Y.F., Zheng, Z.G., et al.: Hopf bifurcation analysis of a predator-prey model with Holling-II type functional response and a prey refuge. Nonlinear Dynam. 97(2), 1439–1450 (2019)

    Article  Google Scholar 

  12. Zhang, H.S., Cai, Y.L., Fu, S.M., Wang, W.M.: Impact of the fear effect in a prey-predator model incorporating a prey refuge. Appl. Math. Comput. 356, 328–337 (2019)

    Article  MathSciNet  Google Scholar 

  13. González-Olivares, E., Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability. Ecol. Model. 166, 135–146 (2003)

    Article  Google Scholar 

  14. Altendorf, K.B., Laundré, J.W., González, C.A.L., Brown, J.S.: Assessing effects of predation risk on foraging behavior of mule deer. J. Mammal. 82(2), 430–439 (2001)

    Article  Google Scholar 

  15. Laundré, J.W., Hernández, L., Altendorf, K.B.: Wolves, elk, and bison: reestablishing the “landscape of fear’’ in yellowstone National Park. USA. Can. J. Zool. 79(8), 1401–1409 (2001)

    Article  Google Scholar 

  16. Creel, S., Christianson, D., Liley, S., Winnie, J.A.: Predation risk affects reproductive physiology and demography of elk. Science. 315, 960–960 (2007)

    Article  Google Scholar 

  17. Cresswell, W.: Predation in bird populations. J. Ornithol. 152(1), 251–263 (2011)

    Article  Google Scholar 

  18. Zanette, L.Y., White, A.F., Allen, M.C., Clinchy, M.: Perceived predation risk reduces the number of offspring songbirds produce per year. Science. 334(6061), 1398–1401 (2011)

    Article  Google Scholar 

  19. Wang, X.Y., Zanette, L.Y., Zou, X.F.: Modelling the fear effect in predator-prey interactions. J. Math. Biol. 73, 1179–1204 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wang, X.Y., Zou, X.F.: Modeling the fear effect in predator-prey interactions with adaptive avoidance of predators. Bull. Math. Biol. 79(6), 1325–1359 (2017)

    Article  MathSciNet  Google Scholar 

  21. Pal, S., Pal, N., Samanta, S., Chattopadhyay, J.: Effect of hunting cooperation and fear in a predator-prey model. Ecol. Complex. 39, 100770 (2019)

    Article  Google Scholar 

  22. Sarkara, K., Khajanchi, S.: Impact of fear effect on the growth of prey in a predator-prey interaction model. Ecol. Complex. 42, 100826 (2020)

    Article  Google Scholar 

  23. Sasmal, S.K.: Population dynamics with multiple Allee effects induced by fear factors - A mathematical study on prey-predator interactions. Appl. Math. Model. 64, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  24. Qi, H.K., Meng, X.Z.: Threshold behavior of a stochastic predator-prey system with prey refuge and fear effect. Appl. Math. Lett. 113, 106846 (2021)

    Article  MathSciNet  Google Scholar 

  25. Barman, D., Roy, J., Alrabaiah, H., Panja, P., et al.: Impact of predator incited fear and prey refuge in a fractional order prey predator model. Chaos, Soliton. Fract. 142, 110420 (2021)

  26. National Geographic: ‘This is a full-blown crisis’: Fighting vulture poisoning in Kenya, https://www.nationalgeographic.com/animals/2019/11/vultures-saved-poisoning-kenya/ (2019)

  27. National Geographic: Why Poison Is a Growing Threat to Africa’s Wildlife, https://www.nationalgeographic.com/magazine/2018/08/poisoning-africa-kenya-maasai-pesticides-lions-poachers-conservationists/ (2018)

  28. Ntemiri, K., Saravia, V., Angelidis, C., Baxevani, K., et al.: Animal mortality and illegal poison bait use in Greece. Environ. Monit. Assess. 190(8), 488 (2018)

    Article  Google Scholar 

  29. Gore, M.L., Hübshle, A., Botha, A.J., Coverdale, B.M., et al.: A conservation criminology-based desk assessment of vulture poisoning in the Great Limpopo Transfrontier Conservation Area. Glob. Ecol. Conserv. 23, e01076 (2020)

    Article  Google Scholar 

  30. Mateo-Tomás, P., Olea, P.P., Minguez, E., Mateo, R., et al.: Direct evidence of poison-driven widespread population decline in a wild vertebrate. P. Natl. Acad. Sci. USA 117(28), 16418–16423 (2020)

    Article  Google Scholar 

  31. Nattrass, N., Conradie, B.: Predators, livestock losses and poison in the South African Karoo. J. Clean. Prod. 194, 777–785 (2018)

    Article  Google Scholar 

  32. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations, Transl. Math. Monogr. vol.101, Amer. Math. Soc. Providence, RI (1992)

  33. Sotomayor, J.: Generic bifurcation of dynamical system. Dynam. Syst. 561-582 (1973)

  34. Zhu, H.P., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation Analysis of a Predator-Prey System with Nonmonotonic Functional Response. SIAM J. Appl. Math. 63(2), 636–682 (2002)

    Article  MathSciNet  Google Scholar 

  35. Hassard, B.D., Kazarinoff, N.D., Wan, Y.: Theory and Applications of Hopf Bifurcation. Cambridge University Press, Cambridge (1981)

    MATH  Google Scholar 

  36. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory. 112, Springer, New York (1998)

  37. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Huaiping Zhu for their helpful comments and suggestions which really helped us to improve the manuscript. We also thank the reviewer for very helpful comments and suggestions which greatly improved the presentation of the paper. This work was supported by Shandong Provincial Natural Science Foundation of China (ZR2019MA003), the Research Fund for the Taishan Scholar Project of Shandong Province of China, the SDUST Research Fund (2014TDJH102), and the SDUST Innovation Fund for Graduate Students (YC20210215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinzhu Meng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, H., Meng, X., Hayat, T. et al. Influence of Fear Effect on Bifurcation Dynamics of Predator-prey System in a Predator-poisoned Environment. Qual. Theory Dyn. Syst. 21, 27 (2022). https://doi.org/10.1007/s12346-021-00555-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00555-w

Keywords

Navigation