Skip to main content
Log in

An Optimal Control Strategy for Antiretroviral Treatment of HIV Infection in Presence of Immunotherapy

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Human immunodeficiency virus infection destroys immune system of an HIV infected individual, which results in the risk of other life threatening diseases such as kidney disease, liver disease, diabetes and some types of cancer. To date, there is no cure of this infectious disease, however, there exist antiretroviral drugs which help an HIV infected individual to live a quality life. But, these antiretroviral drugs are costly and have different side effects. Recent studies indicate that immunotherapy can be used in addition to these antiretroviral drugs for better management of HIV infection. In this study, we consider an HIV infection model incorporating the effects of antiretroviral drugs and immunotherapy. We verify that the model solutions are non-negative and bounded in the feasible domain. Stability analysis of HIV infection-free equilibrium point indicates that HIV is eradicated for a basic reproduction number less than one. In order to maximize healthy CD4\(^+\) T cells with minimum cost and side effects of drugs, we propose an optimal control problem with two different objectives. The optimal control problems are solved using discretization and large-scale optimization methods. We obtain optimal treatment strategies for antiretroviral drugs and immune boosting drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ahr, B., Robert-Hebmann, V., Devaux, C., Biard-Piechaczyk, M.: Apoptosis of uninfected cells induced by HIV envelope glycoproteins. Retrovirology (2004). https://doi.org/10.1186/1742-4690-1-12

    Article  Google Scholar 

  2. Betts, J.T.: Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Advances in Control and Design, vol. 19. Society for Industrial and Applied Mathematics, Philadelphia (2010)

    Book  Google Scholar 

  3. Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.: Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math. Biosci. 200, 1–27 (2006)

    Article  MathSciNet  Google Scholar 

  4. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. Tata McGraw-Hill Education, New York (1955)

    MATH  Google Scholar 

  5. Danane, J., Meskaf, A., Allali, K.: Optimal control of a delayed hepatitis B viral infection model with HBV DNA-containing capsids and CTL immune response. Optim. Control Appl. Meth. 39, 1–11 (2018)

    Article  MathSciNet  Google Scholar 

  6. Denizot, M., Varbanov, M., Espert, L., Robert-Hebmann, V., Sagnier, S., Garcia, E., Curriu, M., Mamoun, R., Blanco, J., Biard-Piechaczyk, M.: HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy 4(8), 998–1008 (2008)

    Article  Google Scholar 

  7. Douek, D.C., Brenchley, J.M., Betts, M.R., Ambrozak, D.R., Hill, B.J., Okamoto, Y., Casazza, J.P., Kuruppu, J., Kunstman, K., Wolinsky, S., et al.: HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002)

    Article  Google Scholar 

  8. Driessche, P.V., Watmough, J.: Reproduction numbers and sub-threshold endemic equilibra for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  9. Embretson, J., Zupancic, M., Ribas, J.L., Burke, A., Racz, P., Racz, K.T., Haase, A.T.: Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362, 359–362 (1993)

    Article  Google Scholar 

  10. Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975)

    Book  Google Scholar 

  11. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks-Cole Publishing Company, Monterey (1993)

    MATH  Google Scholar 

  12. Frydas, A., Leptokaridou, E., Partsanakis, E., Kourklidou, M., Sarantopoulos, A.: Emerging therapies in HIV infection: is the immune response the answer? J. Autoimmune Disord. 4(3), 56 (2018)

    Google Scholar 

  13. Garg, H., Mohl, J., Joshi, A.: HIV-1 induced bystander apoptosis. Viruses 4, 3020–3043 (2012)

    Article  Google Scholar 

  14. Geng, Y., Xu, J.: Stability and bifurcation analysis for a delayed viral infection model with full logistic proliferation. Int. J. Biomath. 13(05), 2050033 (2020). https://doi.org/10.1142/S1793524520500333

    Article  MathSciNet  MATH  Google Scholar 

  15. Göllmann, L., Maurer, H.: Theory and applications of optimal control problems with multiple time-delays. J. Ind. Manag. Optim. 10, 413–441 (2016)

    Article  MathSciNet  Google Scholar 

  16. Gougeon, M.L., Colizzi, V., Dalgleish, A., Montagnier, L.: New concepts in AIDS pathogenesis. AIDS Res. Hum. Retrovir. 9, 287–289 (1993)

    Article  Google Scholar 

  17. Grossman, Z., Meier-Schellersheim, M., Sousa, A.E., Victorino, R.M., Paul, W.E.: CD4+ T cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med. 8, 319–323 (2002)

    Article  Google Scholar 

  18. Gumel, A.B., Shivakumar, P.N., Sahai, B.M.: A mathematical model for the dynamics of HIV-1 during the typical course of infection. Nonlinear Anal. Theory Methods Appl. 47(3), 1773–1783 (2001)

    Article  MathSciNet  Google Scholar 

  19. Gupta, P.K., Dutta, A.: A mathematical model on HIV/AIDS with fusion effect: analysis and homotopy solution. Eur. Phys. J. Plus 134, 265 (2019). https://doi.org/10.1140/epjp/i2019-12599-8

    Article  Google Scholar 

  20. Gupta, P.K., Dutta, A.: Numerical Solution with analysis of HIV/AIDS Dynamics model with effect of fusion and cure rate. Numer. Algebra Control Optim. 9(4), 393–399 (2019)

    Article  MathSciNet  Google Scholar 

  21. Hager, W.W.: Runge–Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000)

    Article  MathSciNet  Google Scholar 

  22. Hattaf, K., Yousfi, N.: Two optimal treatments of HIV infection model. World J. Model. Simul. 8(1), 27–35 (2012)

    MATH  Google Scholar 

  23. Hattaf, K., Rachik, M., Saadi, S., Yousfi, N.: Optimal control of treatment in a basic virus infection model. Appl. Math. Sci. 3(20), 949–958 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Kariuki, S.M., Musyoki, S.K., Kemoi, E.K.: Immunotherapeutic treatment of HIV-1: review of safety and efficacy. Int. J. Cur. Res. Rev. 7(24), 24–29 (2015)

    Google Scholar 

  25. LaSalle, J.P.: The stability of dynamical systems. In: Regional Conference Series in Applied Mathematics. SIAM, Philadelaphia (1976)

  26. Lee, E.B., Markus, L.: Foundations of Optimal Control. John Wilea Inc, New York (1967)

    MATH  Google Scholar 

  27. Lukes, D.L.: Differential Equations: Classical to Controlled, Mathematics in Science and Engineering, p. 162. Academic Press, New York, NY (1982)

    Google Scholar 

  28. McCune, J.M.: The dynamics of CD4+ T-cell depletion in HIV disease. Nature 410, 974–979 (2001)

    Article  Google Scholar 

  29. Ogunlaran, O.M., Noutchie, S.C.O.: Mathematical model for an effective management of HIV infection. BioMed Res. Int. 2016, 4217548 (2016). https://doi.org/10.1155/2016/4217548

    Article  Google Scholar 

  30. Pawelek, K.A., Liu, S., Pahlevani, F., Rong, L.: A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data. Math. Biosci. 235, 98–109 (2012)

    Article  MathSciNet  Google Scholar 

  31. Poonia, B.: Immunotherapy in HIV infection. J. Infect. Dis. Ther. (2013). https://doi.org/10.4172/2332-0877.1000102

    Article  Google Scholar 

  32. Pontryagin, L., Boltyanskii, V., et al.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)

    MATH  Google Scholar 

  33. Shamsara, E., Afsharnezhad, Z., Effati, S.: Optimal drug control in a four-dimensional HIV infection model. Optim. Control Appl. Methods (2019). https://doi.org/10.1002/oca.2555

    Article  MATH  Google Scholar 

  34. Silva, C.J., Maurer, H.: Optimal control of HIV treatment and immunotherapy combination with state and control delays. Optim. Control Appl. Methods (2019). https://doi.org/10.1002/oca.2558

    Article  MATH  Google Scholar 

  35. Srivastava, P.K., Chandra, P.: Modeling the dynamics of HIV and CD4+ T cells during primary infection. Nonlinear Anal. Real World Appl. 11(2), 612–618 (2010)

    Article  MathSciNet  Google Scholar 

  36. Vanham, G., Van Gulck, E.: Can immunotherapy be useful as a “functional cure” for infection with human immunodeficiency virus-1? Retrovirology 9(1), 1–21 (2012). https://doi.org/10.1186/1742-4690-9-72

  37. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 25–57 (2006)

    Article  MathSciNet  Google Scholar 

  38. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/hiv-aids. Accessed 20 July 2021

  39. World Health Organization: Interim WHO Clinical Staging of HIV/AIDS and HIV/AIDS Case Definitions for Surveillance: African Region (2005). http://www.who.int/hiv/pub/guidelines/clinicalstaging.pdf. Accessed 20 July 2021

  40. Willems, J.L.: Stability Theory of Dynamical Systems. Wiley, New York (1970)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors of this paper are grateful to the reviewers on the basis of whose reports and suggestions the improvements of the paper was possible. Also, the authors thank the editor of the journal for his supports during the communication of the paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors jointly worked on the results and they read and approved the final manuscript.

Ethics declarations

Availability of Data and Materials

Not applicable.

Conflict of interests

Authors declare that there is no competing interests.

Funding

There is no funding for this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, B.J., Sarmah, H.K. & Maurer, H. An Optimal Control Strategy for Antiretroviral Treatment of HIV Infection in Presence of Immunotherapy. Qual. Theory Dyn. Syst. 21, 30 (2022). https://doi.org/10.1007/s12346-022-00564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00564-3

Keywords

Mathematics Subject Classification

Navigation