Skip to main content
Log in

Melnikov-Type Theorem for Time Reversible System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We employ the Craig–Wayne–Bourgain method to study the persistence of quasi-periodic solutions under nonlinear perturbation for a class of finitely dimensional reversible system. Our results provide an alternative and detailed proof for the existence of lower dimensional invariant torus for the reversible system without using the second Melnikov condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat. Math. Res. Notices 11, 475–497 (1994)

    Article  MathSciNet  Google Scholar 

  2. Bourgain, J: On Melnikov’s persistency problem. Math. Res. Lett. 4(4), 445–458 (1997)

  3. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. 148(2), 363–439 (1998)

    Article  MathSciNet  Google Scholar 

  4. Bourgain, J: Green’s Function Estimates for Lattice Schrödinger Operators and Applications. Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton, NJ (2005)

  5. Broer, H.W., Huitema, G.B., Takens, F., Braaksma, B.L.: Unfoldings and bifurcations of quasi-periodic tori. Mem. Amer. Math. Soc. 83(421):viii+175, (1990)

  6. Chen, L.: On invariant tori in some reversible systems. (2020). arXiv:2010.11402

  7. Craig, W., Wayne, C.E..: Newton’s method and periodic solutions of nonlinear wave equations. Comm. Pure Appl. Math. 46(11), 1409–1498 (1993)

  8. Craig, W., Wayne, C.E.: Periodic solutions of nonlinear Schrödinger equations and the Nash-Moser method. In: Hamiltonian mechanics (Toruń, 1993), volume 331 of NATO Adv. Sci. Inst. Ser. B Phys., pp. 103–122. Plenum, New York, (1994)

  9. de la Llave, R., González, A., Jorba, À., Villanueva, J.: KAM theory without action-angle variables. Nonlinearity 18(2), 855–895 (2005)

    Article  MathSciNet  Google Scholar 

  10. de la Llave, R.: A tutorial on KAM theory. In: Smooth ergodic theory and its applications (Seattle, WA, 1999), volume 69 of Proc. Sympos. Pure Math., pages 175–292. Amer. Math. Soc., Providence, RI, (2001)

  11. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method II: Analytic case. J. Differ. Equ. 261(3), 2068–2108 (2016)

    Article  MathSciNet  Google Scholar 

  12. He, X., de la Llave, R.: Construction of quasi-periodic solutions of state-dependent delay differential equations by the parameterization method I: Finitely differentiable, hyperbolic case. J. Dyn. Differ. Equ. 27(4), 1503–1517 (2017)

    Article  MathSciNet  Google Scholar 

  13. He, X., Shi, J., Shi, Y., Yuan, X.: On linear stability of KAM tori via the Craig-Wayne-Bourgain method. (2020). arXiv:2003.01487

  14. He, X., Yuan, X.: Construction of quasi-periodic solutions for delayed perturbation differential equations. J. Differ. Equ. 268(12), 8026–8061 (2020)

    Article  MathSciNet  Google Scholar 

  15. Kriecherbauer, T.: Estimates on Green’s functions of quasi-periodic matrix operators and a new version of the coupling lemma in the Fröhlich-Spencer technique. Internat. Math. Res. Notices 17, 907–935 (1998)

  16. Kriecherbauer, T.: On the existence of quasi-periodic lattice oscillations. arXiv:math/0502077 (2005)

  17. Li, X., de la Llave, R.: Construction of quasi-periodic solutions of delay differential equations via KAM techniques. J. Differ. Equ. 247(3), 822–865 (2009)

    Article  MathSciNet  Google Scholar 

  18. Li, Xuemei, Yuan, Xiaoping: Quasi-periodic solutions for perturbed autonomous delay differential equations. J. Differ. Equ. 252(6), 3752–3796 (2012)

    Article  MathSciNet  Google Scholar 

  19. Liu, Bin: On lower dimensional invariant tori in reversible systems. J. Differ. Equ. 176(1), 158–194 (2001)

    Article  MathSciNet  Google Scholar 

  20. Liu, W.: Quantitative inductive estimates for Green’s functions of non-self-adjoint matrices. Anal. PDE, to appear. arXiv:2007.00578

  21. Luque, Alejandro, Villanueva, J.: A KAM theorem without action-angle variables for elliptic lower dimensional tori. Nonlinearity 24(4), 1033–1080 (2011)

    Article  MathSciNet  Google Scholar 

  22. Moser, Jürgen.: Stable and Random Motions in Dynamical Systems. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ (2001)

    Book  Google Scholar 

  23. Sevryuk, M.B.: The finite-dimensional reversible KAM theory. vol. 112, pp. 132–147. 1998. Time-reversal symmetry in dynamical systems (Coventry, 1996)

  24. Sevryuk, M.B.: Reversible Systems. In: Lecture Notes in Mathematics, vol. 1211. Springer-Verlag, Berlin (1986)

  25. Sevryuk, M.B.: New results in the reversible KAM theory, vol. 12. In: Progr. Nonlinear Differential Equations Appl., (pp. 184–199). Birkhäuser, Basel, (1994)

  26. Sevryuk, M.B.: Hamiltonian and reversible systems with smooth families of invariant tori. Indag. Math. 32(2), 406–425 (2021)

    Article  MathSciNet  Google Scholar 

  27. Wang, X., Junxiang, X., Zhang, D.: On the persistence of degenerate lower-dimensional tori in reversible systems. Ergodic Theory Dyn. Syst. 35(7), 2311–2333 (2015)

    Article  MathSciNet  Google Scholar 

  28. Wang, X., Junxiang, X., Zhang, D.: On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems. Discr. Contin. Dyn. Syst. 36(3), 1677–1692 (2016)

    Article  MathSciNet  Google Scholar 

  29. Yuan, W., Yuan, X.: A KAM theorem for the Hamiltonian with finite zero normal frequencies and its applications. J. Dyn. Differ. Equ. 33(3), 1427–1474 (2021)

    Article  Google Scholar 

  30. Zhang, J.: On lower dimensional invariant tori in \(C^d\) reversible systems. Chin. Ann. Math. Ser. B 29(5), 459–486 (2008)

    Article  Google Scholar 

  31. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24(4), 1189–1228 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by National Natural Science Foundation of China (12001148, 12071105, 11971143), Zhejiang Provincial Natural Science Foundation of China (LQ21A010013, LY19A010010), Scientific and Technological Research Program of Chongqing Municipal Education Commission (KJQN202000730), and Hangzhou Normal University (2020QDJ017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanhuan Qiu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Qiu, H. & Shen, J. Melnikov-Type Theorem for Time Reversible System. Qual. Theory Dyn. Syst. 21, 33 (2022). https://doi.org/10.1007/s12346-021-00553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00553-y

Keywords

Mathematics Subject Classification

Navigation