Skip to main content
Log in

Existence of Generalized Solitary Wave Solutions of the Coupled KdV–CKdV System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper studies the traveling wave solutions of the coupled KdV–CKdV system

$$\begin{aligned} {\left\{ \begin{array}{ll} u_t+2bu_\xi +au_{\xi \xi \xi }=-2b(uv)_\xi ,\\ v_t+bv_\xi +bvv_\xi +cv_{\xi \xi \xi }=-b(|u|^2)_\xi , \end{array}\right. } \end{aligned}$$

where the parameters abc are real. If these parameters satisfy some conditions, the origin is a saddle-center equilibrium, that is, the linear operator at the origin has a pair of positive and negative eigenvalues and a pair of purely imaginary eigenvalues where the real eigenvalues bifurcate from a double eigenvalue 0. We first change this system with a traveling wave frame into an ordinary differential system with dimension 4, and then give the homoclinic solution of its dominant system and the periodic solution of the whole system if the first mode in the Fourier series of the function v is activated, respectively. Using the fixed point theorem, the perturbation methods, and the reversibility, we rigorously prove that this homoclinic solution, when higher order terms are added, will persist and exponentially tend to the obtained periodic solution (called generalized homoclinic solution), which presents the existence of the generalized solitary wave solution (solitary wave solution exponentially approaching a periodic solution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Albert, J., Bhattarai, S.: Existence and stability of a two-parameter family of solitary waves for an NLS-KdV system. Adv. Differ. Equ. 18(11–12), 1129–1164 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Amick, C.J., Toland, J.E.: Solitary waves with surface tension I: trajectories homoclinic to periodic orbits in four dimensions. Arch. Ration. Mech. Anal. 118(1), 37–69 (1992)

    Article  MathSciNet  Google Scholar 

  3. Angulo, J., Matheus, C., Pilod, D.: Global well-posedness and nonlinear stability of periodic traveling waves for a Schrödinger–Benjamin–Ono system. Commun. Pure Appl. Anal. 8(3), 815–844 (2009)

    Article  MathSciNet  Google Scholar 

  4. Angulo Pava, J.: Stability of solitary wave solutions for equations of short and long dispersive waves. Electron. J. Differ. Equ. 72, 1–8 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Appert, K., Vaclavik, J.: Dynamics of coupled solitons. Phys. Fluids 20, 1845–1849 (1977)

    Article  Google Scholar 

  6. Boussinesq, J.: Thorie de l’intumescence liquide, applele onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus de l’Academie des Sciences 72, 755–759 (1871)

    MATH  Google Scholar 

  7. Boussinesq, J.: Thorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  8. Cavalcante, M., Corcho, A.J.: The initial-boundary value problem for Schrödinger–Korteweg–de Vries system on the half-line. Commun. Contemp. Math. 21(8), 1850066 (2016)

    Article  Google Scholar 

  9. Champneys, A.R.: Codimension-one persistence beyond all orders of homoclinic orbits to singular saddle centres in reversible systems. Nonlinearity 14(1), 87–112 (2000)

    Article  MathSciNet  Google Scholar 

  10. Chen, L.: Orbital stability of solitary waves of the nonlinear Schrödinger-KdV equation. J. Partial Differ. Equ. 12(1), 11–25 (1999)

    MATH  Google Scholar 

  11. Corcho, A.J., Linares, F.: Well-posedness for the Schrödinger–Korteweg–de Vries system. Trans. Am. Math. Soc. 359(9), 4089–4106 (2007)

    Article  Google Scholar 

  12. Deconinck, B., Nguyen, N.V., Segal, B.L.: The interaction of long and short waves in dispersive media. J. Phys. A 49(41), 415501 (2016)

    Article  MathSciNet  Google Scholar 

  13. Deconinck, B., Upsal, J.: On the nonintegrability of equations for long- and short-wave interactions. Phys. Lett. A 382(29), 1916–1921 (2018)

    Article  MathSciNet  Google Scholar 

  14. Deng, S., Guo, B.: Generalized homoclinic solutions of a coupled Schrödinger system under a small perturbation. J. Dyn. Differ. Equ. 24(4), 761–776 (2012)

    Article  Google Scholar 

  15. Dias, J.P., Figueira, M., Oliveira, F.: Well-posedness and existence of bound states for a coupled Schrödinger-gKdV system. Nonlinear Anal. 73(8), 2686–2698 (2010)

    Article  MathSciNet  Google Scholar 

  16. Friedrichs, K.O., Hyers, D.H.: The existence of solitary waves. Commun. Pure Appl. Math. 7, 517–550 (1954)

    Article  MathSciNet  Google Scholar 

  17. Friesecke, G., Wattis, J.A.: Existence theorem for solitary waves on lattices. Commun. Math. Phys. 161(2), 391–418 (1994)

    Article  MathSciNet  Google Scholar 

  18. Grimshaw, R., Joshi, N.: Weakly nonlocal solitary waves in a singularly perturbed Korteweg–de Vries equation. SIAM J. Appl. Math. 55(1), 124–135 (1995)

    Article  MathSciNet  Google Scholar 

  19. Groves, M.D., Toland, J.F.: On variational formulations for steady water waves. Arch. Ration. Mech. Anal. 137(3), 203–226 (1997)

    Article  MathSciNet  Google Scholar 

  20. Ikezi, H., Nishikawa, K., Hojo, H., Mima, K.: Coupled electron-plasma and ion-acoustic solitons excited by parametric instability. In: Proceedings of 5th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Tokyo, pp. 239–248 (1974)

  21. Johnson, R.S.: Camassa–Holm, Korteweg–de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  Google Scholar 

  22. Kawahara, T., Sugimoto, N., Kakutani, T.: Nonlinear self-modulation of capillary-gravity waves on liquid layer. J. Phys. Soc. Jpn. 38(1), 265–270 (1975)

    Article  Google Scholar 

  23. Kellogg, P.J.: Solitary waves in cold collisionless plasma. Phys. Fluids 7, 1555–1571 (1964)

    Article  MathSciNet  Google Scholar 

  24. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  25. Lee, K., Swinney, H.: Lamellar structures and self-replicating spots in a reaction–diffusion system. Phys. Rev. E 51(3), 1899–1915 (1995)

    Article  Google Scholar 

  26. Lombardi, E.: Homoclinic orbits to small periodic orbits for a class of reversible systems. Proc. R. Soc. Edinb. A 126(5), 1035–1054 (1996)

    Article  MathSciNet  Google Scholar 

  27. Lombardi, E.: Homoclinic orbits to exponentially small periodic orbits for a class of reversible systems. Application to water waves. Arch. Ration. Mech. Anal. 137(3), 227–304 (1997)

    Article  Google Scholar 

  28. Lombardi, E.: Non-persistence of homoclinic connections for perturbed integrable reversible systems. J. Dyn. Differ. Equ. 11(1), 129–208 (1999)

    Article  MathSciNet  Google Scholar 

  29. Nguyen, N.V., Liu, C.Y.: Some models for the interaction of long and short waves in dispersive media: part I-derivation. Water Waves 2(2), 327–359 (2020)

    Article  MathSciNet  Google Scholar 

  30. Nishikawa, K., Hojo, H., Mima, K., Ikezi, H.: Coupled nonlinear electron-plasma and ion-acoustic waves. Phys. Rev. Lett. 33, 148–151 (1974)

    Article  Google Scholar 

  31. Rayleigh, L.: On waves. Philos. Mag. 1, 257–279 (1876)

    Article  Google Scholar 

  32. Russell, J.S.: Report on waves. In Report of the 14th Meeting of the British Association for the Advancement of Science, pp. 311–390. John Murray, London, UK (1844)

  33. Shi, Y., Deng, S.: Existence of generalized homoclinic solutions of a coupled KdV-type Boussinesq system under a small perturbation. J. Appl. Anal. Comput. 7(2), 392–410 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Shi, Y., Han, M.: Existence of generalized homoclinic solutions for a modified Swift–Hohenberg equation. Discrete Contin. Dyn. Syst. Ser. S 13(11), 3189–3204 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Sun, S.: Existence of a generalized solitary wave solution for water with positive Bond number less than 1/3. J. Math. Anal. Appl. 156(2), 471–504 (1991)

    Article  MathSciNet  Google Scholar 

  36. Walter, W.: Gewöhnliche Differential Gleichungen. Springer, New York (1972)

    Book  Google Scholar 

  37. Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)

    MATH  Google Scholar 

  38. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. A 15, 240–243 (1965)

    MATH  Google Scholar 

  39. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35(5), 908–914 (1972)

    Google Scholar 

  40. Zakharov, V.E., Schulman, E.I.: Integrability of nonlinear systems and perturbation theory. In: Zakharov, V.E. (ed.) What is Integrability? Springer Series in Nonlinear Dynamics, pp. 185–250. Springer, Berlin (1991)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (No. 12171171 and No. 11971317), the Natural Science Foundation of Fujian Province of China (No. 2019J01064), and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfu Deng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Deng, S. Existence of Generalized Solitary Wave Solutions of the Coupled KdV–CKdV System. Qual. Theory Dyn. Syst. 21, 38 (2022). https://doi.org/10.1007/s12346-022-00570-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-022-00570-5

Keywords

Mathematics Subject Classification

Navigation