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Abstract

Kajihara obtained in 2004 a remarkable transformation formula connecting multiple
basic hypergeometric series associated with A-type root systems of different ranks. By
specialisations of his formula, we deduce kernel identities for deformed Macdonald—
Ruijsenaars (MR) and Noumi-Sano (NS) operators. The deformed MR operators
were introduced by Sergeev and Veselov in the first order case and by Feigin and
Silantyev in the higher order cases. As applications of our kernel identities, we prove
that all of these operators pairwise commute and are simultaneously diagonalised
by the super-Macdonald polynomials. We also provide an explicit description of the
algebra generated by the deformed MR and/or NS operators by a Harish-Chandra
type isomorphism and show that the deformed MR (NS) operators can be viewed as
restrictions of inverse limits of ordinary MR (NS) operators.
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1 Introduction

In the mid 1840s, Heine [12,13] introduced the basic hypergeometric series

a,b o (@ kb
sqou| =) ——————u", 1
2¢1[ e u} ,; @ Ore i o

with the g-Pochhammer symbol

(a5 q)oo _ 00 .
(@ @k = @ (1—a)(l—aq)---(1—ag"™"), (a; ) :}1(1 —ag™,

as a natural g-deformation of Gauss’ hypergeometric series 7 F1(a, b; c; z). For a
detailed account of such series, see e.g. Gasper and Rahman’s book [10]. Among
Heine’s many fundamental results is the transformation formula

s [ 40 | = ALz [ I g abue]. @
(; @)oo ¢

which can be viewed as a g-analogue of Euler’s transformation formula for , F7.
Kajihara’s formula [14] (see also [15]), which is our starting point in this paper,
is a far-reaching generalisation of Heine’s formula (2), connecting multiple basic
hypergeometric series associated with root systems of type A of different ranks.
Other key objects in the paper are particular generalisations of the Macdonald—
Ruijsenaars (MR) g-difference operators D;, r = 0, 1, ..., n. From Chapter VI in
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Macdonald’s book [16], we recall the elegant and explicit definition in terms of the
generating series

Duwswy = Y (= ] %-HTM

1

IC{l,...,n} iel,j¢l iel
n
=Y (—u)' Dy(x), ©)
r=0

where T, ,; denotes the g-shift operator with respect to x;. (Here and below, we sup-
press the dependence on the parameters ¢ and ¢t whenever ambiguities are unlikely to
arise.) Up to a change of gauge and variables, the g-difference operators D), coincide
with the trigonometric version of the difference operators S, introduced by Ruijse-
naars’ [19], who proved that they commute, and thus define a quantum integrable
system. We note that he obtained these results even at the more general elliptic level.

In a more recent development, Noumi and Sano [17] introduced an infinite family
of commuting g-difference operators H,, r € N, given by the expansion

n

D S e R I

o q.%i
ueNr Ax) ij=l1 (@i /X3 @ i=1
o0
= D H ). @
r=0

with

AW = [] @i-xp,

1<i<j<n

and proved that they generate the same commutative algebra as the MR operators D),
r =1, ..., n, to which they are related through a Wronski-type formula. Throughout
the paper, we refer to the operators H,, as the Noumi—Sano (NS) operators.

Remarkably, the MR and NS operators can be unified in a family of commuting
difference operators D;,m(x, v;q,t),r € N,in two sets of variables x = (x1, ..., x,)
and y = (y1, ..., ym), which reduce to D} (x; ¢q,t) and H), (y; 1 q‘l) form =0
and n = 0, respectively. Such difference operators first appeared in the m = 1 case
in work by Chalykh [4,5]. Sergeev and Veselov [21,23] introduced and studied the
r = 1 operators for general n,m € N, while the r > 2 operators are due to Fei-
gin and Silantyev [9], who, in particular, proved commutativity. The operators Dy, ,,
can be considered as natural difference analogues of so-called deformed (trigonomet-
ric) Calogero—-Moser—Sutherland operators [6,20-22], which, in turn, are intimately
related to Lie superalgebras [20,21], B-ensembles of random matrices [7], as well as
conformal field theory and the fractional quantum Hall effect [3].

In this paper, we establish an intriguing connection between Kajihara’s trans-
formation formula and Feigin and Silantyev’s difference operators Dy, ,,(x, y): By
specialisations of the former, we obtain so-called kernel identities of the form
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(Dum(x, y; u) — Dy v (z, w; u))Pp v m(x, ¥; 2, w) =0

for the renormalised generating series

o0

n 1
Do) = > D xi )

where (n,m), (N, M) € N2 can be chosen arbitrarily. For the r = 1 difference
operators such identities were previously obtained by Atai and two of the authors [1].

Our kernel function ®,, ,,. ;. i is an explicitly given meromorphic function, which
reduces to Macdonald’s (reproducing) kernel function IT whenm = M = 0; see, e.g.,
Section VI.3 in [16] for corresponding kernel identities involving D, (3) and [17] for
identities relating H, with H,, and D, with H,,.

In addition we obtain kernel identities involving a ‘dual’ family of difference
operators Hy, ,,(x, y; q,t), r € N, in which the roles of the two sets of variables are
interchanged, and which specialise to H;, (x; q,t) whenm = 0 and D], (y; ¢~ Lg™h
incasen = 0.

In keeping with earlier literature on the subject, we shall refer to the difference
operators Dy, ,, and H, ,, as deformed MR operators and deformed NS operators,
respectively. Their precise definition is given in Sect. 2, where the corresponding
kernel identities, alluded to above, are also formulated and proved.

In Sect. 3, we detail a number of applications of our kernel identities. From the
known commutativity of the ordinary MR and NS operators, we infer in Sect. 3.1
that their deformed counterparts all commute with each other. In Sect. 3.2, we show
that the so-called super-Macdonald polynomials [23] are joint eigenfunctions of the
deformed MR and NS operators, and we also compute the corresponding joint eigen-
values explicitly. Again, we rely on known eigenfunction properties of the ordinary
MR and NS operators. Section 3.3 contains a simple and explicit description of the
commutative algebra R, ;, generated by the deformed NS operators H, ,, (r € N) by
an Harish-Chandra type isomorphism to an algebra of polynomials i 1n n + m vari-
ables with suitable symmetry properties. As corollaries, we establish Wronski type
recurrence relations for the deformed MR and NS operators, and thereby show that
the deformed MR operators D;, ,, (r € N) provide another set of generators for Rum-
In addition, we infer that the first n + m operators Dy, or alternatively H, ,,, are
algebraically independent, and thus define an integrable system. For the former opera-
tors, this was first shown by Feigin and Silantyev [9]. Finally, in Sect. 3.4, we provide
an interpretation of the deformed MR and NS operators as particular restrictions of
operators on the algebra of (complex) symmetric functions. This generalises results
of Sergeev and Veselov [23] on the r = 1 case.

As we prove in the paper [11], some of these results, including kernel identities and
commutativity, generalise to the elliptic level.

The proofs of the various lemmas in the main text are collected in Appendix A.
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Notation

We use the convention N = {0, 1,2, ...} and let N* = N\{0}. Unless otherwise
specified, we follow Macdonald’s book [16] for notation and terminology from the
theory of symmetric functions.

2 Kernel identities

This section is devoted to the formulation and proof of our main result. To this end,
we recall in Sect. 2.1 Kajihara’s transformation formula, whereas Sect. 2.2 contains

definitions of the deformed MR and NS operators. The corresponding kernel identities
are then stated and proved in Sect. 2.3.

2.1 Kajihara'’s transformation formula
Let K, L € N*. Given four vectors of (complex) variables
(@, ...,ag), (X1,...,Xg) € CX, (b1,....br), (c1,...,cr) € Ch,
we recall Kajihara and Noumi’s [15] multiple basic hypergeometric series
K.,L al,...,dg b],...,bL_
¢ (Xl,...,XK “)

Cly...,CcL’
K K L
= LA’ X) I (@;Xi/X 5 q)y, 117 &b Kb 9y ()
oK A S0 @Xi /X @)y s Kk @y

where

Ax)= ] &xi—xp.

1<i<j<K

For general valuesof a; (j =1,...,K), by (k=1,...,L)and c € C, Kajihara [14]
established the transformation formula

bIYIa-H,bLYL,
cYy,...,cYL U

K.L a,...,dkg

¢ (Xl,...,XK

_ (aﬁu/CL;q)oo¢L,]( c/by,...,c/bL
5 Qoo Y., Yr

cXi/ay,...,cXk/ak . L
cXi,..., cXk ropufct ), ©)

where
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In the special case K = L = 1, it is readily seen that

alb a,bX
¢1’1(X C;u)=2¢1[ oX ;q,u}

and that (6) reduces to Heine’s transformation formula (2) (with b — bXY and
c— cXY).

2.2 Deformed NS and MR operators

Here and throughout the paper, we assume that g, € C* are not roots of unity to
ensure that, in particular, all of the operators in question are well-defined.
To an n-tuple u € N", we associate the g-difference operator

n

. l_[ +pu
Ty = T

i=1

which acts on meromorphic functions in x = (x1, ..., x,) according to
:l: :l: j: n
T, e, xn) = Fla™x1, o g™ xy).
Moreover, we find it convenient to identify subsets I C {1, ..., m} with m-tuples

(I,..., Iy) € {0,1}", where I; = 1 when i € I and I; = 0 otherwise. With this
identification in place, we have

+I +1
Ty =175
iel

We can now define the deformed NS operators H, ,, (r € N) by the generating
series

_ 1] _
Hym(e,yiwy =Y Y @ g (—uw)q DBy, (x, nTL T
neNt [C{l1,...,m}
o0

=Y W'H],(x,y:q.1), )

r=0

with coefficient functions

_ Agx) T (1xi [Xj39) 1 . Yi—4yj
Bu1(x, y) = =5y i j=1 (qxi [xj3q)y, Iy si,j=m yi-yj
iel, jé¢l
n 1—xi/ty; 1—xi/qyj
.l_[i=1 (l_[jel I*qﬂixi/j);/' l_lj¢l l_q/l,l'—lxl_]/yj>v (8)

and where |u| = Y 'L, u; and |I| denotes the cardinality of /.
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Setting m = 0 in (7)—(8) and comparing the resulting expressions with (4), we see
that H, o(x; u; q,t) = H,(x; =y g, t). On the other hand, taking n = 0, we find
that Ho m (y; us ¢, 1) = D (y: 1™ tus 171, g7, of. (3).

We obtain the deformed MR operators by interchanging n <> m, x < y and
g < t~! as well as scaling u — qu in the deformed NS operators. More precisely,
we have

Dn,m(xa Y M;Qat) = Hm,n(ya X, qu; t_la 61_1)

ad 9
= Z(—u)’D;)m(x, y;q,t). ©)

Introducing the coefficient functions

[1 xi—t7'x ACTHY) Tr0i/ayiitT D

AI,/J.(X7 )’) = 1
\<ijen NI A(y) =1 i/tyjs t™ Dy,
icli ¢l
ﬁ I L —qyi/xj I1 1 —1yi/x; (10)
i=1 \jel L= t7hyifx; j¢l =t =tiyi/x;

we get the explicit formula

_ _ (Ml _
Dym.yiwy= Y Y ("t "w ()= D Ay o1 T

I<{1,...,n} peNm

=Y (- D}, (x,),
r=0

We note the special cases Dy o(x;u) = D,(x; t'""u) and Dom(y;u;q,1) =
H, (y:q™u;t=', g~ 1). In the general case, D), ,, should be compared with M_;, in
Eq. (4.19) of [9]. Indeed, after invoking the elementary identity

1
(IM/)’l/Y/v )u,-7

— n
A"y 1 — (= 1)l ldn+D/2 l‘[
AW 5 Oi/y D

it is readily seen that the former may be viewed as a multiplicative form of the latter
additive difference operators.

2.3 Kernel identities

We proceed to state and prove our kernel identities for the deformed MR and NS
operators.
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Our result takes a particularly simple form when expressed in terms of the modified
generating series

(l‘l n mu )
My (X, y: 1) = ﬁHn,m<x,y; ) (11)
) o0
and
( mli"u; til)
Dy, yiu) = 2 2 (e yiu), (12)

(u; 17 oo
cf. (9) and (7).

Under the assumption that |g| < 1 and |f| > 1, we define the mero-
morphic function @, ,,.n M (x,y;z,w) = Pymnmx,y;z, w;q,t) iIn n + m
variables (x,y) = ((x1,..., %), V1,...,ym)) and N + M variables (z, w) =
((z1, -+ 2n), (Wi, ..., wp)) by

cI>n,m;N,M(JC, Vi Z,w) = 1_[1_[ (szj,Q)oo l_[l_[ (yle» )oo

1 1
i=lj= 1 (t7'xizj: Qoo ol j= 1(qylevt )oo

m N
~1"[]"[(1—xiwj)-1_[1_[(1—yizj>. (13)

i=1j=1 i=1j=1
The following theorem constitutes our main result.
Theorem 2.1 For 0 < |q| < 1 and |t| > 1, we have the kernel identities
Hum(x, y; W)@ N m (X, ¥ 2, w) = Hy m(z, w; W) Pp ;N m(x, y; 2, w)  (14)

and

Dy (x, y; W)@y ;N m (X, y; 2, W) = Dy y (2, w; ) @p v, m (X, y; 2, w).  (15)

Proof From (7)and(11)—(12), wehave H, m (x, y;u;q,t) = Dy o (y, x; tu; L, q_l).
Hence, thanks to the manifest symmetry property

. . . =1 =1
CDn,m;N,M(x, y’ Zv w’ q:t)=q>m,n;M,N(y’-x’ w, Z’t »f] )7

it suffices to prove the kernel identity (14), say.
Taking ¢ = 1, by — 1/by (which entails 8 — 1/8) and u — u/« in (6) and
substituting the expression (5) for ¢X-L, we deduce the identity

(u/ot 9o ly| 24~ 4) Alg”X)
W oo 2 e A(X)

yeNk
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K

. 15[ @ Xi/Xj; @)y, 1—“—[ (XiYi/bi; @)y,
Lo@xi/Xiay L XY gy,

i) A(Y)

DY /Y15 q) sy (YiXi/ai; q)s,
. 16
1_[ (qu/Yl Q)Sk 1_[1_[ (YkXH Q)ak ( )

Choosing K =n +m and L = N 4+ M, we specialise the variables according to

Xi=xi,ai=t (=1,....0); Xnpi=Yi, dnsi=q ' (i=1,...,m);
Ye=zk, b=t (k=1,...,N); Ynpk=wy, bypk=q ' (k=1,...,M).
(17)

Focusing first on the left-hand side of the resulting identity, we note that, due to the
presence of the factors

- (@nti Xn+i/ Xn+is @) ypss _ ﬁ (q_l; Dynsi

i=1 (an+i/Xn+i; q)Vn-H B i=1 (qv Q)y,,+,-

we only obtain non-zero terms when the components y;,1; of y € N**" take the value
0 or 1. Hence we may and shall restrict the summation to n + m-tuples y = (u, I)
with u = (1,...,un) € Nt and I C {1, ..., m}, where, as previously indicated,
we identify such a subset / with the m-tuple (I1, ..., I,) € {0, 1}’ characterised
by I; = 1if and only if i € I. Using the elementary identity (ga; q)«/(a; @)k =
(1 —g"a)/(1 — a), we thus find that the left-hand side of the pertinent identity is
given by

(Wt™"q™; @)oo g i+ Adghx) Ag'y) q"ix; _q]yj
(; q)oo l;N”IC“Z“;] ) Alx)  A(y) HH Xi —yj

S axi/xQu ey (Ki/gyi @ ol —tyi/x; 1o 1= vi/ay;
-H(n 155 Gy “')ﬂ(ﬂ 1y fpiz %)
J j J

imt \ ot @ /X Dy @)y D | \ Gy Vo avilxg S = avi)y;

n N . M i Ny Moy
l_[ l—[(xiZk/f’Q)u,- l—[ — g7 X Wk l_[ l—[ —)’iZk/T_l—[ — qYiWgk )
il i ks 1 — xjwyg 1—yizk 1 — yjwg

i1 (i D iel \k=1 k=1

i=1j=1
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We rewrite the factors depending only on y,

Aq'y) L= yilayi _ (4 qayi —
O M 2o

L
o I E

iel j=1 _Q)’z/)’ 1<i,j<m i iel q
iel,j¢l
11 V—yi/ay; 1 = yjlayi 1 —yi/qy;
e YTy V= ayilvio i, V= avily;
i<j iel,j¢l
_ (_])|1|q('§‘)7m|1| l_[ i —qyj’
\<ijem YTV
i€l jél

and the factors depending on both x and y,

Hl—[q”'x,—qu, 1—“—[ (Xi/qyjs Dy 1—“—[1 —1yi/x;

i=1 j=1 izt jo @Y D i Lo avi/xg

n

—d"TT(TT L—g"xi/y; TI 1—q"xi/y;

V=xifyj 5 L=xify;

i=1 \jeI

l—[l—[ (xi/qyjs Qi 1—[1—[ —1yi/x;j

izt jo1 @GNV Dy oy L avifxg
n

=4 TTITT 1-&/% TI l—xf/QYj

— My . — gy .
imt \jer L axilyp o 1 —atixi/qy;

In this way, we find that, when specialised at (17), the left-hand side of (16) is given
by

(ut™ ”q 5 q)oo —ngm Il 1 (‘”) A(gHx)
E E Y (=u)
W 2, INES)

ﬁ (X /%j5 i [ Y= ﬁ I 1—xi/ty; 11 1 —xi/qy;
e @Y D, ViV iy e L aM Xy g L= atixi /gy
iel,j¢l

ﬁ ﬁ (xizk/t; @), ﬁ 1 — q"ixjwy l—[ ﬁ 1 — yizx/t ﬁ 1 —gyiwg (18)
i (Xi ks @) s I —xjwg 1 ’

=1 \k=1 k=1 ier et LTz v
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Using the functional equation (z; ¢)so = (1 —2)(¢2; ¢) 0, a direct computation yields

Dy m;N,Mm (X, y; 2, W) (Xizk3 @) i 1 — xjwy

Ty Ty (Pumn (8, vz, w) ﬁ (ﬁ (xizk /13 Dy ﬁ 1 - q""xiwk)

i=1 \k=1 k=1

Nyt 11— gy
AN =1l

AV S L

Multiplying this expression with (t’”qmu)“”(—u)“'q(gl) B, 1(x,y), we obtain the
(u, I)-term in (18). In other words, the specialisation of the left-hand side of (16) to
(17) equals @, v 1 Hom (X, ¥ 7 )y iy -

We observe that the specialisation of the right-hand side of (16) is obtained from
its left-hand side by interchanging (n, m) < (N, M) and (x, y) < (z, w) as well as
relabelling © — v. Due to the manifest symmetry property

q)n,m;N,M(x’ yiZ,w) = cI)N,M;n,m(za w;x,y),

it follows that the right-hand side of (16), when specialised to (17), is given by
CID;m N. wHN M (2, w; t’]u)cbn,m; ~.m - This concludes the proof of the kernel identity
(14). O

Remark 2.2 By minor modifications of the above proof, we can obtain kernel identities
for the parameter regime |g|, |f| < 1, but only for the deformed NS generating series
Hy.m (11). (Indeed, the MR generating series D, ,, (12) is well-defined only when
[t] > 1.) More precisely, starting from the identity obtained by taking x — 7x and
y — ty in (16) after specialising to (17), it is readily seen that (14) holds true for
Iql, |t| < 1if we replace @, ;.. v, ¢ by the meromorphic function

Wy N, m (X, Y5 2, w) _1_[1_[ (txlzf’q)oo 1—[1—[ (qulw],t)oo

iml jo1 KiZji@oo iy (iw)iDeo

n M
JTTT0 = xiw)) - H H(l —tyizp). (19

i=1j=1 i=1j=1

Remark 2.3 We note that ®,, o., 0(x; z) and W, o.,.0(x; z) coincide with Macdonald’s
kernel function IT(x; z), with x = (x1,...,x,) and z = (21, . .., z»). (To be precise,
we need to take x; — tx; in @, 0.,,.0(x; z).) We recall that IT1(x; z) is the reproducing
kernel of Macdonald’s scalar product (-, -), on A, defined in Section V1.3 in [16] by

(gn> mu)n = dap

for partitions A, u of length at most . One might expect that ®, .. and Yy p:n.m»
with both n, m > 0, can be interpreted as the reproducing kernel of a natural scalar
product on the algebra of polynomials A .4, (see Sect. 3.2), defined in terms of
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suitable ‘deformed’ analogues of g, and m; and with respect to which the super-
Macdonald polynomials should be orthogonal. We hope to explore this possibility
elsewhere.

3 Applications

In this section, we detail a number of applications of Theorem 2.1. They include
the commutativity of the deformed NS and MR operators; a derivation of their joint
eigenfunctions and eigenvalues; an explicit construction of a Harish-Chandra type
isomorphism, characterising the commutative algebra generated by the deformed NS
(and/or MR) operators; as well as a generalisation of the restriction picture for the first
order operators in [23] to all higher order operators.

We note that intermediate computations, involving kernel functions and generating
series, may require restrictions on ¢, ¢ of the form |g| < 1 and/or |¢| > 1. To ease the
exposition, we shall not spell out the specific restrictions that are needed whenever
they are easily identified from the context at hand.

3.1 Commutativity

We find it convenient to work with the difference operators H,, ,, (x, y) (r € N) and

Dy, m(x,y) (r € N) defined as the coefficients of u” in the power series expansion of
Hpm(x, y; u) (11) and Dy (x, y; u) (12), respectively:

o0
Hum (X, y1u) =Y u"Hy, ,, (x. ), (20)
r=0
and
o
Dym(x, yiu) =Y (—u) D, (x,y). 1)
r=0

We begin by recording the following important technical result.

Lemma3.1 Let L, ,,(x, y) be a difference operator in (x, y) of the form

Ln,m (x,y) = Z au,v(x’ y)TqM:anyvv

neN" yeN™
lpel+Ivi=d

withmeromorphic coefficients ay, ,(x, y) andd € N.If L, 1, (x, )Py v 0(x, ¥; 2) =
0 forall N € N*, then L, ,,,(x, y) = 0 as a difference operator.

Proof The proof is given in Appendix A.1.1. O
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Comparing (4) with (7) and (11), we see that

1-N,.
Ho( ) = L9 1oV
(tu; 9)oo
(tl N“ 4)00 1 N
H
(116 )oo ZO W@

From the commutativity of the NS operators H},, we thus get

[Hn.0(z: ), Hyo(z:v)] =

Taking M = 0 in (14), we can now deduce

Huom(x, Y5 w)Hpm (X, 5 0) Py m:N 0(X, Y; 2)
=Hn,0(z; VIHN,00z W) Py m;N,0(x, y; 2)
=HnN.0(z; wWHN,0(z; V) Pp,m;N.0(x, 5 2)
= Hnm(x, y; VIHnm (X, y; ) Ppm:N.0(x, y; 2),

so that
[Hnm (6, y5 ), Hum (X, ¥ 0) | @ v,0(x, 5 2) =0,
or equivalently
[y o 3) Hyy 6, )] @rmiv0(x, y52) =0 (r,s € N).
Hence, fixing r, s € N and letting

Ly (x, ) = [Hy, 0 (8, 9), Hy, (6, 9]

we have Ly, (x, )Py m:n.0(x, ¥; 2) = 0 forall N € N*. It follows from Lemma 3.1

that L, ,,(x,y) =0, i.e. that H,

n,m

and H;, ,, commute as difference operators.

Repeating the above reasoning with either one or both of H, ,(x, y; ) and
Hp.m(x, y; v) replaced by Dy, (x, y; u) and D, ,, (x, y; v), respectively, we arrive

at the following result.

Theorem 3.2 The deformed NS operators 'H,, , (r € N) and MR operators D, ,

(r € N) all commute with each other:

[HZm’Hz, ] [D;m’sz, ] [H:Lm’ ]:O (r’SEN)'
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3.2 Joint eigenfunctions

Next, we show that the deformed MR and NS operators are simultaneously diago-
nalised by the so-called super Macdonald polynomials, introduced in [23] as certain
restrictions of Macdonald symmetric functions and recently shown to be orthogonal
with respect to a natural hermitian form [2]. Here we pursue a somewhat different
approach: From the kernel identities in Theorem 2.1 and well-known results on ordi-
nary Macdonald polynomials, we recover an expression for the super Macdonald
polynomials in terms of the ordinary Macdonald polynomials and deduce correspond-
ing eigenvalue equations with explicit expressions for the eigenvalues.

For notation and terminology regarding symmetric functions in general and Mac-
donald symmetric functions (and polynomials) in particular, we follow Macdonald’s
book [16].

Unless otherwise specified, we assume throughout this and the following sections
that

g't! #1foralli, j € Nsuchthati +j > 1, (22)

which, in particular, ensures that the Macdonald functions are well-defined. Following
Sergeev and Veselov [23], we use the terminology non-special for values of ¢, t € C*
satisfying (22).

Setting M = 0 in the kernel function (13), we define polynomials SP; (x,y) =
SP(x,y; q,t) as the appropriately scaled coefficients of the (dual) Macdonald poly-

nomials 0, (z) = 0, (z; g, t) inits power series expansion in the variables z1, . .., zn:
Dpmeno(x, y;2) = Y tTHSP(x, 1) 01(2). (23)
I(M)<N

Assuming N > n, we recall from Sections VI.4-5 in [16] that

1—[1—[ (XzZ]aq)oo Z l_wPM(X)QM(Z),

PP N
i=1j= 1(t leJ’CI)OO I()=<n
m N
[TT]0=vzp= D> OMou(it,9)0uzi g, 0).
i=1j=1 vS(mM)
It follows that

@pm;N,0(X, Y3259, 1)
= > > T MEDMPG g, 000 (i 1 )0z g, D0z g, 1).

() =nvc@mV)

Letting 6IAW (g, t) denote the Littlewood—Richardson type coefficients for Q,(z; g, 1),

0uzq, 00 g, =Y & (4,00 q,0), (24)

10)<N
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we get

q)n,m;N,O(xy y:2,4, 1)

=y ™ ( >y (—t)"éﬁ,v(q,t)PM(x:q,t)Qw(y:t,q)) 0:.(z:q. 1),

I)=N H(w)=n v (m¥)

where we have used the fact that 6ﬁ’v(q, t) # 0 only if |A| = |u| + |v]|, which is a
direct consequence of Q) (z) being a homogeneous polynomial of degree |A|.

Since éﬁyv(q, t) = O unless u, v € A (cf. Section VI.7 in [16]), /(L) < N and
Ov((y1,---sym)it,q) = 0if vy > m, we can replace the summation criterion

v C (m"™) by v C A, say. Comparing the resulting expansion with (23), we see that

SPeyiq, =Y > (=0OM&, (g, 0Pu(x;q, D0 (yit.q), (25

l(W)<nveh

where A can be any partition, since N (> n) can be chosen arbitrarily large.
Using the skew Macdonald polynomials

Pip(xiq ) =Y & (g, 1) Pu(xi g, 1),
w

we can rewrite this expression as

SPux,yiq.0) =Y (=0)"P 1 (xi q. )0y (vi 1. ). (26)

vCA

A direct comparison with Eq. (22) in Sergeev and Veselov’s paper [23] reveals
that these polynomials are precisely the so-called super Macdonald polynomials, as
defined by Eq. (23) in loc. cit.. (Note their use of the inverse ~! of the parameter
t used here and that H(x, g, 1)/HW\ , t,q) = (=)~ b7, q), cf. the equation
above (6.19) in Chapter VI of [16].)

In analogy with Macdonald’s definition of Q;, we let

SO (x,y) = b SPi.(x,y)

with

1 — qa(s)tl(s)+1
b= @D

SEA

wherea(s) = A;—jandI(s) = )Jj —i denote the arm- and leg length of s = (i, j) € A
respectively.

In the following proposition, we record two symmetry properties of the super Mac-
donald polynomials that we have occasion to invoke below.
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Proposition 3.3 For all A € H, ,, and non-special q, t, we have
SPx,yiqg T =SPux, g T yig, ), (28)
SQuw(y,x;t7 1 g7 = (=) MSPu(x, y; g, 1). (29)

Proof From (4.14)(iv) in Chapter VI of [16], we recall

Px;g Lt = P, Ontig e =@ HM0s (g, 05 (30)

and using (7.3) in loc. cit., we thus infer

& @ =¢ (g ). 31)
g™ =8 L g) =8 ,(q.Dbi(g. 0 /bulg. Dbu(g. D). (32)

Keeping (25) in mind, we see that (28) is a simple consequence of (30), (31) and the
fact that Q,/(y) is a homogeneous polynomial of degree | |. Furthermore, appealing
to (30) as well as (32), we deduce

SQu(y,x;t7 1 g™h

=by(t™ g Wbilg. )Y (="M (g . OP(x1q. 1)
nw,v

Py(y;t,q)
bu(q.1t)

Utilising (27), itis readily seen that by (t !, ¢=1) = (¢~ 't)* /by (g, ) and b, (¢, 1) =
1/b,(t, q), which clearly entails (29). m]

We recall that, by analysing (26), Sergeev and Veselov showed that SPj (x, y)
vanishes identically unless A is contained in the set of partitions H,, ,, consisting of
all partitions A such that A, 1 < m, or equivalently, the diagram of X is contained in the
so-called fat (n, m)-hook; and the non-zero super Macdonald polynomials S P; (x, y)
(A € Hy ) form a basis in A, .4+, the algebra of (complex) polynomials p(x, y) in
n + m variables x = (x1,...,x,) and y = (y1, ..., i) that are symmetric in each
set of variables separately,

plox,ty) = px,y) ((0,7) € Sy X Su),
and satisfy the additional symmetry conditions
(Tq,x,- — T{ylj)p(x,y) =0along x;=y; (=1,...,n, j=1,...,m), (33)

cf. Thm. 5.6 in [23].
To establish the desired eigenvalue equations, we focus first on the deformed NS
operators. Specifically, taking M = 0 in (14), we obtain

) ) '"Nu; oo C1-N )
Hum(x, ¥ W) P N0 (X, y32) = ——————Hy (@t W)@y on0(x, y:2), (34)
(tu; ¢)oo
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and from Eq. (5.17) in [17], we infer

)L,t2 i

HN(z;tl_NM)QA(Z) QA(Z)H( Aipl— zu ‘1)00

(I(x) = N).

For A € H, ,,, we introduce the product

hig2—i

. 1-i .
g)h(u) — l_[ (q u; ‘])oo (t u; f])oo

- - , 35
0 oo @111t @)oo (55)

i>1

(which may be truncated at i = /(L)). Choosing N > [(A) and substituting the
expansion (23) in the kernel identity (34), we deduce

Hum(x, y;u)SPr(x, y) = Gr(w)SPy.(x, y). (36)

Rather than expressing the eigenvalue G; (1) in terms of the quantities g* (i > 1),
it is in many ways more natural to map A € H, ,, (injectively) to the pair of partitions

w=QA1..., ), V= ()\n+1»)\n+2’--~)/» 37

and rewrite (35) in terms of g" (i = 1,...,n)and =" (j = 1,...,m). More
precisely, we have the equalities

U N G I ) I nl—q’ A
U oo (@ it @)oo 1 — g/~

i>n+1 z>n+1J 1

1— j— ltl i—n
i mn——

j=li=1

1—611 ltl vj—ny,
_l—[ l_qj 1t1 —ny ?

which entail

n i 42— 1—i,. mn _l=vj—n_j—1
Gy = [[ @5 e (o Wioe  PPIDI 1 (o
o T e (@MU q)oo ) 1=
We note that the right-hand side is manifestly invariant under permutations of the
quantities g*it' =" (i =1, ..., n)aswell as the quantities ™ "¢/~  (j = 1,..., m).
Substituting ¢ — x; ( =1,...,n)and 7" — y; (j =1,...,m) in (38),
we obtain the product function

n 2—i,,. 1—i,. m j—1
(xit™'us q)oo (67 "'us q) 1 —1yjq’" u
amr i) = [[ T = o T e (39)

i T e (it s @loo S 1 —1171g M
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so that
Go.(u) = G5, (g™, 17"~ ). (40)

If we now define polynomials gE (x,y) = gE (x,y;q,t) (r € N) as the coefficients of
u” in the power series expansion of (39), i.e.

Gl (X, yiu) =) g, y)u’, (41)

r>0

then it becomes clear from (20), (36) and (40) that the eigenvalues of H;, , (x, y) are
given by g7 (g", 1~"="™).
The eigenvalues of the deformed MR operators in (21) can, in a similar manner, be

expressed in terms of polynomials eﬁ (x, y) (r € N) defined by the generating function
expansion

B Grysuy = [ Lo T O Do g it e
n,m Pl 1 —tl=iy i1 (yjq./u;t—l)oo (t~"qiTu; 1= Vo

=) ey g, D(—u)' (42)

r>0

Indeed, we have the following theorem, which details the explicit simultaneous diag-
onalisation of the deformed NS and MR operators.

Theorem 3.4 Assuming that q, t are non-special, we have the eigenvalue equations
My (s ISPLCx, y) = g7 (g7 177 "))SPa(x, ) 43)
and
D, (%, NSPix, ) = e} (g, 17" ") S Pa(x, ) (44)

forallr e N, A € Hy, , and with ., v given by (37).

Proof There remains only to establish the latter eigenvalue equation.
Letting

n= ()“/1)*;;1) £ = ()‘;n+l’)‘;n+2"")/’

we use Dy m(x, y;u;q,1t) = Hua(y, x; qu; 1 q_l) and the symmetry property
(29) of S Py, to infer from (20), (41) and (43) that

Do (x, y3 13 ¢, DSPo.(x, y: ¢, 1) = G, (077, 5T quy 171 g7V SPu(x, y3 g, 1).

m,n
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Hence (44) will follow once we prove that
Gl g T qui ™ g = ER L (" T s g, 1), (45)

By a direct computation, similar to that leading from (35) to (38), it is readily verified
that

 higl—i
ES (g™ ) = [ (46)

1 — =iy
i>1

as long as A € H, ,,. Keeping in mind (35) and (40), it becomes clear that both the
left- and right-hand side of (45) are independent of n, m, so that we may choose them
such that (n™) C A. As a consequence, we get

n=v+@"), §=p—(m"),
which entails
GE,M (7", gt qu; fl,qfl) = an’n(f‘”“(" ) g™ qu; fl,qfl).

Observing

n

ﬁ (@'u; 1™ N I 1
(@' 'us ™ oo L—gmt'=iu

i=1 j=1

_(qmt—'fu;r*)oo_ﬁ 1 ﬁ t"q u; 1™ oo
N BERS

_tlfiu

(u; 1™ D)oo Pl i gl u; s
we deduce
Ghaoxiquit™ g™ = E} (x.yiusq. 1)
and (45) clearly follows. O

Introducing the difference operators
ﬁz’m(x, yig.t) =M, . (x,qty; g ' h
and
Dl yiq.0) =D, (x,qty;qg 17

for r € N, the following eigenvalue equations are a direct consequence of Theorem
3.4 and symmetry property (28) of SP; (x, y).
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Corollary 3.5 For all q,t that are non-special, r € N and » € Hy, p,, we have
Hly 0, S P, y) = gi (g™, T ™) S P(x, y)

and
DL (6, ISP, y) = €2 (g™, 1T ™) S Py(x, y).

Taking r, s € N, let us consider the difference operator

Ln,m(xv y) = T(r )T (1"1) [Hr

n,m?

Hz )’I‘l]

to which Lemma 3.1 clearly applies. Combining the kernel function expansion (23)

with Theorem 3.4 and Corollary 3.5, we see that L, ,,(x, Y) @y m:n0(x, y;2) = 0

for all N € N*. By 1nv0k1ng Lemma 3.1 and using the invertibility of Tq(rx)Tt y(l ),

we thus conclude that 7‘(’ and H?

n,m

7/{,’1 m = D,’l ,» and/or Hn m —> D, , in the above argument, we obtain the following

corollary.

commute as difference operators. Substituting

Corollary 3.6 The difference operators ’Hn m (r € N)and ﬁZm (r € N) commute with
each other as well as the difference operators 'H,, ,,, (s € N)and D;, , (s € N).

3.3 Harish-Chandra isomorphism

Focusing first on the deformed NS operators, we consider the commutative (complex)
algebra of difference operators

Rumiqs = C [H,I, 1 ] : (47)

cf. (20). As we demonstrate below, Theorem 3.4 enables us to establish an explicit
Harish-Chandra type isomorphism A mgr Ru,m:q,1» Where An ;» introduced
in[23] as a ‘shifted” version of Ay ;4. ' denotes the algebra of (complex) polynomlals

p(x,y)inn-+m variables x = (x1,...,x,)and y = (y1, ..., ¥n) that are separately
symmetric in the 7-shifted variables x, xzt_l e xntl_” and the g-shifted variables
Vi, Y24, - - -, qu”’_l, and, in addition, satisfy the symmetry conditions

Ty (p) = T,,L(p) along xit' ™" = y;q/™" G=1,....n, j=1,....m).
(48)

In particular, the algebra Ai miq.t contains the polynomials g,t (x,y) (r € N), as

defined by (41). Indeed, their generating function Gnm (x, y; u) is manifestly sym-
metric in the shifted variables x,'tl_i and yjqj =1 and, by a direct computation, it is
readily seen that GE,,m (x, y; u) satisfies (48) as well. Furthermore, using correspond-
ing elements in the so-called algebra of shifted symmetric functions, we can prove the
following result.
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Lemma 3.7 As long as the parameters q,t are non-special, the algebra Ai migt is

generated by the polynomials g; (x,y) (r e N*),

Proof The proof of this lemma is relegated to Appendix A.2.1. O
We note that, as A runs through all partitions in the fat hook H, ,,, the corresponding

points (g, r="=®"), with u, v given by (37), form a Zariski-dense set in C"*",

i.e. the only polynomial p(x, y) in n + m variables (x, y) that vanishes at all these

points is the zero polynomial. Combining this observation with Lemmas 3.1 and 3.7,
it is now straightforward to establish the Harish-Chandra isomorphism.

Theorem 3.8 For non-special q, t, the map
g1y Xn), (1 y)) > My, (€N

extends to an isomorphism

YA Rymgis [ Him (49)

n,m;q,t

of algebras, which is characterised by the eigenfunction property

HiwSPy = f(q" 17" )Py (f € AL, o b€ Hum).
Proof Suppose we have a relation F(gEl, R gﬂ,() = (O forsome F € C[z1,...,zk],

with K € N*,andr; € N* for 1 < j < K. Then, by (23) and (43), the corresponding
difference operator

Lo = F(H s oo HIE)

satisfies L,y P m:n.0(x, ¥; z) = 0 for all N € N*. Thanks to Lemma 3.1, it follows
that L, , = 0 as a difference operator. Since the polynomials g,D (r € N*) generate

Ai’m; .t (cf. Lemma 3.7), we can thus conclude that 1 is a well defined homomorphism
of algebras and, as such, it is clearly surjective. To establish injectivity, it suffices to
note that ’H,{,m = 0 implies that f(g",t="~"")) = 0 for all partitions s, v of the
form (37) for some A € H, ,, which, as previously observed, entails that f vanishes
identically. O

Remark 3.9 This yields an explicit realisation of the monomorphism v in Thm. 6.4 of
[23].

By a direct computation, it is readily verified that the generating functions
Gl m(x, yiu) (39) and E- , (x, y; u) (42) satisfy the functional equation

E,ul,m(x, V3 u)GEl’m(x, yiu) = Erul‘m(x, v; tu)Gf,ym(x, Vi qu).



24 Page22of36 M. Hallnas et al.

In view of (41)—(42), this equation is equivalent to the Wronski type recurrence rela-
tions

D (=D —17g el (x, y)gix, y) =0 (k € N*).
r+s=k

Applying the Harish-Chandra isomorphism v (49), we obtain the following corollary.

Corollary 3.10 For g, t non-special, the deformed MR and NS operators satisfy the
recurrence relations

> D) -1¢)D, H,, =0 (keN*). (50)

r+s=k
These recurrence relations enable us to express the deformed MR operators D;,
in terms of the deformed NS operators H;, ,,, and vice versa. We can thus conclude

that the former operators generate the same commutative algebra as the latter.

Corollary 3.11 Under the assumption that q, t are non-special, we have
_ 1 2
Rn,m;q,t =C I:ID”’”” Dn,m? . ] .

Moreover, since the recurrence relations (50) are of precisely the same form as in
the undeformed case (cf. Eq. (5.5) in [17]), the explicit (determinantal) relations in
[17] between the undeformed MR and NS operators carry over to the deformed case
with minimal (and obvious) changes.

In [9] (see Thm. 4.5), Feigin and Silantyev proved that the deformed MR operators
D, ,, withr =1, ..., n+m are algebraically independent and thus define an integrable
system. As a further application of Theorem 3.8, we give a new proof of this fact.

Corollary 3.12 As long as q,t are non-special, the algebra of difference operators
Ron,m;q,: contains n+m algebraically independent elements, namely the deformed NS
operators H,lq,m, ... Hphm as well as the deformed MR operators D,Lm, ... Dyt
Proof Since Hy m(x, y;u;q,t) = Dy n(y, x; tu; 1=, g™ (cf. (7)~(12)), it suffices
to prove the claim for the first n + m deformed MR operators, which, thanks to
Theorems 3.4 and 3.8, is equivalent to the polynomials eE (x,y)withr =1,...,n4+m
being algebraically independent.

To this end, we recall the deformed shifted power sums pE x,y) = pE (x,y;q9,1)
(61) and introduce their generating function

o0
P,E)m(x, yiu) = pr(x, y)ur_l.

r=1
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For |t| > 1, we have

at™*

1 —aut=*

00 00 a
Z +1t—(r+l)kur - _ Z ur—l.
e 1—¢r

Il
ot

dl (au; t™h
— log(au;
du £ o0

~
Il
=}

||
I Mg

Using this observation, a direct computation reveals that
(Ejm) @)/E} () = logE @) = =P, ().

Comparing coefficients of "~ ! in the equivalent power-series identity ( ) u) =

— P,E’ m (u)E,EV m (1), we obtain the following analogues of Newton’s formulae:

r

ref(x.y) =y (=17 pix, y)ef_(x.y) (r € N).

s=1

In particular, they make it possible to express e?(x, y), .. (x, y) in terms of

n+m
p? xX,¥),..., pr_m (x, y) and vice versa, which clearly entaﬂs that

C [e?(x, V)yeuns eEH_m(x, y)] =C [p?(x, V)yeuns pEH_m(x, y)] .

Hence the assertion will follow once we prove that the deformed shifted power

sums p; (x,y) withr = 1, ..., n + m are algebraically independent, which, in turn,
is readily inferred from their Jacobian, see e.g. Thm. 2.2 in [8].1 Indeed, if we have a
relation F(pi, el p5+m) = 0, the chain rule entails
0— oF oF OF oF
S \ox T ax 3y Oy
b b
IF oF 3<P1~--7Pn+m)
ap?"”’api_i_m a(xly‘-'5xnay15"'7ym)’
and, assuming F is of minimal degree, 0 F' /9 p # 0forsome j=1,...,n+m,so

that the Jacobian (determinant) must be zero. However by a direct computatlon we

see, in particular, that the coefficient of the monomial x2x3 N 1 N y"Jrl yntm=l

I We are grateful to Misha Feigin for explaining this to us.
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equals

m
nvl—[ﬂ(l i . (t_ "I)m (n+1)m]_[q(”+j)(j‘”,

j=1
which is manifestly non-zero. O

3.4 Restriction interpretation

Deviating slightly from the notation in Macdonald’s book [16], we write Ay, N € N*,
for the graded algebra of complex Sy-invariant polynomials p(z) in N variables z =
(z1, ..., 2zn). The inverse limit A = l(in N A (in the category of graded algebras),
i.e. the algebra of symmetric functions, will play an important role in this section.

More specifically, we establish an interpretation of the deformed NS operators
H,,,»(20) and MR operators H;, ,, (21) as restrictions of operators Hy, and Df,
respectively, on A, thereby generalising Thm. 5.4 in [23], which essentially amounts
tothe r = 1 case, to all » € N.

To begin with, suppose that the parameters ¢, ¢ are non-special. Then, as recalled
in Sect. 3.2, the super Macdonald polynomials S P;.(x, y) (A € Hy,m) span the algebra

Ay m:q.:- Hence, by Theorem 3.8, each difference operator Hn m(f € A’ )leaves
A m;q,r invariant.
More generally, we can work directly with the symmetry conditions that characterise

Ap g, to establish the following result.

n,m;q,t

Lemma 3.13 Assumethatq,t € C* are not roots of unity. Then, for each f € A’

n,m;q,t’
the difference operator H,,’m preserves the algebra Ay, p.q 1:
fo.
Hn,m . An,m;q,t g An,m;q,t-
Proof A proof of this lemma is provided in Appendix A.3.1. O

Now, with z = (z1, 22, ...) and w = (w1, wy, ...) two infinite sequences of vari-
ables, we recall from Egs. (2.5)—(2.6) and (4.13) in Chapter VI of [16] the kernel
function

(tziwj; q)oo
Mz wy g, )= | ———
E.I Ziwj; @)oo

along with its expansions in terms of power sums and Macdonald symmetric functions:

Mz wi g, 0 =Y (g, 07 pa@pa(w) =Y Pa(z; q,0)Qx(w; g, 1) (51)
A

A
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with

(™)

- 1— g
(g, 1) = Hlm’mi!~1_[ T

i>1 i=1

where m; = m;()) denotes the number of parts of A equal to i.
Introducing the notation

Hn(z;u) = Hno(z;u), Dy(z;u) = Dno(z; u),

let us define operators H'y, (r € N)and Dy, (r € N) by the generating series expansions

Hy(zu) =Y uHy@), Dn(zu) =y (—u) Dy().
r=0 r=0

One of their distinguishing features is stability under reductions of the number of
variables N. More precisely, with the homomorphism

PN.N—1: AN = An—1, p(z1,....2N) > p(z1, ..., 2n-1, 0),
the diagrams

PN,N—1
AN —> Ay_1
Hy| 1M
Ay NS AN

and

PN .N—
Ay S Ay

D] 1P

are commutative for all r € N. To see this, it suffices to note that the eigenvalues of
these operators are independent of N, cf. (40) and (46) or see [16,17], respectively.
Hence, we have well-defined generating series

Hoo(zi 1) = ) u HL(2), Doo(ziu) =Y (=) Dy (2),
r=0 r=0

of operators
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which are simultaneously diagonalised by the Macdonald symmetric functions. Com-
bining this fact with the latter expansion in (51), we arrive at the following lemma.

Lemma 3.14 For |q| < 1, we have the kernel identities
Hoo(z; u)T1(z; w) = Hoo(w; u)I1(z; w)
and
Doo(z; u)1(z; w) = Do (w; u)I1(z; w).
From Thm. 5.8 in [23], we recall that the homomorphism

Qon,m;q,t A~ An,m;q,ta pr(Zl’ 22, - ") = pr((xla .. 7-xn)7 (y17 e »ym); q, t)7

with the deformed Newton sums

r

n m
r l_q
pr(xs)’§qst)=zxi + l_t_rZ)’; (VEN*)s
Jj=l1

i=1

is surjective whenever ¢, t are non-special. (Note that ¢ in loc. cit. corresponds to !
here.) Assuming |g| < 1, we also recall that

‘pn,m;q,t(n(z; w)) = Hn,m;oo(xa Y w) (52)

with

Mmoo (X, yi w) = 1'[]"[(”"“”“ Do TITIC0-tjwe (53

iml ket KWK Qoo j=lk=1
see Property (ii) in Lemma 5.5 in [23].
Setting wy = O for k > N, with N € N* in (53), we obtain the meromorphic
function

m N
R o by KEUTSTIES oy PP

izl ket KiWE @)oo j=1k=1
= O, N 00x, ty; w), (54)
cf. (13). Hence, since H,, ,,, (x, y; u) and Dy, ;, (x, y; u) are invariantunder x — ¢x and
x — ty, we may substitute I, ,,.x for ®, ;.5 0 in the M = 0 instance of Theorem

2.1. By stability under reductions of the number of variables N, the resulting (sequence
of) kernel identities amount to

Hopm (x, y; Wy oo (X, ¥; w) = Hoo(z W) oo (X, y; w) (55)
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and

Dn,m(xv s u)nn,m;oo(xv v w) = Duo(z; u)nn,m;oo(x, Vv, w). (56)
Using Lemma 3.14 as well as (52) and (55), we deduce

Onm:q.t (Moo (2 Tz ) = @nmig.t (Hoo(w: w)T1(z; w))
= Hoo(W: 1) (@n.m:q. (2 w))
= Hunm (. y; ) (@n,m:q.1 11z w)).

Substituting the former expansion in (51) and comparing coefficients, we find that

(¢n,m;q,t o Hoo(u))pk = (Hn,m(u) o (pn,m;q,t)pA (57)

for all partitions A. Using (56) instead of (55), we obtain (57) with Hso (4) — Do (1)
and Hy, m (1) = Dy m(u).

Since the p; span A, the above arguments and Lemma 3.13 yield the following
result.

Theorem 3.15 For all q,t € C* that are not roots of unity, the diagrams

Pn,m;q.t
A A mig
M| 5
(/)n.m;c_g,t
A An,m;q,t

and

‘/)n,m;i’,t
A An,m;q,t
Dr

S

Dn,m;q.t
A 4 An,m;q.t

are commutative for all r € N.

Remark 3.16 This result has an interesting (algebro-)geometric interpretation. Assum-
ingq'/t! # 1foralli =1,...,nandj = 1,..., m,it was proved in Thm. 5.1 in [23]
that the algebra A, ;.4 is finitely generated, so that a corresponding (affine) variety

Anmiq.t = Spec Ap m:q.1

could be introduced. Restricting attention further to non-special parameter values
q, t, the homomorphism @y ..+ © A — Ay g, is surjective, and thus yields an
embedding ¢ : Ay g, — M, with M := Spec A called the (infinite-dimensional)
Macdonald variety.



24 Page 28 of 36 M. Hallnés et al.

Hence, for ¢, t non-special, the deformed NS operators Hz’m can be viewed as the
restrictions of the operators H{,, onto the subvariety A, .4, C M, and similarly for
the deformed MR operators D;, ,,
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Appendix A. Proofs of Lemmas

In this Appendix, we provide proofs of the Lemmas in the main text.

A.1 Commutativity
A.1.1 Proof of Lemma 3.1

From (13), it is readily inferred that the equality L, ,, (x, )@y m:n.0(x, ¥; 2) = 01s
equivalent to

nN(t Xiz: q) le—IU’yZ
> ane I oo T oyt =0
neN" veN” i=1j=1 2 D j=1 YiZj
[ul+|vi=d
We write this formula as
> @ e x, yi2) =0, (58)
neN" veN™
[l +[vi=<d
where
n N 1 m N —:
@ th] Q)u, I—1 'YiZj
X,y;2) = . _
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For (o, 8) € N" x N such that |o| + |8| < d, we take N = n 4+ dm — |B] and
specialise the z-variables to

Zap = (t/q" %1, 1/qx2, o 1/q  xns P yr P2y
e tﬁm+1/ym, tﬂm+2/ym, cees td/ym)'

Then we get

n . n m .
(xi/q% xj; @) (tﬁfxi/y/;q,t)m,d—ﬂj
Puv (X, 5 Za,) = — , :
o ¢ i,lj_=[l (1Xi /971X @) EJ]:[] X/ yi5 4, O a—p;
m

ﬁﬁ 1— 17y /g% x; ) 1—[ Pt =viyi/yii Dap;
1= 1y1/q% x; Pitlyi/yiiap;

i=1j=1 i j=1

where

k—11-1

(@ q. 0 =[][J0 —aq't)).

i=0 j=0
Since ¢, v (X, ¥; Zq,p) contains the “diagonal” factors
n

l—[ (™% q) ﬁ APt g,
g q)y, @it ) ap,;

it vanishes if u; > o; forsomei € {1,...,n}orifv; > B; forsome j € {1, ..., m},
which clearly entails that the z — z4, g specialisation of (58) is given by

da,p(X, Y)Pa, (X, V3 Za,p) + > )X i zag) =0. (59)

neN" veN"
el +[vI<lee|+B]

Now assume that L, ,,(x, y) is a non-zero difference operator. Then we letd € N
be the smallest non-negative integer such that ay g # 0 for some (o, ) € N* x N"
with |a| + |B] = d. By (59), we have aq g(x, y)¢a,s(x, ¥; za,8) = 0 and, since the
meromorphic function ¢y g(x, y; Za,g) is non-zero, it follows that a, g = 0. Hence
we have reached a contradiction and the lemma follows.

A.2 Harish-Chandra isomorphism
A.2.1 Proof of Lemma 3.7

We begin by recalling a few definitions and results from the literature that we make
use of in the proof.
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We write Ay ; for the algebra of complex polynomials p € C[z1, ..., zy] that are
symmetric in the “shifted” variables z1, zgt’l e thN’] , and note that it is filtered
by the degree of the polynomials:

AP, CAF co A, o (e,

with A f,rl the subspace of such polynomials of degree at most r. The inverse limit A;
of the filtered algebras Ay ; with respect to the homomorphisms

An:— An—1s, p@1s.. v 2N=1,2N) = p(21, ... 2n—1, 1) (N € N¥),

is the so-called algebra of shifted symmetric functions [18]. It is, for example, gener-
ated by the shifted power sums

prn =Y @ — ' (r e N

i>1
From Thm. 6.2 in [23], we recall that the algebra homomorphism
Camig P = Ao DE@ D) > PR Y g, 1), (60)

with the deformed shifted power sums

n
pECe yig ) =y (xf — 70 ¢

i=1

| — .
Y 0y =g e,
j=1

(61)

is surjective under the assumption that g, ¢ are non-special.
Our proof strategy is to exhibit shifted symmetric functions g’ (z) = g/ (z; ¢, 1)
(r € N¥) that freely generate A, and are such that @, .4,/ (g, (2)) = gE (x, y),cf. (41).
More specifically, let us consider the generating function expansion

N

@t Qoe (177U @)oo

* * r

(z;u) := . . = g (i, ... znu’ . (62)
N E (21 @)oo (zit' ™15 @)oo ;

Since the product is manifestly symmetric in the variables z;#!~, it is clear that
gr(z1,...,2n) € Aly,. Moreover, setting zy = 1 in (62), we find the following
stability properties:

Gy, ...oav—1, Liu) = Gy_ (21, ..., an—15 1),
gr(zi, ... an—1, 1) = g 21, ... Zn—1),
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so that we can define shifted symmetric functions g’ (z) as the coefficients of #” in the
power series expansion of the infinite product

G*(z; u) =

I @it U Qoo (173 @)oo

(tz_iu; q)oo (zit'"u; q)oo ’

i>1
Fixing r € N, we claim that the

g@=[]e@. =

i>1

constitute a basis in A~". To prove this claim, we may and shall work in Aﬁrt as long

as N > r, since the corresponding projection oy, : AT — Aﬁj\; is an isomorphism.
We observe that

g;k(zl, ..., IN) = gr(zl, szl, e, thlfN) + lower degree terms,

where g,(x1,...,xy) = gr(x1,...,XN; ¢, t) are the symmetric polynomials from
Eq. (2.8) in Section V1.2 of [16]:

1—[ (txiu; @)oo Zgr(xl,...,xN)u’.

(xitt; @)oo =0
Recalling from (2.19) in loc. cit. that the

&.(x1, ..., xy) = ngi(xl,~--,XN), Al =r,

i>1

form a basis in A’y, the claim is readily established by induction in r. In other words,
we have just shown that the g¥(z) (r € N*) freely generate the algebra of shifted
symmetric functions A;.

Next, we claim that

‘pr:z,m;q,t(g;k(z)) = gE(x, y) (re N*) (63)

Taking this claim for granted, it becomes clear that the polynomials g,J (x,y) (r e N¥)
generate An mig.t since go (60) is surjective and the shifted symmetric functions
gr (r € N¥) generate A;.

To complete the proof, there remains only to verify (63). Since we have no explicit

n,m;q,t

formulae for g and gE in terms of p} and pE, respectively, we shall work on the level
of generating functions. First, we deduce the equalities

1 —q“zitz_iu 1— qatl—iu
G*@w=[]]] ,

_ pga2—i _ 0. p1—i
izlazOl q%t*"'u 1 —q%zit' "lu
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=exp| Y D [log(l —g“zi* 'u) —log(1 — ¢“*'u)

i>1a>0

Flog(l — ¢~ u) — log(1 — q“zitl_iu)]>

urqar .
= exp ZZZ ; (1 —1")(z — =D

i>1 a>0r>1

u 1 —1"
= eXp 71—(]’

prz|. (64)

r>1

From (60), it follows that

1-1
1—gq"

u”
gOiuz,m;q,t(G*(Z; u)) = exp Z T pﬂ(X, y)

r>1

Substituting (61), reversing the steps in (64) and comparing the end result with (39),
we obtain

Op g (GF (@ W) = G,y (3, y3 ),

which clearly is equivalent to (63). This completes the proof of Lemma 3.7.

A.3 Restriction interpretation
A.3.1 Proof of Lemma 3.13

By the definition of Ry, m;q,, (47), it suffices to prove the claim for the deformed NS
operators H;’m (r € N*) and, for convenience, we shall work with their generating
function ‘H,, , (u) (11).

Observing that their coefficient functions B, ; (8) satisfy

B, (ox,ty) = BU—IH’T—II(X, y), (0,7)€ Sy X Sm,
it becomes clear that H,, ,, (x, y; u) commutes with the action of S, x S,:
(0,7) o Hum(x, y;u) = Hym(x, y;u) o (0, 7) (65)

forall (o,7) € S, x S.
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Given any f € Ay mq.r, We let
FZHnm(”)f
1—n
t
_ 7" us 9o Z Z tl “n gy (—p)lg (3 )BMITM T f.

(tu; 9) o peNn 1C(Tn

From (8), it is clear that F' is a rational function in x and y whose poles are at most
simple and located only along

.ijqki-xiy ki=0,1,-.~,/1/i, 151#]5”7 (66)
yi=yj, 1=i#j<m, (67)

or
yi=q"xi, yj=q¢""'xi, 1<i<n, 1<j<m. (68)

Moreover, thanks to the invariance property (65), F is symmetric in both x and y.
Hence it will follow that F is a polynomial once we can show that it has no poles of
the form (66)—(67) with j = 1 andi = 2 or (68) with j =i = 1.

First, we consider the y-independent poles (66) with j = 1 and i = 2. Let us fix
€ N" such that at least one of the elements 1, wy is non-zero, take 0 < ky < u»,
and let

i =opu—ky(er —ex) = (u2 — ko, 1 + ko, (3, - ., tn),
where o1, denotes the transposition that acts on . = (i1, ..., iU,) by interchanging
w1 and uo. We note that both By, ; and Bj; ; have a simple pole along x; = qk2x2. (In
the excluded case 1 = uo = 0 these operator coefficients, which then coincide, are

regular along x; = x3.) In order to compare the corresponding residues, we observe
that

A(ghx) = =A(gMx), x1=qFx,

whenever k; > 0; and that, when interpreted in terms of residues along x; — x7, the
equality holds true also for k; = 0. Combining this equality with the identity

@q"; @y (@3 Dy, = @q"%; Dzt (@5 Dy @ € C,
it is readily verified that
(1 = q*x2) By 1 (x, y) = =01 = ¢*x2)Bui(x,y), x1=¢"x2.
It follows that the residues along x| = ¢*2x, of the two terms in

-1 i =l
BuJqufxTz,y f+ BﬂJqufx Tt»y f
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cancel, and consequently that F has no poles of the form (66).

Second, we focus attention on the x-independent pole (67) with j = 1 and i = 2.
We note that B, ; is regular along y; = y, unless 1 € I and 2 ¢ I or vice versa. For
such an index set /I, it is clear from (8) that

1 = y2)Buopr(x,y) = =(y1 = y2)Bu1(x, y),  y1 =2,
so that the residues along y; = y; of the terms in
—opal
B, T“ T, f + By, 0121T’fxT,,yU'2 f

cancel and F is thus free of poles of the form (67).
Third, we handle the poles (68) withi = j = 1. Taking I C {I, ..., m} such that
1 ¢ I, we deduce

Bu+e1v.1(x,y) " 11—[<y1—q“ix- g Tx —6]’”)65)
Buiupy(x.y) gn —qtixi  qtx —qtix;

gy1 — xi  tq"x; — x;
t n—1
NG l_[ (fY1 —xi gt —x

— X 1 — tq#l

- (f
(t/q) - tyl_xl g

l—[ gy —yi  q"'x1—yi

iel yi—Ji
[|+1—m yi—Yyi q"xi—qyi
K [1 yi—aqyi qhxi—yi )
i¢1U{1} ! !

from which it clearly follows that By, ¢, 1 (x, y)/ By, jupy(x, y) = t”q‘”’m for y; =
\1\+1)
2

q"'x1. Since ( - (lél) = |I|, we can thus conclude that

|1] .
' g )M () g () (31 — ¢ X)) Byuser.1 (%, )
[+1 )
@ gmu)M (—) T g 5D (3 — M) B (. y) = 0, 31 = gMxg,

which, together with the symmetry condition (33) with i = j = 1, entails residue
cancelation along y; = g"!x1 in

(tl n mu)|lt|+l( tM)lIl ( )B ter, ]T +31T f

+t1 g ) =) g (D By oy T 1Y

and so F is regular also along the hyperplanes (68).
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In summary, we have shown that F is a S, x S,,-invariant polynomial in x and y,
and there remains only to verify the symmetry conditions (33). Restricting attention
to the hyperplane x; = y, we have the following implications:

() 1el= T, B =0,
W) w1 =21A1¢1=T,,Bu1=0,

) wy=0A1¢1= (Tq 1 = 173, Bur =0,

(V) w1 = ULAL ¢ 1= T, By +1"q" =" T, o Bu—ey 1011y = 0.

L,y

Implication (I) is due to the factor 1 —x /ty;, presentin the next to last productin B, j;
Implication (II) is due to 1 — x1/qy1, contained in the last product; and Implications
(IID)—(IV) are straightforward to verify by direct (albeit somewhat lengthy) computa-
tions when isolating the w1- and y;-dependent factors in By, ; and B, ju(1)-

By Implication (III), we have

(Tq,xl - ty F— Z Z nqmu)‘ﬂl(—tu)lllq(lé‘)

neN IC{l,...,m}
izl 1¢l
U1}

—1 —1I 11—
'(Tq,x| - T;,y1)(BM,1qul:th,y f - tnql | mBM*l’IJU{l}TM eth y f)

when x; = y;. Using Implications (I)—(II), we deduce

— — — TUf1
(qul —TZy‘l)(Bu,zT’“‘ Ty =1 " By 1 uT“ 7, f)
(T, leM 1+ tnqlll mTq X1 Bufehlu{l})TM Tt \y o }f7

which, by Implication (IV), vanishes along x; = y;. This concludes our verification
of the symmetry conditions (33), and the Lemma follows.
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