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Abstract
Kajihara obtained in 2004 a remarkable transformation formula connecting multiple
basic hypergeometric series associated with A-type root systems of different ranks. By
specialisations of his formula, we deduce kernel identities for deformed Macdonald–
Ruijsenaars (MR) and Noumi–Sano (NS) operators. The deformed MR operators
were introduced by Sergeev and Veselov in the first order case and by Feigin and
Silantyev in the higher order cases. As applications of our kernel identities, we prove
that all of these operators pairwise commute and are simultaneously diagonalised
by the super-Macdonald polynomials. We also provide an explicit description of the
algebra generated by the deformed MR and/or NS operators by a Harish-Chandra
type isomorphism and show that the deformed MR (NS) operators can be viewed as
restrictions of inverse limits of ordinary MR (NS) operators.
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1 Introduction

In the mid 1840s, Heine [12,13] introduced the basic hypergeometric series

2φ1

[
a, b
c

; q, u

]
=

∞∑
k=0

(a; q)k(b; q)k

(q; q)k(c; q)k
uk, (1)

with the q-Pochhammer symbol

(a; q)k = (a; q)∞
(aqk; q)∞

= (1 − a)(1 − aq) · · · (1 − aqk−1), (a; q)∞ =
∞∏
n=0

(1 − aqn),

as a natural q-deformation of Gauss’ hypergeometric series 2F1(a, b; c; z). For a
detailed account of such series, see e.g. Gasper and Rahman’s book [10]. Among
Heine’s many fundamental results is the transformation formula

2φ1

[
a, b
c

; q, u

]
= (abu/c; q)∞

(u; q)∞
2φ1

[
c/a, c/b

c
; q, abu/c

]
, (2)

which can be viewed as a q-analogue of Euler’s transformation formula for 2F1.
Kajihara’s formula [14] (see also [15]), which is our starting point in this paper,

is a far-reaching generalisation of Heine’s formula (2), connecting multiple basic
hypergeometric series associated with root systems of type A of different ranks.

Other key objects in the paper are particular generalisations of the Macdonald–
Ruijsenaars (MR) q-difference operators Dr

n , r = 0, 1, . . . , n. From Chapter VI in
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Macdonald’s book [16], we recall the elegant and explicit definition in terms of the
generating series

Dn(x; u) =
∑

I⊆{1,...,n}
(−u)|I |t(

|I |
2 )

∏
i∈I , j /∈I

t xi − x j
xi − x j

·
∏
i∈I

Tq,xi

=
n∑

r=0

(−u)r Dr
n(x), (3)

where Tq,xi denotes the q-shift operator with respect to xi . (Here and below, we sup-
press the dependence on the parameters q and t whenever ambiguities are unlikely to
arise.) Up to a change of gauge and variables, the q-difference operators Dr

n coincide
with the trigonometric version of the difference operators Ŝr introduced by Ruijse-
naars’ [19], who proved that they commute, and thus define a quantum integrable
system. We note that he obtained these results even at the more general elliptic level.

In a more recent development, Noumi and Sano [17] introduced an infinite family
of commuting q-difference operators Hr

n , r ∈ N, given by the expansion

Hn(x; u) =
∑

μ∈Nn

u|μ| �(qμx)

�(x)

n∏
i, j=1

(t xi/x j ; q)μi

(qxi/x j ; q)μi

·
n∏

i=1

Tμi
q,xi

=
∞∑
r=0

ur Hr
n (x), (4)

with

�(x) =
∏

1≤i< j≤n

(xi − x j ),

and proved that they generate the same commutative algebra as the MR operators Dr
n ,

r = 1, . . . , n, to which they are related through a Wronski-type formula. Throughout
the paper, we refer to the operators Hr

n as the Noumi–Sano (NS) operators.
Remarkably, the MR and NS operators can be unified in a family of commuting

difference operators Dr
n,m(x, y; q, t), r ∈ N, in two sets of variables x = (x1, . . . , xn)

and y = (y1, . . . , ym), which reduce to Dr
n(x; q, t) and Hr

m(y; t−1, q−1) for m = 0
and n = 0, respectively. Such difference operators first appeared in the m = 1 case
in work by Chalykh [4,5]. Sergeev and Veselov [21,23] introduced and studied the
r = 1 operators for general n,m ∈ N, while the r > 2 operators are due to Fei-
gin and Silantyev [9], who, in particular, proved commutativity. The operators Dr

n,m
can be considered as natural difference analogues of so-called deformed (trigonomet-
ric) Calogero–Moser–Sutherland operators [6,20–22], which, in turn, are intimately
related to Lie superalgebras [20,21], β-ensembles of random matrices [7], as well as
conformal field theory and the fractional quantum Hall effect [3].

In this paper, we establish an intriguing connection between Kajihara’s trans-
formation formula and Feigin and Silantyev’s difference operators Dr

n,m(x, y): By
specialisations of the former, we obtain so-called kernel identities of the form
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(Dn,m(x, y; u) − DN ,M (z, w; u))�n,m;N ,M (x, y; z, w) = 0

for the renormalised generating series

Dn,m(x, y; u) = (qmt−nu; t−1)∞
(u; t−1)∞

∞∑
r=0

(−u)r Dr
n,m(x, y),

where (n,m), (N , M) ∈ N
2 can be chosen arbitrarily. For the r = 1 difference

operators such identities were previously obtained by Atai and two of the authors [1].
Our kernel function �n,m;N ,M is an explicitly given meromorphic function, which

reduces to Macdonald’s (reproducing) kernel function � whenm = M = 0; see, e.g.,
Section VI.3 in [16] for corresponding kernel identities involving Dn (3) and [17] for
identities relating Hn with Hm and Dn with Hm .

In addition, we obtain kernel identities involving a ‘dual’ family of difference
operators Hr

n,m(x, y; q, t), r ∈ N, in which the roles of the two sets of variables are
interchanged, and which specialise to Hr

n (x; q, t) when m = 0 and Dr
m(y; t−1, q−1)

in case n = 0.
In keeping with earlier literature on the subject, we shall refer to the difference

operators Dr
n,m and Hr

n,m as deformed MR operators and deformed NS operators,
respectively. Their precise definition is given in Sect. 2, where the corresponding
kernel identities, alluded to above, are also formulated and proved.

In Sect. 3, we detail a number of applications of our kernel identities. From the
known commutativity of the ordinary MR and NS operators, we infer in Sect. 3.1
that their deformed counterparts all commute with each other. In Sect. 3.2, we show
that the so-called super-Macdonald polynomials [23] are joint eigenfunctions of the
deformed MR and NS operators, and we also compute the corresponding joint eigen-
values explicitly. Again, we rely on known eigenfunction properties of the ordinary
MR and NS operators. Section 3.3 contains a simple and explicit description of the
commutative algebraRn,m generated by the deformed NS operators Hr

n,m (r ∈ N) by
an Harish-Chandra type isomorphism to an algebra of polynomials in n + m vari-
ables with suitable symmetry properties. As corollaries, we establish Wronski type
recurrence relations for the deformed MR and NS operators, and thereby show that
the deformed MR operators Dr

n,m (r ∈ N) provide another set of generators forRn,m .
In addition, we infer that the first n + m operators Dr

n,m , or alternatively Hr
n,m , are

algebraically independent, and thus define an integrable system. For the former opera-
tors, this was first shown by Feigin and Silantyev [9]. Finally, in Sect. 3.4, we provide
an interpretation of the deformed MR and NS operators as particular restrictions of
operators on the algebra of (complex) symmetric functions. This generalises results
of Sergeev and Veselov [23] on the r = 1 case.

As we prove in the paper [11], some of these results, including kernel identities and
commutativity, generalise to the elliptic level.

The proofs of the various lemmas in the main text are collected in Appendix A.
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Notation

We use the convention N = {0, 1, 2, . . .} and let N∗ = N\{0}. Unless otherwise
specified, we follow Macdonald’s book [16] for notation and terminology from the
theory of symmetric functions.

2 Kernel identities

This section is devoted to the formulation and proof of our main result. To this end,
we recall in Sect. 2.1 Kajihara’s transformation formula, whereas Sect. 2.2 contains
definitions of the deformedMR and NS operators. The corresponding kernel identities
are then stated and proved in Sect. 2.3.

2.1 Kajihara’s transformation formula

Let K , L ∈ N
∗. Given four vectors of (complex) variables

(a1, . . . , aK ), (X1, . . . , XK ) ∈ C
K , (b1, . . . , bL), (c1, . . . , cL) ∈ C

L ,

we recall Kajihara and Noumi’s [15] multiple basic hypergeometric series

φK ,L
(

a1, . . . , aK
X1, . . . , XK

b1, . . . , bL
c1, . . . , cL

; u
)

=
∑

γ∈NK

u|γ | �(qγ X)

�(X)

K∏
i, j=1

(a j Xi/X j ; q)γi

(qXi/X j ; q)γi
·

K∏
i=1

L∏
k=1

(Xibk; q)γi

(Xick; q)γi
, (5)

where

�(X) =
∏

1≤i< j≤K

(Xi − X j ).

For general values of a j ( j = 1, . . . , K ), bk (k = 1, . . . , L) and c ∈ C, Kajihara [14]
established the transformation formula

φK ,L
(

a1, . . . , aK
X1, . . . , XK

b1Y1, . . . , bLYL
cY1, . . . , cYL

; u
)

= (αβu/cL ; q)∞
(u; q)∞

φL,K
(
c/b1, . . . , c/bL
Y1, . . . , YL

cX1/a1, . . . , cXK /aK
cX1, . . . , cXK

;αβu/cL
)

, (6)

where

α := a1 . . . aK , β := b1 . . . bL .
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In the special case K = L = 1, it is readily seen that

φ1,1
(
a
X

b
c
; u

)
= 2φ1

[
a, bX
cX

; q, u

]

and that (6) reduces to Heine’s transformation formula (2) (with b → bXY and
c → cXY ).

2.2 Deformed NS andMR operators

Here and throughout the paper, we assume that q, t ∈ C
∗ are not roots of unity to

ensure that, in particular, all of the operators in question are well-defined.
To an n-tuple μ ∈ N

n , we associate the q-difference operator

T±μ
q,x :=

n∏
i=1

T±μi
q,xi ,

which acts on meromorphic functions in x = (x1, . . . , xn) according to

T±μ
q,x f (x1, . . . , xn) = f

(
q±μ1x1, . . . , q

±μn xn
)
.

Moreover, we find it convenient to identify subsets I ⊆ {1, . . . ,m} with m-tuples
(I1, . . . , Im) ∈ {0, 1}m , where Ii = 1 when i ∈ I and Ii = 0 otherwise. With this
identification in place, we have

T±I
t,y =

∏
i∈I

T±1
t,yi .

We can now define the deformed NS operators Hr
n,m (r ∈ N) by the generating

series

Hn,m(x, y; u) =
∑

μ∈Nn

∑
I⊆{1,...,m}

(t1−nqmu)|μ|(−tu)|I |q(|I |
2 )Bμ,I (x, y)T

μ
q,x T

−I
t,y

=
∞∑
r=0

ur Hr
n,m(x, y; q, t), (7)

with coefficient functions

Bμ,I (x, y) = �(qμx)
�(x)

∏n
i, j=1

(t xi /x j ;q)μi
(qxi /x j ;q)μi

· ∏
1 ≤ i, j ≤ m
i ∈ I , j /∈ I

yi−qy j
yi−y j

·∏n
i=1

(∏
j∈I

1−xi /t y j
1−qμi xi /y j

· ∏
j /∈I

1−xi /qy j
1−qμi−1xi /y j

)
, (8)

and where |μ| = ∑m
i=1 μi and |I | denotes the cardinality of I .
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Setting m = 0 in (7)–(8) and comparing the resulting expressions with (4), we see
that Hn,0(x; u; q, t) = Hn(x; t1−nu; q, t). On the other hand, taking n = 0, we find
that H0,m(y; u; q, t) = Dm(y; tqm−1u; t−1, q−1), cf. (3).

We obtain the deformed MR operators by interchanging n ↔ m, x ↔ y and
q ↔ t−1 as well as scaling u → qu in the deformed NS operators. More precisely,
we have

Dn,m(x, y; u; q, t) = Hm,n(y, x; qu; t−1, q−1)

=
∞∑
r=0

(−u)r Dr
n,m(x, y; q, t).

(9)

Introducing the coefficient functions

AI ,μ(x, y) =
∏

1≤i, j≤n
i∈I ; j /∈I

xi − t−1x j
xi − x j

· �(t−μy)

�(y)

m∏
i, j=1

(yi/qy j ; t−1)μi

(yi/t y j ; t−1)μi

·
m∏
i=1

⎛
⎝∏

j∈I

1 − qyi/x j
1 − t−μi yi/x j

·
∏
j /∈I

1 − t yi/x j
1 − t1−μi yi/x j

⎞
⎠ , (10)

we get the explicit formula

Dn,m(x, y; u) =
∑

I⊆{1,...,n}

∑
μ∈Nm

(qmt−nu)|μ|(−u)|I |t−(|I |
2 )AI ,μ(x, y)T I

q,x T
−μ
t,y

=
∞∑
r=0

(−u)r Dr
n,m(x, y),

We note the special cases Dn,0(x; u) = Dn(x; t1−nu) and D0,m(y; u; q, t) =
Hm(y; qmu; t−1, q−1). In the general case, Dr

n,m should be compared with M−br in
Eq. (4.19) of [9]. Indeed, after invoking the elementary identity

�(t−μy)

�(y)

n∏
i, j=1

1

(yi/t y j ; t−1)μi

= (−1)|μ|t |μ|(|μ|+1)/2
n∏

i, j=1

1

(tμ j yi/y j ; t−1)μi

,

it is readily seen that the former may be viewed as a multiplicative form of the latter
additive difference operators.

2.3 Kernel identities

We proceed to state and prove our kernel identities for the deformed MR and NS
operators.
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Our result takes a particularly simple formwhen expressed in terms of the modified
generating series

Hn,m(x, y; u) = (t1−nqmu; q)∞
(tu; q)∞

Hn,m(x, y; u) (11)

and

Dn,m(x, y; u) = (qmt−nu; t−1)∞
(u; t−1)∞

Dn,m(x, y; u), (12)

cf. (9) and (7).
Under the assumption that |q| < 1 and |t | > 1, we define the mero-

morphic function �n,m;N ,M (x, y; z, w) = �n,m;N ,M (x, y; z, w; q, t) in n + m
variables (x, y) = ((x1, . . . , xn), (y1, . . . , ym)) and N + M variables (z, w) =
((z1, . . . , zN ), (w1, . . . , wM )) by

�n,m;N ,M (x, y; z, w) =
n∏

i=1

N∏
j=1

(xi z j ; q)∞
(t−1xi z j ; q)∞

·
m∏
i=1

M∏
j=1

(yiw j ; t−1)∞
(qyiw j ; t−1)∞

·
n∏

i=1

M∏
j=1

(1 − xiw j ) ·
m∏
i=1

N∏
j=1

(1 − yi z j ). (13)

The following theorem constitutes our main result.

Theorem 2.1 For 0 < |q| < 1 and |t | > 1, we have the kernel identities

Hn,m(x, y; u)�n,m;N ,M (x, y; z, w) = HN ,M (z, w; u)�n,m;N ,M (x, y; z, w) (14)

and

Dn,m(x, y; u)�n,m;N ,M (x, y; z, w) = DN ,M (z, w; u)�n,m;N ,M (x, y; z, w). (15)

Proof From(7) and (11)–(12),wehaveHn,m(x, y; u; q, t) = Dm,n(y, x; tu; t−1, q−1).
Hence, thanks to the manifest symmetry property

�n,m;N ,M (x, y; z, w; q, t) = �m,n;M,N (y, x;w, z; t−1, q−1),

it suffices to prove the kernel identity (14), say.
Taking c = 1, bk → 1/bk (which entails β → 1/β) and u → u/α in (6) and

substituting the expression (5) for φK ,L , we deduce the identity

(u/α; q)∞
(u; q)∞

∑
γ∈NK

(u/α)|γ | �(qγ X)

�(X)
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·
K∏

i, j=1

(a j Xi/X j ; q)γi

(qXi/X j ; q)γi
·

K∏
i=1

L∏
k=1

(XiYk/bk; q)γi

(XiYk; q)γi

= (u/β; q)∞
(u; q)∞

∑
δ∈NL

(u/β)|δ| �(qδY )

�(Y )

·
L∏

k,l=1

(blYk/Yl; q)δk

(qYk/Yl; q)δk
·

L∏
k=1

K∏
i=1

(Yk Xi/ai ; q)δk

(Yk Xi ; q)δk
. (16)

Choosing K = n + m and L = N + M , we specialise the variables according to

Xi = xi , ai = t (i = 1, . . . , n); Xn+i = yi , an+i = q−1 (i = 1, . . . ,m);
Yk = zk, bk = t (k = 1, . . . , N ); YN+k = wk, bN+k = q−1 (k = 1, . . . , M).

(17)

Focusing first on the left-hand side of the resulting identity, we note that, due to the
presence of the factors

m∏
i=1

(an+i Xn+i/Xn+i ; q)γn+i

(qXn+i/Xn+i ; q)γn+i

=
m∏
i=1

(q−1; q)γn+i

(q; q)γn+i

,

we only obtain non-zero terms when the components γn+i of γ ∈ N
n+m take the value

0 or 1. Hence we may and shall restrict the summation to n + m-tuples γ = (μ, I )
with μ = (μ1, . . . , μn) ∈ N

n and I ⊆ {1, . . . ,m}, where, as previously indicated,
we identify such a subset I with the m-tuple (I1, . . . , Im) ∈ {0, 1}m characterised
by Ii = 1 if and only if i ∈ I . Using the elementary identity (qa; q)k/(a; q)k =
(1 − qμi a)/(1 − a), we thus find that the left-hand side of the pertinent identity is
given by

(ut−nqm; q)∞
(u; q)∞

∑
μ∈Nn

∑
I⊆{1,...,m}

(ut−nqm)|μ|+|I | �(qμx)

�(x)

�(q I y)

�(y)

n∏
i=1

m∏
j=1

qμi xi − q I j y j
xi − y j

·
n∏

i=1

⎛
⎝ n∏

j=1

(t xi/x j ; q)μi

(qxi/x j ; q)μi

·
m∏
j=1

(xi/qy j ; q)μi

(qxi/y j ; q)μi

⎞
⎠ ·

∏
i∈I

⎛
⎝ n∏

j=1

1 − t yi/x j
1 − qyi/x j

·
m∏
j=1

1 − yi/qy j
1 − qyi/y j

⎞
⎠

·
n∏

i=1

(
N∏

k=1

(xi zk/t; q)μi

(xi zk; q)μi

·
M∏
k=1

1 − qμi xiwk

1 − xiwk

)
·
∏
i∈I

(
N∏

k=1

1 − yi zk/t

1 − yi zk
·

M∏
k=1

1 − qyiwk

1 − yiwk

)
.
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We rewrite the factors depending only on y,

�(q I y)

�(y)

∏
i∈I

m∏
j=1

1 − yi/qy j
1 − qyi/y j

= q(|I |
2 )

∏
1≤i, j≤m
i∈I , j /∈I

qyi − y j
yi − y j

·
∏
i∈I

1 − q−1

1 − q

·
∏
i, j∈I
i< j

1 − yi/qy j
1 − qyi/y j

1 − y j/qyi
1 − qy j/yi

·
∏

1≤i, j≤m
i∈I , j /∈I

1 − yi/qy j
1 − qyi/y j

= (−1)|I |q(|I |
2 )−m|I | ∏

1≤i, j≤m
i∈I , j /∈I

yi − qy j
yi − y j

,

and the factors depending on both x and y,

n∏
i=1

m∏
j=1

qμi xi − q I j y j
xi − y j

·
n∏

i=1

m∏
j=1

(xi/qy j ; q)μi

(qxi/y j ; q)μi

·
∏
i∈I

n∏
j=1

1 − t yi/x j
1 − qyi/x j

= q |I |n
n∏

i=1

⎛
⎝∏

j∈I

1 − qμi−1xi/y j
1 − xi/y j

·
∏
j /∈I

1 − qμi xi/y j
1 − xi/y j

⎞
⎠

·
n∏

i=1

m∏
j=1

(xi/qy j ; q)μi

(qxi/y j ; q)μi

·
∏
i∈I

n∏
j=1

1 − t yi/x j
1 − qyi/x j

= t |I |n
n∏

i=1

⎛
⎝∏

j∈I

1 − xi/t y j
1 − qμi xi/y j

·
∏
j /∈I

1 − xi/qy j
1 − qμi xi/qy j

⎞
⎠ .

In this way, we find that, when specialised at (17), the left-hand side of (16) is given
by

(ut−nqm; q)∞
(u; q)∞

∑
μ∈Nn

∑
I⊆{1,...,m}

(ut−nqm)|μ|(−u)|I |q(|I |
2 )

�(qμx)

�(x)

·
n∏

i, j=1

(t xi/x j ; q)μi

(qxi/x j ; q)μi

·
∏

1≤i, j≤m
i∈I , j /∈I

yi − qy j
yi − y j

·
n∏

i=1

⎛
⎝∏

j∈I

1 − xi/t y j
1 − qμi xi/y j

·
∏
j /∈I

1 − xi/qy j
1 − qμi xi/qy j

⎞
⎠

·
n∏

i=1

(
N∏

k=1

(xi zk/t; q)μi

(xi zk; q)μi

·
M∏
k=1

1 − qμi xiwk

1 − xiwk

)
·
∏
i∈I

(
N∏

k=1

1 − yi zk/t

1 − yi zk
·

M∏
k=1

1 − qyiwk

1 − yiwk

)
. (18)
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Using the functional equation (z; q)∞ = (1−z)(qz; q)∞, a direct computation yields

Tμ
q,x T

−I
t,y

(
�n,m;N ,M (x, y; z, w)

)
�n,m;N ,M (x, y; z, w)

=
n∏

i=1

(
N∏

k=1

(xi zk/t; q)μi

(xi zk; q)μi

·
M∏
k=1

1 − qμi xiwk

1 − xiwk

)

·
∏
i∈I

(
N∏

k=1

1 − yi zk/t

1 − yi zk
·

M∏
k=1

1 − qyiwk

1 − yiwk

)
.

Multiplying this expression with (t−nqmu)|μ|(−u)|I |q(|I |
2 )Bμ,I (x, y), we obtain the

(μ, I )-term in (18). In other words, the specialisation of the left-hand side of (16) to
(17) equals �−1

n,m;N ,MHn,m(x, y; t−1u)�n,m;N ,M .
We observe that the specialisation of the right-hand side of (16) is obtained from

its left-hand side by interchanging (n,m) ↔ (N , M) and (x, y) ↔ (z, w) as well as
relabelling μ → ν. Due to the manifest symmetry property

�n,m;N ,M (x, y; z, w) = �N ,M;n,m(z, w; x, y),

it follows that the right-hand side of (16), when specialised to (17), is given by
�−1

n,m;N ,MHN ,M (z, w; t−1u)�n,m;N ,M . This concludes the proof of the kernel identity
(14). 	

Remark 2.2 Byminormodifications of the above proof, we can obtain kernel identities
for the parameter regime |q|, |t | < 1, but only for the deformed NS generating series
Hn,m (11). (Indeed, the MR generating series Dn,m (12) is well-defined only when
|t | > 1.) More precisely, starting from the identity obtained by taking x → t x and
y → t y in (16) after specialising to (17), it is readily seen that (14) holds true for
|q|, |t | < 1 if we replace �n,m;N ,M by the meromorphic function

�n,m;N ,M (x, y; z, w) :=
n∏

i=1

N∏
j=1

(t xi z j ; q)∞
(xi z j ; q)∞

·
m∏
i=1

M∏
j=1

(qtyiw j ; t)∞
(t yiw j ; t)∞

·
n∏

i=1

M∏
j=1

(1 − t xiw j ) ·
m∏
i=1

N∏
j=1

(1 − t yi z j ). (19)

Remark 2.3 We note that �n,0;n,0(x; z) and �n,0;n,0(x; z) coincide with Macdonald’s
kernel function �(x; z), with x = (x1, . . . , xn) and z = (z1, . . . , zn). (To be precise,
we need to take xi → t xi in �n,0;n,0(x; z).) We recall that �(x; z) is the reproducing
kernel of Macdonald’s scalar product 〈·, ·〉n on �n , defined in Section VI.3 in [16] by

〈gλ,mμ〉n = δλμ

for partitions λ, μ of length at most n. One might expect that �n,m;n,m and �n,m;n,m ,
with both n,m > 0, can be interpreted as the reproducing kernel of a natural scalar
product on the algebra of polynomials �n,m;q,t (see Sect. 3.2), defined in terms of
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suitable ‘deformed’ analogues of gλ and mλ and with respect to which the super-
Macdonald polynomials should be orthogonal. We hope to explore this possibility
elsewhere.

3 Applications

In this section, we detail a number of applications of Theorem 2.1. They include
the commutativity of the deformed NS and MR operators; a derivation of their joint
eigenfunctions and eigenvalues; an explicit construction of a Harish-Chandra type
isomorphism, characterising the commutative algebra generated by the deformed NS
(and/or MR) operators; as well as a generalisation of the restriction picture for the first
order operators in [23] to all higher order operators.

We note that intermediate computations, involving kernel functions and generating
series, may require restrictions on q, t of the form |q| < 1 and/or |t | > 1. To ease the
exposition, we shall not spell out the specific restrictions that are needed whenever
they are easily identified from the context at hand.

3.1 Commutativity

We find it convenient to work with the difference operators Hr
n,m(x, y) (r ∈ N) and

Dr
n,m(x, y) (r ∈ N) defined as the coefficients of ur in the power series expansion of

Hn,m(x, y; u) (11) and Dn,m(x, y; u) (12), respectively:

Hn,m(x, y; u) =
∞∑
r=0

urHr
n,m(x, y), (20)

and

Dn,m(x, y; u) =
∞∑
r=0

(−u)rDr
n,m(x, y). (21)

We begin by recording the following important technical result.

Lemma 3.1 Let Ln,m(x, y) be a difference operator in (x, y) of the form

Ln,m(x, y) =
∑

μ∈Nn ,ν∈Nm

|μ|+|ν|≤d

aμ,ν(x, y)T
μ
q,x T

−ν
t,y ,

withmeromorphic coefficients aμ,ν(x, y)andd ∈ N. If Ln,m(x, y)�n,m;N ,0(x, y; z) =
0 for all N ∈ N

∗, then Ln,m(x, y) ≡ 0 as a difference operator.

Proof The proof is given in Appendix A.1.1. 	
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Comparing (4) with (7) and (11), we see that

HN ,0(z; u) = (t1−Nu; q)∞
(tu; q)∞

HN (z; t1−Nu)

= (t1−Nu; q)∞
(tu; q)∞

∞∑
r=0

(
t1−Nu

)r
Hr
N (z).

From the commutativity of the NS operators Hr
N , we thus get

[HN ,0(z; u),HN ,0(z; v)
] = 0.

Taking M = 0 in (14), we can now deduce

Hn,m(x, y; u)Hn,m(x, y; v)�n,m;N ,0(x, y; z)
= HN ,0(z; v)HN ,0(z; u)�n,m;N ,0(x, y; z)
= HN ,0(z; u)HN ,0(z; v)�n,m;N ,0(x, y; z)
= Hn,m(x, y; v)Hn,m(x, y; u)�n,m;N ,0(x, y; z),

so that

[Hn,m(x, y; u),Hn,m(x, y; v)
]
�n,m;N ,0(x, y; z) = 0,

or equivalently

[Hr
n,m(x, y),Hs

n,m(x, y)
]
�n,m;N ,0(x, y; z) = 0 (r , s ∈ N).

Hence, fixing r , s ∈ N and letting

Ln,m(x, y) = [Hr
n,m(x, y),Hs

n,m(x, y)
]
,

we have Ln,m(x, y)�n,m;N ,0(x, y; z) = 0 for all N ∈ N
∗. It follows from Lemma 3.1

that Ln,m(x, y) ≡ 0, i.e. that Hr
n,m and Hs

n,m commute as difference operators.
Repeating the above reasoning with either one or both of Hn,m(x, y; u) and

Hn,m(x, y; v) replaced by Dn,m(x, y; u) and Dn,m(x, y; v), respectively, we arrive
at the following result.

Theorem 3.2 The deformed NS operators Hr
n,m (r ∈ N) and MR operators Dr

n,m
(r ∈ N) all commute with each other:

[Hr
n,m,Hs

n,m

] = [Dr
n,m,Ds

n,m

] = [Hr
n,m,Ds

n,m

] = 0 (r , s ∈ N).
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3.2 Joint eigenfunctions

Next, we show that the deformed MR and NS operators are simultaneously diago-
nalised by the so-called super Macdonald polynomials, introduced in [23] as certain
restrictions of Macdonald symmetric functions and recently shown to be orthogonal
with respect to a natural hermitian form [2]. Here we pursue a somewhat different
approach: From the kernel identities in Theorem 2.1 and well-known results on ordi-
nary Macdonald polynomials, we recover an expression for the super Macdonald
polynomials in terms of the ordinaryMacdonald polynomials and deduce correspond-
ing eigenvalue equations with explicit expressions for the eigenvalues.

For notation and terminology regarding symmetric functions in general and Mac-
donald symmetric functions (and polynomials) in particular, we follow Macdonald’s
book [16].

Unless otherwise specified, we assume throughout this and the following sections
that

qi t j �= 1 for all i, j ∈ N such that i + j ≥ 1, (22)

which, in particular, ensures that theMacdonald functions are well-defined. Following
Sergeev and Veselov [23], we use the terminology non-special for values of q, t ∈ C

∗
satisfying (22).

Setting M = 0 in the kernel function (13), we define polynomials SPλ(x, y) =
SPλ(x, y; q, t) as the appropriately scaled coefficients of the (dual) Macdonald poly-
nomials Qλ(z) = Qλ(z; q, t) in its power series expansion in the variables z1, . . . , zN :

�n,m;N ,0(x, y; z) =
∑

l(λ)≤N

t−|λ|SPλ(x, y)Qλ(z). (23)

Assuming N ≥ n, we recall from Sections VI.4–5 in [16] that

n∏
i=1

N∏
j=1

(xi z j ; q)∞
(t−1xi z j ; q)∞

=
∑

l(μ)≤n

t−|μ|Pμ(x)Qμ(z),

m∏
i=1

N∏
j=1

(1 − yi z j ) =
∑

ν⊆(mN )

(−1)|ν|Qν′(y; t, q)Qν(z; q, t).

It follows that

�n,m;N ,0(x, y; z; q, t)

=
∑

l(μ)≤n

∑
ν⊆(mN )

t−|μ|(−1)|ν|Pμ(x; q, t)Qν′(y; t, q)Qμ(z; q, t)Qν(z; q, t).

Letting ĉλ
μ,ν(q, t) denote the Littlewood–Richardson type coefficients for Qλ(z; q, t),

Qμ(z; q, t)Qν(z; q, t) =
∑

l(λ)≤N

ĉλ
μ,ν(q, t)Qλ(z; q, t), (24)
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we get

�n,m;N ,0(x, y; z; q, t)

=
∑

l(λ)≤N

t−|λ|
⎛
⎝ ∑

l(μ)≤n

∑
ν⊆(mN )

(−t)|ν|ĉλ
μ,ν(q, t)Pμ(x; q, t)Qν′ (y; t, q)

⎞
⎠ Qλ(z; q, t),

where we have used the fact that ĉλ
μ,ν(q, t) �= 0 only if |λ| = |μ| + |ν|, which is a

direct consequence of Qλ(z) being a homogeneous polynomial of degree |λ|.
Since ĉλ

μ,ν(q, t) = 0 unless μ, ν ⊆ λ (cf. Section VI.7 in [16]), l(λ) ≤ N and
Qν′((y1, . . . , ym); t, q) ≡ 0 if ν1 > m, we can replace the summation criterion
ν ⊆ (mN ) by ν ⊆ λ, say. Comparing the resulting expansion with (23), we see that

SPλ(x, y; q, t) =
∑

l(μ)≤n

∑
ν⊆λ

(−t)|ν|ĉλ
μ,ν(q, t)Pμ(x; q, t)Qν′(y; t, q), (25)

where λ can be any partition, since N (≥ n) can be chosen arbitrarily large.
Using the skew Macdonald polynomials

Pλ/ν(x; q, t) =
∑
μ

ĉλ
μ,ν(q, t)Pμ(x; q, t),

we can rewrite this expression as

SPλ(x, y; q, t) =
∑
ν⊆λ

(−t)|ν|Pλ/ν(x; q, t)Qν′(y; t, q). (26)

A direct comparison with Eq. (22) in Sergeev and Veselov’s paper [23] reveals
that these polynomials are precisely the so-called super Macdonald polynomials, as
defined by Eq. (23) in loc. cit.. (Note their use of the inverse t−1 of the parameter
t used here and that H(λ, q, t)/H(λ′, t, q) = (−t)−|λ|bλ′(t−1, q), cf. the equation
above (6.19) in Chapter VI of [16].)

In analogy with Macdonald’s definition of Qλ, we let

SQλ(x, y) = bλSPλ(x, y)

with

bλ =
∏
s∈λ

1 − qa(s)t l(s)+1

1 − qa(s)+1t l(s)
, (27)

where a(s) = λi − j and l(s) = λ′
j −i denote the arm- and leg length of s = (i, j) ∈ λ

respectively.
In the following proposition, we record two symmetry properties of the super Mac-

donald polynomials that we have occasion to invoke below.
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Proposition 3.3 For all λ ∈ Hn,m and non-special q, t , we have

SPλ(x, y; q−1, t−1) = SPλ(x, q
−1t−1y; q, t), (28)

SQλ′(y, x; t−1, q−1) = (−q)−|λ|SPλ(x, y; q, t). (29)

Proof From (4.14)(iv) in Chapter VI of [16], we recall

Pλ(x; q−1, t−1) = Pλ(x; q, t), Qλ(x; q−1, t−1) = (qt−1)|λ|Qλ(x; q, t); (30)

and using (7.3) in loc. cit., we thus infer

ĉλ
μ,ν(q

−1, t−1) = ĉλ
μ,ν(q, t). (31)

ĉλ′
μ′,ν′(t−1, q−1) = ĉλ′

μ′,ν′(t, q) = ĉλ
μ,ν(q, t)bλ(q, t)/bμ(q, t)bν(q, t). (32)

Keeping (25) in mind, we see that (28) is a simple consequence of (30), (31) and the
fact that Qν′(y) is a homogeneous polynomial of degree |μ|. Furthermore, appealing
to (30) as well as (32), we deduce

SQλ′(y, x; t−1, q−1)

= bλ′(t−1, q−1)bλ(q, t)
∑
μ,ν

(−t)−|ν|ĉλ
μ,ν(q, t)Pν(x; q, t)

Pμ′(y; t, q)

bμ(q, t)
.

Utilising (27), it is readily seen that bλ′(t−1, q−1) = (q−1t)|λ|/bλ(q, t) and bμ(q, t) =
1/bμ′(t, q), which clearly entails (29). 	


We recall that, by analysing (26), Sergeev and Veselov showed that SPλ(x, y)
vanishes identically unless λ is contained in the set of partitions Hn,m , consisting of
all partitions λ such that λn+1 ≤ m, or equivalently, the diagram of λ is contained in the
so-called fat (n,m)-hook; and the non-zero super Macdonald polynomials SPλ(x, y)
(λ ∈ Hn,m) form a basis in �n,m;q,t , the algebra of (complex) polynomials p(x, y) in
n + m variables x = (x1, . . . , xn) and y = (y1, . . . , ym) that are symmetric in each
set of variables separately,

p(σ x, τ y) = p(x, y) ((σ, τ ) ∈ Sn × Sm),

and satisfy the additional symmetry conditions

(
Tq,xi − T−1

t,y j

)
p(x, y) = 0 along xi = y j (i = 1, . . . , n, j = 1, . . . ,m), (33)

cf. Thm. 5.6 in [23].
To establish the desired eigenvalue equations, we focus first on the deformed NS

operators. Specifically, taking M = 0 in (14), we obtain

Hn,m(x, y; u)�m,m;N ,0(x, y; z) = (t1−Nu; q)∞
(tu; q)∞

HN (z; t1−Nu)�n,m;N ,0(x, y; z), (34)
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and from Eq. (5.17) in [17], we infer

HN (z; t1−Nu)Qλ(z) = Qλ(z)
N∏
i=1

(qλi t2−i u; q)∞
(qλi t1−i u; q)∞

(l(λ) ≤ N ).

For λ ∈ Hn,m , we introduce the product

Gλ(u) =
∏
i≥1

(qλi t2−i u; q)∞
(t2−i u; q)∞

(t1−i u; q)∞
(qλi t1−i u; q)∞

, (35)

(which may be truncated at i = l(λ)). Choosing N ≥ l(λ) and substituting the
expansion (23) in the kernel identity (34), we deduce

Hn,m(x, y; u)SPλ(x, y) = Gλ(u)SPλ(x, y). (36)

Rather than expressing the eigenvalue Gλ(u) in terms of the quantities qλi (i ≥ 1),
it is in many ways more natural to map λ ∈ Hn,m (injectively) to the pair of partitions

μ = (λ1, . . . , λn), ν = (λn+1, λn+2, . . .)
′, (37)

and rewrite (35) in terms of qμi (i = 1, . . . , n) and t−ν j−n ( j = 1, . . . ,m). More
precisely, we have the equalities

∏
i≥n+1

(qλi t2−i u; q)∞
(t2−i u; q)∞

(t1−i u; q)∞
(qλi t1−i u; q)∞

=
∏

i≥n+1

λi∏
j=1

1 − q j−1t1−i u

1 − q j−1t2−i u

=
m∏
j=1

ν j∏
i=1

1 − q j−1t1−i−nu

1 − q j−1t2−i−nu

=
m∏
j=1

1 − q j−1t1−ν j−nu

1 − q j−1t1−nu
,

which entail

Gλ(u) =
n∏

i=1

(qμi t2−i u; q)∞
(t2−i u; q)∞

(t1−i u; q)∞
(qμi t1−i u; q)∞

·
m∏
j=1

1 − t1−ν j−nq j−1u

1 − t1−nq j−1u
. (38)

We note that the right-hand side is manifestly invariant under permutations of the
quantities qμi t1−i (i = 1, . . . , n) as well as the quantities t−ν j−nq j−1 ( j = 1, . . . ,m).

Substituting qμi → xi (i = 1, . . . , n) and t−ν j−n → y j ( j = 1, . . . ,m) in (38),
we obtain the product function

G�
n,m(x, y; u) =

n∏
i=1

(xi t2−i u; q)∞
(t2−i u; q)∞

(t1−i u; q)∞
(xi t1−i u; q)∞

·
m∏
j=1

1 − t y j q j−1u

1 − t1−nq j−1u
, (39)
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so that

Gλ(u) = G�
n,m(qμ, t−ν−(nm ); u). (40)

If we now define polynomials g�
r (x, y) = g�

r (x, y; q, t) (r ∈ N) as the coefficients of
ur in the power series expansion of (39), i.e.

G�
n,m(x, y; u) =

∑
r≥0

g�
r (x, y)u

r , (41)

then it becomes clear from (20), (36) and (40) that the eigenvalues of Hr
n,m(x, y) are

given by g�
r (qμ, t−ν−(nm )).

The eigenvalues of the deformed MR operators in (21) can, in a similar manner, be
expressed in terms of polynomials e�

r (x, y) (r ∈ N) defined by the generating function
expansion

E�
n,m(x, y; u) =

n∏
i=1

1 − xi t1−i u

1 − t1−i u
·

m∏
j=1

(t−nq j u; t−1)∞
(y jq j u; t−1)∞

(y jq j−1u; t−1)∞
(t−nq j−1u; t−1)∞

=
∑
r≥0

e�
r (x, y; q, t)(−u)r . (42)

Indeed, we have the following theorem, which details the explicit simultaneous diag-
onalisation of the deformed NS and MR operators.

Theorem 3.4 Assuming that q, t are non-special, we have the eigenvalue equations

Hr
n,m(x, y)SPλ(x, y) = g�

r

(
qμ, t−ν−(nm )

)
SPλ(x, y) (43)

and

Dr
n,m(x, y)SPλ(x, y) = e�

r

(
qμ, t−ν−(nm )

)
SPλ(x, y) (44)

for all r ∈ N, λ ∈ Hn,m and with μ, ν given by (37).

Proof There remains only to establish the latter eigenvalue equation.
Letting

η = (
λ′
1, . . . , λ

′
m

)
, ξ = (

λ′
m+1, λ

′
m+2, . . .

)′
,

we use Dn,m(x, y; u; q, t) = Hm,n(y, x; qu; t−1, q−1) and the symmetry property
(29) of SPλ to infer from (20), (41) and (43) that

Dn,m(x, y; u; q, t)SPλ(x, y; q, t) = G�
m,n

(
t−η, qξ+(mn); qu; t−1, q−1)SPλ(x, y; q, t).
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Hence (44) will follow once we prove that

G�
m,n

(
t−η, qξ+(mn); qu; t−1, q−1) = E�

n,m

(
qμ, t−ν−(nm ); u; q, t

)
. (45)

By a direct computation, similar to that leading from (35) to (38), it is readily verified
that

E�
n,m

(
qμ, t−ν−(nm ); u) =

∏
i≥1

1 − qλi t1−i u

1 − t1−i u
, (46)

as long as λ ∈ Hn,m . Keeping in mind (35) and (40), it becomes clear that both the
left- and right-hand side of (45) are independent of n,m, so that we may choose them
such that (nm) ⊆ λ. As a consequence, we get

η = ν + (nm), ξ = μ − (mn),

which entails

G�
m,n

(
t−η, qξ+(mn); qu; t−1, q−1) = G�

m,n

(
t−ν+(nm), qμ; qu; t−1, q−1).

Observing

m∏
i=1

(qiu; t−1)∞
(qi−1u; t−1)∞

·
n∏
j=1

1

1 − qmt1− j u

= (qmt−nu; t−1)∞
(u; t−1)∞

=
n∏

i=1

1

1 − t1−i u
·

m∏
j=1

(t−nq j u; t−1)∞
(t−nq j−1u; t−1)∞

,

we deduce

G�
m,n(y, x; qu; t−1, q−1) = E�

n,m(x, y; u; q, t)

and (45) clearly follows. 	

Introducing the difference operators

Ĥr
n,m(x, y; q, t) := Hr

n,m(x, qty; q−1, t−1)

and

D̂r
n,m(x, y; q, t) := Dr

n,m(x, qty; q−1, t−1)

for r ∈ N, the following eigenvalue equations are a direct consequence of Theorem
3.4 and symmetry property (28) of SPλ(x, y).
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Corollary 3.5 For all q, t that are non-special, r ∈ N and λ ∈ Hn,m, we have

Ĥr
n,m(x, y)SPλ(x, y) = g�

r

(
q−μ, tν+(nm )

)
SPλ(x, y)

and

D̂r
n,m(x, y)SPλ(x, y) = e�

r

(
q−μ, tν+(nm )

)
SPλ(x, y).

Taking r , s ∈ N, let us consider the difference operator

Ln,m(x, y) := T (rn)
q,x T−(1m )

t,y
[Ĥr

n,m,Hs
n,m

]
,

to which Lemma 3.1 clearly applies. Combining the kernel function expansion (23)
with Theorem 3.4 and Corollary 3.5, we see that Ln,m(x, y)�n,m;N ,0(x, y; z) = 0

for all N ∈ N
∗. By invoking Lemma 3.1 and using the invertibility of T (rn)

q,x T−(1m)
t,y ,

we thus conclude that Ĥr
n,m and Hs

n,m commute as difference operators. Substituting
Ĥr

n,m → D̂r
n,m and/orHs

n,m → Ds
n,m in the above argument, we obtain the following

corollary.

Corollary 3.6 The difference operators Ĥr
n,m (r ∈ N) and D̂r

n,m (r ∈ N) commute with
each other as well as the difference operators Hs

n,m (s ∈ N) and Ds
n,m (s ∈ N).

3.3 Harish-Chandra isomorphism

Focusing first on the deformed NS operators, we consider the commutative (complex)
algebra of difference operators

Rn,m;q,t := C

[
H1

n,m,H2
n,m, . . .

]
, (47)

cf. (20). As we demonstrate below, Theorem 3.4 enables us to establish an explicit
Harish-Chandra type isomorphism �

�

n,m;q,t → Rn,m;q,t , where �
�

n,m;q,t , introduced
in [23] as a ‘shifted’ version of�n,m;q,t , denotes the algebra of (complex) polynomials
p(x, y) in n+m variables x = (x1, . . . , xn) and y = (y1, . . . , ym) that are separately
symmetric in the t-shifted variables x1, x2t−1, . . . , xnt1−n and the q-shifted variables
y1, y2q, . . . , ymqm−1, and, in addition, satisfy the symmetry conditions

Tq,xi (p) = T−1
t,y j (p) along xi t

1−i = y jq
j−1 (i = 1, . . . , n, j = 1, . . . ,m).

(48)

In particular, the algebra �
�

n,m;q,t contains the polynomials g�
r (x, y) (r ∈ N), as

defined by (41). Indeed, their generating function G�
n,m(x, y; u) is manifestly sym-

metric in the shifted variables xi t1−i and y jq j−1 and, by a direct computation, it is

readily seen that G�
n,m(x, y; u) satisfies (48) as well. Furthermore, using correspond-

ing elements in the so-called algebra of shifted symmetric functions, we can prove the
following result.
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Lemma 3.7 As long as the parameters q, t are non-special, the algebra �
�

n,m;q,t is

generated by the polynomials g�
r (x, y) (r ∈ N

∗).

Proof The proof of this lemma is relegated to Appendix A.2.1. 	

Wenote that, as λ runs through all partitions in the fat hook Hn,m , the corresponding

points (qμ, t−ν−(nm )), with μ, ν given by (37), form a Zariski-dense set in C
n+m ,

i.e. the only polynomial p(x, y) in n + m variables (x, y) that vanishes at all these
points is the zero polynomial. Combining this observation with Lemmas 3.1 and 3.7,
it is now straightforward to establish the Harish-Chandra isomorphism.

Theorem 3.8 For non-special q, t , the map

g�
r ((x1, . . . , xn), (y1, . . . , ym)) �→ Hr

n,m (r ∈ N
∗)

extends to an isomorphism

ψ : �
�

n,m;q,t → Rn,m;q,t , f �→ H f
n,m (49)

of algebras, which is characterised by the eigenfunction property

H f
n,mSPλ = f

(
qμ, t−ν−(nm )

)
SPλ

(
f ∈ �

�

n,m;q,t , λ ∈ Hn,m
)
.

Proof Suppose we have a relation F(g�
r1, . . . , g

�
rK ) ≡ 0 for some F ∈ C[z1, . . . , zK ],

with K ∈ N
∗, and r j ∈ N

∗ for 1 ≤ j ≤ K . Then, by (23) and (43), the corresponding
difference operator

Ln,m := F
(Hr1

n,m, . . . ,HrK
n,m

)

satisfies Ln,m�n,m;N ,0(x, y; z) = 0 for all N ∈ N
∗. Thanks to Lemma 3.1, it follows

that Ln,m ≡ 0 as a difference operator. Since the polynomials g�
r (r ∈ N

∗) generate
�

�

n,m;q,t (cf. Lemma3.7),we can thus conclude thatψ is awell definedhomomorphism
of algebras and, as such, it is clearly surjective. To establish injectivity, it suffices to
note that H f

n,m ≡ 0 implies that f (qμ, t−ν−(nm )) = 0 for all partitions μ, ν of the
form (37) for some λ ∈ Hn,m , which, as previously observed, entails that f vanishes
identically. 	

Remark 3.9 This yields an explicit realisation of the monomorphism ψ in Thm. 6.4 of
[23].

By a direct computation, it is readily verified that the generating functions
G�

n,m(x, y; u) (39) and E�
n,m(x, y; u) (42) satisfy the functional equation

E�
n,m(x, y; u)G�

n,m(x, y; u) = E�
n,m(x, y; tu)G�

n,m(x, y; qu).
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In view of (41)–(42), this equation is equivalent to the Wronski type recurrence rela-
tions

∑
r+s=k

(−1)r (1 − tr qs)e�
r (x, y)g

�
s(x, y) = 0 (k ∈ N

∗).

Applying the Harish-Chandra isomorphismψ (49), we obtain the following corollary.

Corollary 3.10 For q, t non-special, the deformed MR and NS operators satisfy the
recurrence relations

∑
r+s=k

(−1)r (1 − tr qs)Dr
n,mHs

n,m = 0 (k ∈ N
∗). (50)

These recurrence relations enable us to express the deformed MR operators Dr
n,m

in terms of the deformed NS operators Hr
n,m , and vice versa. We can thus conclude

that the former operators generate the same commutative algebra as the latter.

Corollary 3.11 Under the assumption that q, t are non-special, we have

Rn,m;q,t = C

[
D1

n,m,D2
n,m, . . .

]
.

Moreover, since the recurrence relations (50) are of precisely the same form as in
the undeformed case (cf. Eq. (5.5) in [17]), the explicit (determinantal) relations in
[17] between the undeformed MR and NS operators carry over to the deformed case
with minimal (and obvious) changes.

In [9] (see Thm. 4.5), Feigin and Silantyev proved that the deformed MR operators
Dr
n,m with r = 1, . . . , n+m are algebraically independent and thus define an integrable

system. As a further application of Theorem 3.8, we give a new proof of this fact.

Corollary 3.12 As long as q, t are non-special, the algebra of difference operators
Rn,m;q,t contains n+m algebraically independent elements, namely the deformed NS
operatorsH1

n,m, . . . ,Hn+m
n,m as well as the deformed MR operators D1

n,m, . . . ,Dn+m
n,m .

Proof Since Hn,m(x, y; u; q, t) = Dm,n(y, x; tu; t−1, q−1) (cf. (7)–(12)), it suffices
to prove the claim for the first n + m deformed MR operators, which, thanks to
Theorems 3.4 and 3.8, is equivalent to the polynomials e�

r (x, y)with r = 1, . . . , n+m
being algebraically independent.

To this end, we recall the deformed shifted power sums p�
r (x, y) = p�

r (x, y; q, t)
(61) and introduce their generating function

P�
n,m(x, y; u) :=

∞∑
r=1

p�
r (x, y)u

r−1.
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For |t | > 1, we have

d

du
log(au; t−1)∞ = −

∞∑
k=0

at−k

1 − aut−k

= −
∞∑
k=0

∞∑
r=0

ar+1t−(r+1)kur = −
∞∑
r=1

ar

1 − t−r
ur−1.

Using this observation, a direct computation reveals that

(
E�
n,m

)′
(u)/E�

n,m(u) = d

du
log E�

n,m(u) = −P�
n,m(u).

Comparing coefficients of ur−1 in the equivalent power-series identity
(
E�
n,m

)′
(u) =

−P�
n,m(u)E�

n,m(u), we obtain the following analogues of Newton’s formulae:

re�
r (x, y) =

r∑
s=1

(−1)s−1 p�
s(x, y)e

�
r−s(x, y) (r ∈ N

∗).

In particular, they make it possible to express e�
1(x, y), . . . , e

�
n+m(x, y) in terms of

p�
1(x, y), . . . , p

�
n+m(x, y) and vice versa, which clearly entails that

C

[
e�
1(x, y), . . . , e

�
n+m(x, y)

]
= C

[
p�
1(x, y), . . . , p

�
n+m(x, y)

]
.

Hence the assertion will follow once we prove that the deformed shifted power
sums p�

r (x, y) with r = 1, . . . , n + m are algebraically independent, which, in turn,
is readily inferred from their Jacobian, see e.g. Thm. 2.2 in [8].1 Indeed, if we have a
relation F(p�

1, . . . , p
�
n+m) ≡ 0, the chain rule entails

0 =
(

∂F

∂x1
, . . . ,

∂F

∂xn
,

∂F

∂ y1
, . . . ,

∂F

∂ ym

)

=
(

∂F

∂ p�
1

, . . . ,
∂F

∂ p�
n+m

)
·

∂
(
p�
1, . . . , p

�
n+m

)
∂(x1, . . . , xn, y1, . . . , ym)

,

and, assuming F is of minimal degree, ∂F/∂ p�
j �= 0 for some j = 1, . . . , n + m, so

that the Jacobian (determinant) must be zero. However, by a direct computation, we
see, in particular, that the coefficient of themonomial x2x23 . . . xn−1

n yn1 y
n+1
2 . . . yn+m−1

m

1 We are grateful to Misha Feigin for explaining this to us.
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equals

n!
n∏

i=1

t i(1−i) · (qn+1; q)m

(t−n−1; t−1)m
(n + 1)m

m∏
j=1

q(n+ j)( j−1),

which is manifestly non-zero. 	


3.4 Restriction interpretation

Deviating slightly from the notation inMacdonald’s book [16], we write�N , N ∈ N
∗,

for the graded algebra of complex SN -invariant polynomials p(z) in N variables z =
(z1, . . . , zN ). The inverse limit � = lim←−N

�N (in the category of graded algebras),
i.e. the algebra of symmetric functions, will play an important role in this section.

More specifically, we establish an interpretation of the deformed NS operators
Hr

n,m(20) and MR operators Hr
n,m (21) as restrictions of operators Hr∞ and Dr∞,

respectively, on �, thereby generalising Thm. 5.4 in [23], which essentially amounts
to the r = 1 case, to all r ∈ N.

To begin with, suppose that the parameters q, t are non-special. Then, as recalled
in Sect. 3.2, the super Macdonald polynomials SPλ(x, y) (λ ∈ Hn,m) span the algebra
�n,m;q,t . Hence, by Theorem3.8, each difference operatorH f

n,m ( f ∈ �
�

n,m;q,t ) leaves
�n,m;q,t invariant.

Moregenerally,we canworkdirectlywith the symmetry conditions that characterise
�n,m;q,t to establish the following result.

Lemma 3.13 Assume that q, t ∈ C
∗ are not roots of unity. Then, for each f ∈ �

�

n,m;q,t ,

the difference operator H f
n,m preserves the algebra �n,m;q,t :

H f
n,m : �n,m;q,t → �n,m;q,t .

Proof A proof of this lemma is provided in Appendix A.3.1. 	


Now, with z = (z1, z2, . . .) and w = (w1, w2, . . .) two infinite sequences of vari-
ables, we recall from Eqs. (2.5)–(2.6) and (4.13) in Chapter VI of [16] the kernel
function

�(z;w; q, t) =
∏
i, j

(t ziw j ; q)∞
(ziw j ; q)∞

alongwith its expansions in terms of power sums andMacdonald symmetric functions:

�(z;w; q, t) =
∑
λ

zλ(q, t)−1 pλ(z)pλ(w) =
∑
λ

Pλ(z; q, t)Qλ(w; q, t) (51)
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with

zλ(q, t) =
∏
i≥1

imi mi ! ·
l(λ)∏
i=1

1 − qλi

1 − tλi
,

where mi = mi (λ) denotes the number of parts of λ equal to i .
Introducing the notation

HN (z; u) = HN ,0(z; u), DN (z; u) = DN ,0(z; u),

let us define operatorsHr
N (r ∈ N) andDr

N (r ∈ N) by the generating series expansions

HN (z; u) =
∞∑
r=0

urHr
N (z), DN (z; u) =

∞∑
r=0

(−u)rDr
N (z).

One of their distinguishing features is stability under reductions of the number of
variables N . More precisely, with the homomorphism

ρN ,N−1 : �N → �N−1, p(z1, . . . , zN ) �→ p(z1, . . . , zN−1, 0),

the diagrams

�N �N−1

�N �N−1

ρN ,N−1

Hr
N Hr

N−1
ρN ,N−1

and

�N �N−1

�N �N−1

ρN ,N−1

Dr
N Dr

N−1
ρN ,N−1

are commutative for all r ∈ N. To see this, it suffices to note that the eigenvalues of
these operators are independent of N , cf. (40) and (46) or see [16,17], respectively.

Hence, we have well-defined generating series

H∞(z; u) :=
∞∑
r=0

urHr∞(z), D∞(z; u) :=
∞∑
r=0

(−u)rDr∞(z),

of operators

Hr∞ := lim←−
N

Hr
N : � → �, Dr∞ := lim←−

N

Dr
N : � → �,
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which are simultaneously diagonalised by the Macdonald symmetric functions. Com-
bining this fact with the latter expansion in (51), we arrive at the following lemma.

Lemma 3.14 For |q| < 1, we have the kernel identities

H∞(z; u)�(z;w) = H∞(w; u)�(z;w)

and

D∞(z; u)�(z;w) = D∞(w; u)�(z;w).

From Thm. 5.8 in [23], we recall that the homomorphism

ϕn,m;q,t : � → �n,m;q,t , pr (z1, z2, . . .) �→ pr ((x1, . . . , xn), (y1, . . . , ym); q, t),

with the deformed Newton sums

pr (x, y; q, t) =
n∑

i=1

xri + 1 − qr

1 − t−r

m∑
j=1

yrj (r ∈ N
∗),

is surjective whenever q, t are non-special. (Note that t in loc. cit. corresponds to t−1

here.) Assuming |q| < 1, we also recall that

ϕn,m;q,t (�(z;w)) = �n,m;∞(x, y;w) (52)

with

�n,m;∞(x, y;w) =
n∏

i=1

∞∏
k=1

(t xiwk; q)∞
(xiwk; q)∞

·
m∏
j=1

∞∏
k=1

(1 − t y jwk), (53)

see Property (ii) in Lemma 5.5 in [23].
Setting wk = 0 for k > N , with N ∈ N

∗, in (53), we obtain the meromorphic
function

�n,m;N (x, y;w) :=
n∏

i=1

N∏
k=1

(t xiwk; q)∞
(xiwk; q)∞

·
m∏
j=1

N∏
k=1

(1 − t y jwk)

= �n,m;N ,0(t x, t y;w), (54)

cf. (13). Hence, sinceHn,m(x, y; u) andDn,m(x, y; u) are invariant under x → t x and
x → t y, we may substitute �n,m;N for �n,m;N ,0 in the M = 0 instance of Theorem
2.1. By stability under reductions of the number of variables N , the resulting (sequence
of) kernel identities amount to

Hn,m(x, y; u)�n,m;∞(x, y;w) = H∞(z; u)�n,m;∞(x, y;w) (55)
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and

Dn,m(x, y; u)�n,m;∞(x, y;w) = D∞(z; u)�n,m;∞(x, y;w). (56)

Using Lemma 3.14 as well as (52) and (55), we deduce

ϕn,m;q,t
(H∞(z; u)�(z;w)

) = ϕn,m;q,t
(H∞(w; u)�(z;w)

)
= H∞(w; u)

(
ϕn,m;q,t�(z;w)

)
= Hn,m(x, y; u)

(
ϕn,m;q,t�(z;w)

)
.

Substituting the former expansion in (51) and comparing coefficients, we find that

(
ϕn,m;q,t ◦ H∞(u)

)
pλ = (Hn,m(u) ◦ ϕn,m;q,t

)
pλ (57)

for all partitions λ. Using (56) instead of (55), we obtain (57) withH∞(u) → D∞(u)

and Hn,m(u) → Dn,m(u).
Since the pλ span �, the above arguments and Lemma 3.13 yield the following

result.

Theorem 3.15 For all q, t ∈ C
∗ that are not roots of unity, the diagrams

� �n,m;q,t

� �n,m;q,t

ϕn,m;q,t

Hr∞ Hr
n,m

ϕn,m;q,t

and

� �n,m;q,t

� �n,m;q,t

ϕn,m;q,t

Dr∞ Dr
n,m

ϕn,m;q,t

are commutative for all r ∈ N.

Remark 3.16 This result has an interesting (algebro-)geometric interpretation. Assum-
ing qi/t j �= 1 for all i = 1, . . . , n and j = 1, . . . ,m, it was proved in Thm. 5.1 in [23]
that the algebra �n,m;q,t is finitely generated, so that a corresponding (affine) variety

�n,m;q,t := Spec�n,m;q,t

could be introduced. Restricting attention further to non-special parameter values
q, t , the homomorphism ϕn,m;q,t : � → �n,m;q,t is surjective, and thus yields an
embedding φ : �n,m;q,t → M, with M := Spec� called the (infinite-dimensional)
Macdonald variety.
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Hence, for q, t non-special, the deformed NS operatorsHr
n,m can be viewed as the

restrictions of the operatorsHr∞ onto the subvariety �n,m;q,t ⊂ M, and similarly for
the deformed MR operators Dr

n,m .
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Appendix A. Proofs of Lemmas

In this Appendix, we provide proofs of the Lemmas in the main text.

A.1 Commutativity

A.1.1 Proof of Lemma 3.1

From (13), it is readily inferred that the equality Ln,m(x, y)�n,m;N ,0(x, y; z) = 0 is
equivalent to

∑
μ∈Nn ,ν∈Nm

|μ|+|ν|≤d

aμ,ν(x, y)
n∏

i=1

N∏
j=1

(t−1xi z j ; q)μi

(xi z j ; q)μi

·
m∏
i=1

N∏
j=1

1 − t−νi yi z j
1 − yi z j

= 0.

We write this formula as

∑
μ∈Nn ,ν∈Nm

|μ|+|ν|≤d

aμ,ν(x, y)ϕμ,ν(x, y; z) = 0, (58)

where

ϕμ,ν(x, y; z) =
n∏

i=1

N∏
j=1

(t−1xi z j ; q)μi

(xi z j ; q)μi

·
m∏
i=1

N∏
j=1

1 − t−νi yi z j
1 − yi z j

.

http://creativecommons.org/licenses/by/4.0/


From Kajihara’s transformation formula to deformed… Page 29 of 36 24

For (α, β) ∈ N
n × N

m such that |α| + |β| ≤ d, we take N = n + dm − |β| and
specialise the z-variables to

zα,β = (t/qα1x1, t/q
α2x2, . . . , t/q

αn xn; tβ1+1/y1, t
β1+2/y1, . . . , t

d/y1;
. . . ; tβm+1/ym, tβm+2/ym, . . . , td/ym).

Then we get

ϕμ,ν(x, y; zα,β) =
n∏

i, j=1

(xi/qα j x j ; q)μi

(t xi/qα j x j ; q)μi

·
n∏

i=1

m∏
j=1

(tβ j xi/y j ; q, t)μi ,d−β j

(tβ j+1xi/y j ; q, t)μi ,d−β j

·
m∏
i=1

n∏
j=1

1 − t1−νi yi/qα j x j
1 − t yi/qα j x j

·
m∏

i, j=1

(tβ j+1−νi yi/y j ; t)d−β j

(tβ j+1yi/y j ; t)d−β j

,

where

(a; q, t)k,l =
k−1∏
i=0

l−1∏
j=0

(1 − aqi t j ).

Since ϕμ,ν(x, y; zα,β) contains the “diagonal” factors

n∏
i=1

(q−αi ; q)μi

(tq−αi ; q)μi

·
m∏
j=1

(tβ j+1−ν j ; t)d−β j

(tβ j+1; t)d−β j

,

it vanishes if μi > αi for some i ∈ {1, . . . , n} or if ν j > β j for some j ∈ {1, . . . ,m},
which clearly entails that the z → zα,β specialisation of (58) is given by

aα,β(x, y)ϕα,β(x, y; zα,β) +
∑

μ∈Nn ,ν∈Nm

|μ|+|ν|<|α|+|β|

aμ,ν(x, y)ϕμ,ν(x, y; zα,β) = 0. (59)

Now assume that Ln,m(x, y) is a non-zero difference operator. Then we let d ∈ N

be the smallest non-negative integer such that aα,β �= 0 for some (α, β) ∈ N
n × N

m

with |α| + |β| = d. By (59), we have aα,β(x, y)ϕα,β(x, y; zα,β) = 0 and, since the
meromorphic function ϕα,β(x, y; zα,β) is non-zero, it follows that aα,β = 0. Hence
we have reached a contradiction and the lemma follows.

A.2 Harish-Chandra isomorphism

A.2.1 Proof of Lemma 3.7

We begin by recalling a few definitions and results from the literature that we make
use of in the proof.
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We write �N ,t for the algebra of complex polynomials p ∈ C[z1, . . . , zN ] that are
symmetric in the “shifted” variables z1, z2t−1, . . . , zN t N−1, and note that it is filtered
by the degree of the polynomials:

�
≤0
N ,t ⊂ �

≤1
N ,t ⊂ · · · ⊂ �

≤r
N ,t ⊂ · · · (r ∈ N),

with �
≤r
N ,t the subspace of such polynomials of degree at most r . The inverse limit �t

of the filtered algebras �N ,t with respect to the homomorphisms

�N ,t → �N−1,t , p(z1, . . . , zN−1, zN ) �→ p(z1, . . . , zN−1, 1) (N ∈ N
∗),

is the so-called algebra of shifted symmetric functions [18]. It is, for example, gener-
ated by the shifted power sums

p∗
r (z; t) =

∑
i≥1

(zri − 1)tr(1−i) (r ∈ N
∗).

From Thm. 6.2 in [23], we recall that the algebra homomorphism

ϕ
�

n,m;q,t : �t → �
�

n,m;q,t , p∗
r (z; t) �→ p�

r (x; y; q, t), (60)

with the deformed shifted power sums

p�
r (x; y; q, t) =

n∑
i=1

(xri − 1)tr(1−i) + 1 − qr

1 − t−r

m∑
j=1

(yrj − t−rn)qr( j−1) (r ∈ N
∗),

(61)

is surjective under the assumption that q, t are non-special.
Our proof strategy is to exhibit shifted symmetric functions g∗

r (z) = g∗
r (z; q, t)

(r ∈ N
∗) that freely generate�t and are such that ϕn,m;q,t (g∗

r (z)) = g�
r (x, y), cf. (41).

More specifically, let us consider the generating function expansion

G∗
N (z; u) :=

N∏
i=1

(zi t2−i u; q)∞
(t2−i u; q)∞

(t1−i u; q)∞
(zi t1−i u; q)∞

=
∑
r≥0

g∗
r (z1, . . . , zN )ur . (62)

Since the product is manifestly symmetric in the variables zi t1−i , it is clear that
g∗
r (z1, . . . , zN ) ∈ �r

N ,t . Moreover, setting zN = 1 in (62), we find the following
stability properties:

G∗
N (z1, . . . , zN−1, 1; u) = G∗

N−1(z1, . . . , zN−1; u),

g∗
r (z1, . . . , zN−1, 1) = g∗

r (z1, . . . , zN−1),
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so that we can define shifted symmetric functions g∗
r (z) as the coefficients of u

r in the
power series expansion of the infinite product

G∗(z; u) :=
∏
i≥1

(zi t2−i u; q)∞
(t2−i u; q)∞

(t1−i u; q)∞
(zi t1−i u; q)∞

.

Fixing r ∈ N, we claim that the

g∗
λ(z) :=

∏
i≥1

g∗
λi

(z), |λ| ≤ r ,

constitute a basis in �
≤r
t . To prove this claim, we may and shall work in �

≤r
N ,t as long

as N ≥ r , since the corresponding projection ρ∗
N : �

≤r
t → �

≤N
N ,t is an isomorphism.

We observe that

g∗
r (z1, . . . , zN ) = gr

(
z1, z2t

−1, . . . , zN t
1−N ) + lower degree terms,

where gr (x1, . . . , xN ) = gr (x1, . . . , xN ; q, t) are the symmetric polynomials from
Eq. (2.8) in Section VI.2 of [16]:

N∏
i=1

(t xi u; q)∞
(xiu; q)∞

=
∑
r≥0

gr (x1, . . . , xN )ur .

Recalling from (2.19) in loc. cit. that the

gλ(x1, . . . , xN ) :=
∏
i≥1

gλi (x1, . . . , xN ), |λ| = r ,

form a basis in �r
N , the claim is readily established by induction in r . In other words,

we have just shown that the g∗
r (z) (r ∈ N

∗) freely generate the algebra of shifted
symmetric functions �t .

Next, we claim that

ϕ
�

n,m;q,t (g
∗
r (z)) = g�

r (x, y) (r ∈ N
∗). (63)

Taking this claim for granted, it becomes clear that the polynomials g�
r (x, y) (r ∈ N

∗)
generate�

�

n,m;q,t , since ϕ
�

n,m;q,t (60) is surjective and the shifted symmetric functions
g∗
r (r ∈ N

∗) generate �t .
To complete the proof, there remains only to verify (63). Since we have no explicit

formulae for g∗
r and g�

r in terms of p∗
r and p�

r , respectively, we shall work on the level
of generating functions. First, we deduce the equalities

G∗(z; u) =
∏
i≥1

∏
a≥0

1 − qazi t2−i u

1 − qat2−i u

1 − qat1−i u

1 − qazi t1−i u
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= exp

⎛
⎝∑

i≥1

∑
a≥0

[
log(1 − qazi t

2−i u) − log(1 − qat2−i u)

+ log(1 − qat1−i u) − log(1 − qazi t
1−i u)

])

= exp

⎛
⎝∑

i≥1

∑
a≥0

∑
r≥1

urqar

r
(1 − tr )(zri − 1)tr(1−i)

⎞
⎠

= exp

⎛
⎝∑

r≥1

ur

r

1 − tr

1 − qr
p∗
r (z; t)

⎞
⎠ . (64)

From (60), it follows that

ϕ
�

n,m;q,t (G
∗(z; u)) = exp

⎛
⎝∑

r≥1

ur

r

1 − tr

1 − qr
p�
r (x, y)

⎞
⎠ .

Substituting (61), reversing the steps in (64) and comparing the end result with (39),
we obtain

ϕ
�

n,m;q,t (G
∗(z; u)) = G�

n,m(x, y; u),

which clearly is equivalent to (63). This completes the proof of Lemma 3.7.

A.3 Restriction interpretation

A.3.1 Proof of Lemma 3.13

By the definition of Rn,m;q,t (47), it suffices to prove the claim for the deformed NS
operators Hr

n,m (r ∈ N
∗) and, for convenience, we shall work with their generating

function Hn,m(u) (11).
Observing that their coefficient functions Bμ,I (8) satisfy

Bμ,I (σ x, τ y) = Bσ−1μ,τ−1 I (x, y), (σ, τ ) ∈ Sn × Sm,

it becomes clear that Hn,m(x, y; u) commutes with the action of Sn × Sm :

(σ, τ ) ◦ Hn,m(x, y; u) = Hn,m(x, y; u) ◦ (σ, τ ) (65)

for all (σ, τ ) ∈ Sn × Sm .
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Given any f ∈ �n,m;q,t , we let

F = Hn,m(u) f

= (t1−nqmu; q)∞
(tu; q)∞

∑
μ∈Nn

∑
I⊆{1,...,m}

(t1−nqmu)|μ|(−tu)|I |q(|I |
2 )Bμ,I T

μ
q,x T

−I
t,y f .

From (8), it is clear that F is a rational function in x and y whose poles are at most
simple and located only along

x j = qki xi , ki = 0, 1, . . . , μi , 1 ≤ i �= j ≤ n, (66)

yi = y j , 1 ≤ i �= j ≤ m, (67)

or

y j = qμi xi , y j = qμi−1xi , 1 ≤ i ≤ n, 1 ≤ j ≤ m. (68)

Moreover, thanks to the invariance property (65), F is symmetric in both x and y.
Hence it will follow that F is a polynomial once we can show that it has no poles of
the form (66)–(67) with j = 1 and i = 2 or (68) with j = i = 1.

First, we consider the y-independent poles (66) with j = 1 and i = 2. Let us fix
μ ∈ N

n such that at least one of the elements μ1, μ2 is non-zero, take 0 ≤ k2 ≤ μ2,
and let

μ̃ = σ12μ − k2(e1 − e2) = (μ2 − k2, μ1 + k2, μ3, . . . , μn),

where σ12 denotes the transposition that acts on μ = (μ1, . . . , μn) by interchanging
μ1 and μ2. We note that both Bμ,I and Bμ̃,I have a simple pole along x1 = qk2x2. (In
the excluded case μ1 = μ2 = 0 these operator coefficients, which then coincide, are
regular along x1 = x2.) In order to compare the corresponding residues, we observe
that

�(qμ̃x) = −�(qμx), x1 = qk2x2,

whenever k2 > 0; and that, when interpreted in terms of residues along x1 − x2, the
equality holds true also for k2 = 0. Combining this equality with the identity

(aqk2; q)μ1(a; q)μ2 = (aqk2; q)μ2−k2(a; q)μ1+k2 , a ∈ C,

it is readily verified that

(x1 − qk2x2)Bμ̃,I (x, y) = −(x1 − qk2x2)Bμ,I (x, y), x1 = qk2x2.

It follows that the residues along x1 = qk2x2 of the two terms in

Bμ,I T
μ
q,x T

−I
t,y f + Bμ̃,I T

μ̃
q,x T

−I
t,y f
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cancel, and consequently that F has no poles of the form (66).
Second, we focus attention on the x-independent pole (67) with j = 1 and i = 2.

We note that Bμ,I is regular along y1 = y2 unless 1 ∈ I and 2 /∈ I or vice versa. For
such an index set I , it is clear from (8) that

(y1 − y2)Bμ,σ12 I (x, y) = −(y1 − y2)Bμ,I (x, y), y1 = y2,

so that the residues along y1 = y2 of the terms in

Bμ,I T
μ
q,x T

−I
t,y f + Bμ,σ12 I T

μ
q,x T

−σ12 I
t,y f

cancel and F is thus free of poles of the form (67).
Third, we handle the poles (68) with i = j = 1. Taking I ⊂ {1, . . . ,m} such that

1 /∈ I , we deduce

Bμ+e1,I (x, y)

Bμ,I∪{1}(x, y)
= qn−1

n∏
i=2

(
y1 − qμi xi
qy1 − qμi xi

· q
μ1+1x1 − qμi xi
qμ1x1 − qμi xi

)

· (t/q)n−1
n∏

i=2

(
qy1 − xi
t y1 − xi

· tqμ1x1 − xi
qμ1+1x1 − xi

)

· (t/q) · qy1 − x1
t y1 − x1

· 1 − tqμ1

1 − qμ1+1

·
∏
i∈I

(
qy1 − yi
y1 − yi

· qμ1x1 − yi
qμ1+1x1 − yi

)

· q |I |+1−m
∏

i /∈I∪{1}

(
y1 − yi
y1 − qyi

· q
μ1x1 − qyi
qμ1x1 − yi

)
,

from which it clearly follows that Bμ+e1,I (x, y)/Bμ,I∪{1}(x, y) = tnq |I |−m for y1 =
qμ1x1. Since

(|I |+1
2

) − (|I |
2

) = |I |, we can thus conclude that

(t1−nqmu)|μ|+1(−tu)|I |q(|I |
2 )(y1 − qμi xi )Bμ+e1,I (x, y)

+(t1−nqmu)|μ|(−tu)|I |+1q(|I |+1
2 )(y1 − qμi xi )Bμ,I∪{1}(x, y) = 0, y1 = qμ1x1,

which, together with the symmetry condition (33) with i = j = 1, entails residue
cancelation along y1 = qμ1x1 in

(t1−nqmu)|μ|+1(−tu)|I |q(|I |
2 )Bμ+e1,I T

μ+e1
q,x T−I

t,y f

+(t1−nqmu)|μ|(−tu)|I |+1q(|I |+1
2 )Bμ,I∪{1}Tμ

q,x T
−I∪{1}
t,y f ,

and so F is regular also along the hyperplanes (68).
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In summary, we have shown that F is a Sn × Sm-invariant polynomial in x and y,
and there remains only to verify the symmetry conditions (33). Restricting attention
to the hyperplane x1 = y1, we have the following implications:

(I) 1 ∈ I ⇒ T−1
t,y1Bμ,I = 0,

(II) μ1 ≥ 1 ∧ 1 /∈ I ⇒ Tq,x1Bμ,I = 0,
(III) μ1 = 0 ∧ 1 /∈ I ⇒ (

Tq,x1 − T−1
t,y1

)
Bμ,I = 0,

(IV) μ1 ≥ 1 ∧ 1 /∈ I ⇒ T−1
t,y1Bμ,I + tnq |I |−mTq,x1Bμ−e1,I∪{1} = 0.

Implication (I) is due to the factor 1−x1/t y1, present in the next to last product in Bμ,I ;
Implication (II) is due to 1 − x1/qy1, contained in the last product; and Implications
(III)–(IV) are straightforward to verify by direct (albeit somewhat lengthy) computa-
tions when isolating the μ1- and y1-dependent factors in Bμ,I and Bμ−e1,I∪{1}.

By Implication (III), we have

(
Tq,x1 − T−1

t,y1

)
F =

∑
μ∈Nn

μ1≥1

∑
I⊂{1,...,m}

1/∈I

(t1−nqmu)|μ|(−tu)|I |q(|I |
2 )

·(Tq,x1 − T−1
t,y1

)(
Bμ,I T

μ
q,x T

−I
t,y f − tnq |I |−mBμ−e1,I∪{1}Tμ−e1

q,x T−I∪{1}
t,y f

)

when x1 = y1. Using Implications (I)–(II), we deduce

(
Tq,x1 − T−1

t,y1

)(
Bμ,I T

μ
q,x T

−I
t,y f − tnq |I |−mBμ−e1,I∪{1}Tμ−e1

q,x T−I∪{1}
t,y f

)
= −(

T−1
t,y1Bμ,I + tnq |I |−mTq,x1Bμ−e1,I∪{1}

)
Tμ
q,x T

−I∪{1}
t,y f ,

which, by Implication (IV), vanishes along x1 = y1. This concludes our verification
of the symmetry conditions (33), and the Lemma follows.
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