Skip to main content
Log in

Transversality of sections on elliptic surfaces with applications to elliptic divisibility sequences and geography of surfaces

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We consider elliptic surfaces \({\mathcal {E}}\) over a field k equipped with zero section O and another section P of infinite order. If k has characteristic zero, we show there are only finitely many points where O is tangent to a multiple of P. Equivalently, there is a finite list of integers such that if n is not divisible by any of them, then nP is not tangent to O. Such tangencies can be interpreted as unlikely intersections. If k has characteristic zero or \(p>3\) and \({\mathcal {E}}\) is very general, then we show there are no tangencies between O and nP. We apply these results to square-freeness of elliptic divisibility sequences and to geography of surfaces. In particular, we construct mildly singular surfaces of arbitrary fixed geometric genus with K ample and \(K^2\) unbounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alekseev, V.A., Liu, V.: On accumulation points of volumes of log surfaces. Izv. Ross. Akad. Nauk Ser. Mat. 83, 5–25 (2019)

    MathSciNet  Google Scholar 

  2. Alexeev, V., Liu, W.: Log surfaces of Picard rank one from four lines in the plane. Eur. J. Math. 5, 622–639 (2019)

    Article  MathSciNet  Google Scholar 

  3. Alexeev, V., Liu, W.: Open surfaces of small volume. Algebr. Geom. 6, 312–327 (2019)

    Article  MathSciNet  Google Scholar 

  4. Alexeev, V.: Boundedness and \(K^2\) for log surfaces. Int. J. Math. 5, 779–810 (1994)

    Article  Google Scholar 

  5. Alexeev, V., Mori, S.: Bounding singular surfaces of general type, Algebra, arithmetic and geometry with applications (West Lafayette, IN, 2000), 2004, pp 143–174

  6. Artin, M.: Some numerical criteria for contractability of curves on algebraic surfaces. Am. J. Math. 84, 485–496 (1962)

    Article  MathSciNet  Google Scholar 

  7. Bădescu, L.: Algebraic surfaces, Universitext. Springer, New York (2001)

    Book  Google Scholar 

  8. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, Second, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 4, Springer, Berlin (2004)

  9. Bedford, E., Lyubich, M., Smillie, J.: Polynomial diffeomorphisms of \({ C}^2\). IV. The measure of maximal entropy and laminar currents. Invent. Math. 112, 77–125 (1993)

    Article  MathSciNet  Google Scholar 

  10. Bierstone, E., Milman, P.D.: Semianalytic and subanalytic sets. Inst. Hautes Études Sci. Publ. Math. 67, 5–42 (1988)

    Article  MathSciNet  Google Scholar 

  11. Corvaja, P., Demeio, J., Masser, D., Zannier, U.: On the torsion values for sections of an elliptic scheme, 2019. Preprint arxiv:1909.01253

  12. Corvaja, P., Masser, D., Zannier, U.: Torsion hypersurfaces on abelian schemes and Betti coordinates. Math. Ann. 371, 1013–1045 (2018)

    Article  MathSciNet  Google Scholar 

  13. Cox, D.A., Zucker, S.: Intersection numbers of sections of elliptic surfaces. Invent. Math. 53, 1–44 (1979)

    Article  MathSciNet  Google Scholar 

  14. Deligne, P.: Courbes elliptiques: formulaire d’après J. Tate, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 1975, pp. 53–73. Lecture Notes inMath., Vol. 476

  15. Deligne, P., Rapoport, M.: Les schémas de modules de courbes elliptiques (1973), 143–316. Lecture Notes in Math., Vol. 349

  16. Friedman, R., Morgan, J.W.: Smooth Four-Manifolds and Complex Surfaces, Ergebnisse derMathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 27. Springer, Berlin (1994)

    Google Scholar 

  17. Ghioca, D., Hsia, L.-C., Tucker, T.: A variant of a theorem by Ailon-Rudnick for elliptic curves. Pacific J. Math. 295, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ingram, P., Mahé, V., Silverman, J.H., Stange, K.E., Streng, M.: Algebraic divisibility sequences over function fields. J. Aust. Math. Soc. 92, 99–126 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kawamata, Y., Matsuda, K., Matsuki, K.: Introduction to the minimal model problem. Algeb. Geomet. Sendai 1987, 283–360 (1985)

    MATH  Google Scholar 

  20. Kodaira, K.: On compact analytic surfaces II. Ann. Math. 77, 563–626 (1963)

    Article  Google Scholar 

  21. Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91, 299–338 (1988)

    Article  MathSciNet  Google Scholar 

  22. Liu, W.: The minimal volume of log surfaces of general type with positive geometric genus. Preprint arxiv:1706.03716

  23. Moishezon, B.: Complex surfaces and connected sums of complex projective planes, Lecture Notes inMathematics, Vol. 603, Springer, Berlin, 1977.With an appendix by R. Livne

  24. Łojasiewicz, S.: Ensembles semi-analytiques, 1964. IHES Preprint

  25. Shioda, T.: On the Mordell-Weil lattices. Comment. Math. Univ. St. Paul. 39, 211–240 (1990)

    MathSciNet  MATH  Google Scholar 

  26. Shioda, T.: Mordell-Weil lattices for higher genus fibration over a curve, New trends in algebraic geometry (Warwick, 1996), 1999, pp. 359–373

  27. Silverman, J.H.: Generalized greatest common divisors, divisibility sequences, and Vojtas conjecture for blowups. Monatsh. Math. 145, 333–350 (2005)

    Article  MathSciNet  Google Scholar 

  28. Silverman, J.H.: The Arithmetic of Elliptic Curves, Second, Graduate Texts in Mathematics, vol. 106. Springer, Dordrecht (2009)

    Book  Google Scholar 

  29. Tate, J.T.: Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, iv (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), 1975, pp. 33–52. Lecture Notes in Math., Vol. 476

  30. Ulmer, D.: Elliptic curves over function fields, Arithmetic of \({L}\)-functions (Park City, UT, 2009), 2011, pp. 211–280

  31. Ulmer, D.: On Mordell-Weil groups of Jacobians over function fields. J. Inst. Math. Jussieu 12, 1–29 (2013)

    Article  MathSciNet  Google Scholar 

  32. Ulmer, D., Urzúa, G.: Bounding tangencies of sections on elliptic surfaces. Int. Math. Res. Not. IMRN 6, 4768–4802 (2021)

    Article  MathSciNet  Google Scholar 

  33. Zannier, U.: Some problems of unlikely intersections in arithmetic and geometry, Annals of Mathematics Studies, vol. 181, Princeton University Press, Princeton, NJ, 2012.With appendixes by David Masser

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Ulmer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulmer, D., Urzúa, G. Transversality of sections on elliptic surfaces with applications to elliptic divisibility sequences and geography of surfaces. Sel. Math. New Ser. 28, 25 (2022). https://doi.org/10.1007/s00029-021-00747-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00747-x

Keywords

Mathematics Subject Classification

Navigation