Skip to main content
Log in

Deformations of symplectic singularities and orbit method for semisimple Lie algebras

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We classify filtered quantizations of conical symplectic singularities and use this to show that all filtered quantizations of symplectic quotient singularities are spherical symplectic reflection algebras of Etingof and Ginzburg. We further apply our classification and a classification of filtered Poisson deformations obtained by Namikawa to establish a version of the Orbit method for semisimple Lie algebras. Namely, we produce a natural map from the set of coadjoint orbits of a semisimple algebraic group to the set of primitive ideals in the universal enveloping algebra. We show that the map is injective for classical Lie algebras and conjecture that in that case the image consists of the primitive ideals corresponding to one-dimensional representations of W-algebras. Along the way, we get several new results on the Lusztig-Spaltenstein induction for coadjoint orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This conjecture has been recently proved in [50].

  2. In the forthcoming paper [36] we prove the full conjecture using the same method.

  3. As we have mentioned in Introduction, this has been established in [50].

References

  1. Beauville, A.: Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bellamy, G.: Counting resolutions of symplectic quotient singularities. Compos. Math. 152(1), 99–114 (2016)

    Article  MathSciNet  Google Scholar 

  3. Berest, Y., Chalykh, O.: Quasi-invariants of complex reflection groups. Compos. Math. 147, 965–1002 (2011)

    Article  MathSciNet  Google Scholar 

  4. Bezrukavnikov, R., Kaledin, D.: Fedosov quantization in the algebraic context. Moscow Math. J. 4, 559–592 (2004)

    Article  MathSciNet  Google Scholar 

  5. Birkar, C., Cascini, P., Hacon, C., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  Google Scholar 

  6. Boddington, P.: Deformations of type D Kleinian singularities. arXiv:math/0612853

  7. Borho, W.: Über Schichten halbeinfacher Lie-Algebren. Invent. Math. 65(2), 283–317 (1981/82)

  8. Borho, W., Kraft, H.: Über die Gelfand-Kirillov-Dimension. Math. Ann. 220, 1–24 (1976)

    Article  MathSciNet  Google Scholar 

  9. Bohro, W., Kraft, H.: Über Bahnen und deren Deformationen bei linearen Aktionen reduktiver Gruppen. Comment. Math. Helv. 54(1), 61–104 (1979)

    Article  MathSciNet  Google Scholar 

  10. Braden, T., Proudfoot, N., Webster, B.: Quantizations of conical symplectic resolutions I: local and global structure. Astérisque 384, 1–73 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Collingwood, D., McGovern, W.: Nilpotent orbits in semisimple Lie algebras. Chapman and Hall, London (1993)

    MATH  Google Scholar 

  12. Dixmier, J.: Représentations irréductibles des algèbres de Lie nilpotentes. (French) An. Acad. Brasil. Ci. 35, 491–519 (1963)

    MATH  Google Scholar 

  13. Dixmier, J.: Enveloping algebras. Revised reprint of the 1977 translation. Graduate Studies in Mathematics, vol. 11. American Mathematical Society, Providence, RI (1996)

  14. Eisenbud, D.: Commutative Algebra. With a View Toward Algebraic Geometry. Graduate Texts in Mathematics, vol. 150. Springer-Verlag, New York (1995)

    MATH  Google Scholar 

  15. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147, 243–348 (2002)

    Article  MathSciNet  Google Scholar 

  16. Fu, B.: On \(\mathbb{Q}\)-factorial terminalizations of nilpotent orbits. J. Math. Pures Appl. (9) 93(6), 623–635 (2010)

    Article  MathSciNet  Google Scholar 

  17. Fu, B., Juteau, D., Levy, P., Sommers, E.: Generic singularities of nilpotent orbit closures. Adv. Math. 305, 1–77 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ginzburg, V.: Characteristic varieties and vanishing cycles. Invent. Math. 84(2), 327–402 (1986)

    Article  MathSciNet  Google Scholar 

  19. Gan, W.L., Ginzburg, V.: Quantization of Slodowy slices. Int. Math. Res. Not. 5, 243–255 (2002)

    Article  MathSciNet  Google Scholar 

  20. Jantzen, J.C.: Einhüllende Algebren halbeinfacher Lie-Algebren. Ergebnisse der Math., vol. 3. Springer, New York, Tokio etc. (1983)

    Book  Google Scholar 

  21. Hodges, T.: Noncommutative deformations of type A Kleinian singularities. J. Algebra 161(2), 271–290 (1993)

    Article  MathSciNet  Google Scholar 

  22. Kaledin, D.: Symplectic singularities from the Poisson point of view. J. Reine Angew. Math. 600, 135–156 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Kaledin, D.: Geometry and topology of symplectic resolutions. Algebraic geometry, Seattle 2005. Part 2, 595-628, Proceedings of Symposia in Pure Mathematics, 80, Part 2. American Mathematical Society, Providence, RI (2009)

  24. Katsylo, P.: Sections of sheets in a reductive algebraic Lie algebra. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 46(3), 477–486, 670 (1982)

  25. Kaledin, D., Verbitsky, M.: Period map for non-compact holomorphically symplectic manifolds. GAFA 12, 1265–1295 (2002)

    MathSciNet  MATH  Google Scholar 

  26. Kirillov, A.: Unitary representations of nilpotent Lie groups. (Russian) Uspehi Mat. Nauk 17(4 (106)), 57–110 (1962)

    MathSciNet  MATH  Google Scholar 

  27. Levy, P.: Isomorphism problems of noncommutative deformations of type D Kleinian singularities. Trans. Am. Math. Soc. 361(5), 2351–2375 (2009)

    Article  MathSciNet  Google Scholar 

  28. Losev, I.: Quantized symplectic actions and \(W\)-algebras. J. Am. Math. Soc. 23, 35–59 (2010)

    Article  MathSciNet  Google Scholar 

  29. Losev, I.: Finite dimensional representations of W-algebras. Duke Math J. 159(1), 99–143 (2011)

    Article  MathSciNet  Google Scholar 

  30. Losev, I.: Completions of symplectic reflection algebras. Selecta Math. 18(N1), 179–251 (2012)

    Article  MathSciNet  Google Scholar 

  31. Losev, I.: Isomorphisms of quantizations via quantization of resolutions. Adv. Math. 231, 1216–1270 (2012)

    Article  MathSciNet  Google Scholar 

  32. Losev, I.: Primitive ideals in W-algebras of type A. J. Algebra 359, 80–88 (2012)

    Article  MathSciNet  Google Scholar 

  33. Losev, I.: Derived equivalences for Rational Cherednik algebras. Duke Math J. 166(N1), 27–73 (2017)

    Article  MathSciNet  Google Scholar 

  34. Losev, I.: Wall-crossing functors for quantized symplectic resolutions: perversity and partial Ringel dualities. PAMQ 13(2), 247–289 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Losev, I.: Derived equivalences for Symplectic reflection algebras. Int. Math. Res. Not. IMRN 1, 444–474 (2021)

    MathSciNet  MATH  Google Scholar 

  36. Losev, I., Mason-Brown, L., Matvieievskyi, D.: Unipotent Harish-Chandra bimodules. arXiv:2108.03453

  37. Lusztig, G., Spaltenstein, N.: Induced unipotent classes. J. London Math. Soc. (2) 19, 41–52 (1979)

    Article  MathSciNet  Google Scholar 

  38. Matvieievskyi, D.: On invariant 1-dimensional representations of a finite W-algebra. arXiv:1810.11531

  39. Matvieievskyi, D.: On the affinization of a nilpotent orbit cover. arXiv:2003.09356

  40. McGovern, W.: Completely Prime Maximal Ideals and Quantization, vol. 519. American Mathematical Society, Providence (1994)

    MATH  Google Scholar 

  41. Namikawa, Y.: Flops and Poisson deformations of symplectic varieties. Publ. Res. Inst. Math. Sci. 44(2), 259–314 (2008)

    Article  MathSciNet  Google Scholar 

  42. Namikawa, Y.: Induced nilpotent orbits and birational geometry. Adv. Math. 222(2), 547–564 (2009)

    Article  MathSciNet  Google Scholar 

  43. Namikawa, Y.: Poisson deformations of affine symplectic varieties. II. Kyoto J. Math. 50(4), 727–752 (2010)

    Article  MathSciNet  Google Scholar 

  44. Namikawa, Y.: Poisson deformations of affine symplectic varieties. Duke Math. J. 156(1), 51–85 (2011)

    Article  MathSciNet  Google Scholar 

  45. Namikawa, Y.: Birational geometry for the covering of a nilpotent orbit closure. arXiv:1907.07812

  46. Premet, A.: Special transverse slices and their enveloping algebras. Adv. Math. 170, 1–55 (2002)

    Article  MathSciNet  Google Scholar 

  47. Premet, A.: Multiplicity-free primitive ideals associated with rigid nilpotent orbits. Transform. Groups 19(2), 569–641 (2014)

    Article  MathSciNet  Google Scholar 

  48. Premet, A., Topley, L.: Derived subalgebras of centralizers and finite W-algebras. Compos. Math. 150, 1485–1548 (2014)

    Article  MathSciNet  Google Scholar 

  49. Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)

    MathSciNet  MATH  Google Scholar 

  50. Topley, L.: One dimensional representations of finite W-algebras, Dirac reduction and the orbit method. arXiv:2102.00903

  51. Vogan, D.: Dixmier algebras, sheets, and representation theory. Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989), 333-395, Progr. Math., 92, Birkhäuser Boston, Boston, MA (1990)

  52. Vogan, D.: The orbit method and unitary representations for reductive Lie groups. Available at http://www-math.mit.edu/~dav/dmkrev.pdf

Download references

Acknowledgements

This paper would have never appeared without help from Pavel Etingof and Dmitry Kaledin. I would like to thank them as well as Yoshinori Namikawa, Sasha Premet, and David Vogan for stimulating discussions. Finally, I would like to thank the referees for numerous comments that helped me to improve the exposition. I am very happy to dedicate the paper to Sasha Premet on his 60th birthday, this paper, as well as much of my other work, is inspired by his fascinating results. The paper was partially supported by the NSF under grants DMS-1161584, DMS-1501558. This work has also been funded by the Russian Academic Excellence Project ’5-100’.

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Sasha Premet, on his 60th birthday, with admiration.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losev, I. Deformations of symplectic singularities and orbit method for semisimple Lie algebras. Sel. Math. New Ser. 28, 30 (2022). https://doi.org/10.1007/s00029-021-00754-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00754-y

Mathematics Subject Classification

Navigation