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Abstract

We study the motivic and £-adic realizations of the dg category of singularities of the
zero locus of a global section of a line bundle over a regular scheme. We will then
use the formula obtained in this way together with a theorem due to D. Orlov and
J. Burke—M. Walker to give a formula for the £-adic realization of the dg category of
singularities of the zero locus of a global section of a vector bundle. In particular, we
obtain a formula for the £-adic realization of the dg category of singularities of the
special fiber of a scheme over a regular local ring of dimension 7.
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1 Introduction

The connection between categories of singularities and vanishing cycles is well known,
thanks to works of Dyckerhoff [23], Preygel [45], Efimov [24] and many others.
Recently, an instance of this fact has been studied in [9].

We start by quickly reviewing the main theorem of [9], that served both as a model
and as a motivation for the investigations presented later. The main purpose of the
above mentioned paper is to identify a classical object of singularity theory, namely
the £-adic sheaf of (inertia invariant) vanishing cycles, with the £-adic cohomology of
anon-commutative space (that is defined in loc. cit.), the dg category of singularities of
the special fiber. The main result of Blanc et al. ([9, Theorem 4.39]) reads as follows:

Let p : X — S be a proper, flat, regular scheme over an excellent strictly
henselian trait S. Let iy : 0 < S be the embedding of the closed point in S and
let p, : X; — o the pullback of p along i, . Fix a prime number ¢ different from the
characteristic of 0. Let ®,(Qq, x(8)) be the £-adic sheaf of vanishing cycles associ-
ated to Q¢, x (B) = B,z Qe,x (n)[2n]. Denote by [ the inertia group (as S is strictly
henselian, it coincides with the absolute Galois group of the open point in S) and by
(—)M the (homotopy) fixed points co-functor. In [9], the authors define the ¢-adic
realization of dg categories, denoted by ng’v. It is an oo-functor that associates an
£-adic complex to a dg category. For every (derived) scheme Z, let Sing(Z) be the dg
category of singularities of Z, that is the dg quotient

Sing(Z) := Coh®(Z)/Perf(Z),

where Coh”(Z) denotes the dg-category of complexes of quasi coherent © z-modules
with coherent total cohomology and Perf (Z) that of perfect complexes of O z-modules.

I Notice that if Z is derived, we need to assume that © 7 € Coh? (2).
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A. Blanc, M. Robalo, B. Toén and G. Vezzosi show that there is an equivalence of
i£ RS (Sing(S. 0) ~ Qu.0 () ®q,,, QI -modules

P2 R (SINg(X)) ~ pos®p(Qex (BN [-11.

Remark This theorem is of major importance in B. Toén - G. Vezzosi’s approach to
the Bloch’s conductor conjecture [8]. For more details, see [67—69].

The content of this theorem is summarized in the following mind map:

NON COMMUTATIVE SIDE VANISHING CYCLES SIDE

p: X — S (initial data)

— T~
(X,mop:X— Al) € LGs(1) @, (Qe,x(B))
(for 7 a uniformizer of S) (vanishing cycles of X)
¥ ¥
Sing(X, 7 o p) =~ Sing(X,) @, Qe x(BOM
(as X is regular) (inertia invariant vanishing cycles)
\ /

iF RSV (Sing(X5)) =~ pa® Qe x (BOM [—1]

We can ask whether the above diagram makes sense in more general situations. For
example, one can start with the datum of a proper, flat and regular scheme over an
excellent local regular ring of dimension zn. One recovers the case treated in [9] when
n=1

It is immediate to observe that the left hand side of the diagram makes sense
without any change: assume that we are given a proper, flat morphism p : X — S,
with X regular and S local, regular of dimension n. Let 7+ = (7q,...,7,) be a
collection of generators of the closed point of S. Then we can consider the morphism
mop: X — ASandits fiber X¢ along the origin § — A’ It makes perfectly sense
to consider iRg’v (Sing(Xo)).

It comes up that this generalization is related to the following one: one can consider
pairs (X, sx) where X is aregular scheme over S and sy : X — V(L) is a morphism
towards the total space of a line bundle L g over S. One recovers the situation pictured
above when Lg = Oy is the trivial line bundle. In this situation, we want to compute
ng’v(Sing(Xo)), where X is the fiber of sy : X — V(Lg) along the zero section
S — V(Ly).

One can view the former generalization as a particular case of the latter thanks
to a theorem of Orlov [42] and Burke and Walker [11], which tells us that the dg
category of singularities of (X, o p) is equivalent to the dg category of singularities
of By, (riop)-Ti+ -+ (Taop) - Ty € 0P ).

Thus, we only need to find the appropriate generalization of (inertia invariant)
vanishing cycles. The first thing we can think of are vanishing cycles over general
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bases, developed by Laumon [33] following ideas of P. Deligne and further investigated
by many others, including O. Gabber, L. Illusie, F. Orgogozo (see [29,41]). However,
it seems that this is not the right point of view for our purposes. Instead, we will pursue
the following analogy:

TOPOLOGY VANISHING CYCLES OUR SETTING
D unital S strictly V(L) total space
open disk henselian trait of a line bundle L over

a base scheme S

0—D c—3S S— V&)
origin special point zero section
D*=D— {0}~ D n— S U=VL)—-S— V(L)
punctured disk generic point open complementary

D* — D* n—n
universal cover separable closure ?
of the punctured disk of the generic point

As we will only need to define the analogous of inertia-invariant vanishing cycles,
we will not face the problem of filling the empty spot in the mental map above.
Nevertheless, we will come back to this matter at the end of the article, presenting a
strategy to complete the picture.

We will define an appropriate generalization of ®,(Q, X(ﬁ))hI (see Defini-
tion 4.2.3) and prove a generalization of the formula stated in [9, Theorem 4.39].
Our main theorem will then look as follows:

Theorem 5.2.2 Let X be a regular scheme and let sx be a regular global section of a
line bundle Lx. Denote X the zero locus of sx. Then

RGY (Sing(X0)) = @ | (Qe(B)[~11.

Here CD‘& SX)(Qg(ﬂ)) is what we call the monodromy-invariant vanishing cycles -
adic sheaf (see Definition 4.2.6). It coincides with inertia invariant vanishing cycles
when we put ourselves in the situation considered in [9].

Using this theorem combined with the above mentioned result of D. Orlov and
J. Burke—M. Walker (Theorem 6.1.16), we will deduce the following formula for the
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situation in which one starts with a regular scheme X and a regular section sy of a
vector bundle.

Theorem 6.2.1 Let f : X — S be a flat morphism, &g be a vector bundle of
rank r over S and let sx be a global section of Ex = f*Es. Assume that X is a
regular scheme and that sy is regular section. The following equivalence holds in
MOdﬂzﬁ(’V(Sing(x,O))(Shv@‘f(X))

Ry (Sing(X. 5x)) = peis®{fe ) w,, ) Qe (BNI-1],

where Wy, is the global section of Ope (1) associated to sx, i : V(W) — P(Ex)
is the closed embedding of the zero locus of Wy, in P(Ex) and p : P(Ex) — X is the
canonical projection.

In particular, the above theorem applies to the special case £s >~ 0’5 and allows us
to compute the ¢-adic realisation of the special fiber of a regular scheme over a local
regular noetherian ring of dimension n. More precisely:

Corollary 6.2.2 Assume that S = Spec(A) is a noetherian regular local ring of dimen-
sion n and let w1, ..., , be generators of the maximal ideal. Let p : X — § =
Spec(A) be a regular, flat S-scheme of finite type. Let w : § — A’s be the closed
embedding associated to w1, ..., mw,. Then 7t o p is a regular global section of O'.
Then the equivalence

LN s ~ . mi
Ry (Sing(X. 70 p) = guix @1y, (Qe(B)I-1]

holds in Mod g« iy x o) (SHVQ, (X)).

Here q : ]P”)l(_1 = Projx(Ox[Ti,...,T,]) — X is the canonical projection and
i:V(Wrop) — ]P";{l is the closed embedding determined by the equation

Waop = prm) T +---+ p*(my) - T, = 0.

We will end this article with some remarks on the following two problems:

1. It seems possible to define a formalism of vanishing cycles in twisted situations, i.e.
in the situation in which we have a morphism sy : X — V(L) for Lx € Pic(X).
This is all about completing the empty slot in the mind map above. One should then
be able to find <I>‘(I§’ 5x) (Q¢(B)) via a procedure that corresponds to taking homotopy
fixed points in the usual situation. A complete account on this formalism will appear
in a forthcoming paper in collaboration with D.-C. Cisinski.

2. We will comment the regularity hypothesis that appears both in A. Blanc—
M. Robalo-B. Toén—G. Vezzosi’s theorem and in the generalization we provide.

Remark The main body of this article corresponds to [44, Chapter §3], while the
“preliminaries” section corresponds Chapter §1 in loc. cit. The only difference lies in
section § 6, where we have considered a more general setting in the present text.
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Remark Even if the theorems are stated in the category Shvg, (Z) of £-adic sheaves,
they are nevertheless true (and the proves we provide work mutatis mutandis) as
BUz @-modules (see Sect. 2.7).

2 Preliminaries and notation

In this preliminary section we will briefly recall some of the mathematical tools that
we will need later. We will also fix the notation that we will use in the other sections.

2.1 Some notation and convention

e Even when not explicitly stated, S will always be a regular scheme of finite type
over a strictly local noetherian scheme.

e Smg denotes the category of smooth schemes of finite type over S.

e Schy denotes the category of separated schemes of finite type over S.

e We will freely use the language of co-categories which has been developed in
[34,35]. co-category will always mean (0o, 1)-category for us.

e § denotes the co-category of spaces.

o We write dg instead of “differential graded”.

e We will use cohomological notations. In particular, the differential of a complex
increases the degree.

o If we are given a morphism of (derived) schemes f : X — Y and an object
Ey € QCoh(Y), we will write Ey instead of f*Ey.

2.2 Reminders on dg categories

Remark 2.2.1 For more details on the theory of dg categories, we invite the reader to
consult [32,60] and/or [48].

Let A be a commutative ring.

LetdgCatg be the category of small A-linear dg categories together with A-linear dg
functors. This category can be endowed with a cofibrantly generated model category
structure, where weak equivalences are DK equivalences (see [56]). The underlying
oo-category of this model category coincides with the co-localization of dgCatg with
respect to the class of DK equivalences. We will denote this co-category by dgCatg.

Every DK equivalence is a Morita equivalence. We can therefore endow dgCatg
with a second cofibrantly generated model category structure by using the theory
of Bousfield localizations. In this case weak equivalences are Morita equivalences.
Similarly to the previous case, the underlying oo-category of this model category
coincides with the oo-localization of dgCatg with respect to Morita equivalences. We
will label this co-category by dgCatibiim.

Let C. denote the dg category of perfect C°P-dg modules. Then dgCatiSdm is equiv-
alent to the full subcategory of dgCatg spanned by dg categories C for which the
Yoneda embedding € — éc is a DK equivalence.
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To summarize, we have the following pair of composable co-localizations
dgCatg — dgCatg — dgCatid™. (2.2.1)

dgCatg — dgCathim is a left adjoint to the inclusion dgCatiSdm < dgCatg under the
identification mentioned above. At the level of objects, it is defined by the assignment
T — f"c.

Itis possible to enhance dgCat g and dgCat?m with symmetric monoidal structures.
Furthermore, if we restrict to the full subcategory dgCatlSf C dgCatg of locally flat
(small) dg categories, we get two composable symmetric monoidal co-functors

dgCaty® — dgCat? — dgCat{™®. (2.2.2)

More details on the Morita theory of dg categories can be found in [59].

One of the most recurrent operations that occur in this work is that of forming
quotients of dg categories: given a dg category C together with a full sub dg category
€', both of them in dgCatiSdm, we can consider the pushout C Lle 0 in dgCatifm.
Here 0 denotes the final object in dgCatiSdm, i.e. the dg category with only one object
whose endomorphisms are given by the zero hom-complex. We denote this pushout
by C/C’ and refer to it as the dg quotient of €’ < €. Equivalently, The dg category
C/€ can also be obtained as the image in dgCatiSdm of the pushout C Ller 0 formed
in dgCatg. Its homotopy category coincides with (the idempotent completion of) the
Verdier quotient of H?(C) by the full subcategory H(€') (see [22]).

Compact objects in dgCati_éjm are dg categories of finite type over A, as defined in
[64]. In particular,

Ind(dgCatl) ~ dgCati{™. (22.3)

Moreover, dgCatig1m is equivalent to the co-category of small, idempotent complete,
A-linear stable co-categories [19].

When S is a non affine scheme, the symmetric monoidal co-category of dg-
cateogories over S is defined as the limit

dgCat{™® = lim dgCat'™®. (2.2.4)
Spec(A)—S

Here there are some dg categories that we will use: let X be a derived scheme
(stack).

e QCoh(X) will denote the dg category of quasi-coherent O x-modules. It can be
defined as follows. If X = Spec(B), then QCoh(X) = Modp, the dg category of
dg modules over the dg algebra associated to B via the Dold-Kan equivalence. In

the general case, QCoh(X) = 1(1r_n Spec(B)>X Mod (the functoriality being that
induced by base change).

e Perf(X) will denote the full sub dg category of QCoh(X) spanned by perfect com-

plexes. If X = Spec(B), then Perf (B) is the smallest subcategory of Mod g which
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contains B and that is stable under the formation of finite colimits and retracts.
More generally, an object £ € QCoh(X) is perfect if, for any g : Spec(B) — X,
the pullback g*& € Perf(B). Perfect complexes coincide with dualizable objects
in QCoh(X) and, under some mild additional assumptions (that will always be
verified in our examples), with compact objects (see [12]).

Moreover, as we assume to work in the noetherian setting, we can consider:

e Coh”(X) will denote the full sub dg category of QCoh(X) spanned by those
cohomologically bounded complexes & (i.e. H' (&) # 0 only for a finite number
of indexes) such that H*(€) is a coherent HO(O x)-module.

e Coh™ (X) will denote the full dg category of QCoh(X) spanned by those coho-
mologically bounded above complexes & (i.e. H () = 0 for i >> 0) such that
H*(&) is a coherent HY(O x)-modules. These are also known as pseudo-coherent
complexes.

e Let p: X — Y be a proper morphism locally almost of finite type. By [28, Cpt.4
Lemma 5.1.4], we have an induced co-functor p, : Coh’(X) — Coh?(Y). We
denote Coh” (X )pert(v) the full subcategory of Coh’ (X) spanned by those objects
€ such that p,& € Perf(Y).

2.3 Derived algebraic geometry

Derived algebraic geometry is a broad generalization of algebraic geometry whose
building blocks are simplicial commutative rings, rather then commutative rings. It
is usually better behaved in the situations that are typically defined bad in the classi-
cal context, e.g. non-transversal intersections. The main idea is to develop algebraic
geometry in an homotopical context: instead of saying that two elements are equal we
rather say that they are homotopic, the homotopy being part of the data. In this article
derived schemes appear exclusively as (homotopy) fiber products of ordinary schemes.
It is necessary to allow certain schemes to be derived, as if we restrict ourselves to
work with discrete (i.e. classical) schemes, some important characters do not appear
(e.g. the algebra which acts on certain dg categories of (relative) singularities).

The ideas and motivations that led to derived algebraic geometry go back to J.-
P. Serre (Serre’s intersection formula, [52]), P. Deligne (algebraic geometry in a
symmetric monoidal category, [21]), Illusie, Grothendieck, André, Quillen (the cotan-
gent complex, [3,30,46,53]) ... however, the theory nowadays relies on solid roots
thanks to the work of Lurie [36] and Toén—Vezzosi [65,66]. For a brief introduction to
derived algebraic geometry we refer to [63]. We will denote the co-category of derived
schemes by dSch.

By definition, each derived scheme X has an underlying scheme #y(X) (its trunca-
tion). Indeed, the assignment X +— 79(X) is part of an adjunction

¢t : Sch = dSch : 1. (2.3.1)
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A derived scheme is affine if its underlying scheme is so. There is an equivalence of
oo-categories

dSch®T ~ sRing®? (2.3.2)

where dSch® is the full subcategory of dSch spanned by affine derived schemes and
sRing is the co-category of simplicial rings. For any simplicial commutative ring A,
we denote Spec(A) the associated derived scheme.

The oco-category dSch has all finite limits. In particular, it has fiber products. For
example, if we consider a diagram

Spec(B) — Spec(A) < Spec(C)

of affine derived schemes, the fiber product is equivalent to Spec(B ®Hf; C), the spec-
trum of the derived tensor product.

Consider two (underived) S-schemes X, Y (S being underived itself). Then the fiber
product computed in dSch (denoted X xg Y) might differ from the one computed in
Sch (denoted X x g Y). However, they are related by the formula

(X xhy)~X x5, (2.3.3)

2.4 (-adic sheaves

We shall briefly introduce the co-category of £-adic sheaves, following [27].

Fix a prime number ¢, which is invertible in each residue field of our base scheme S,
where S is a regular scheme of finite type over a strictly local noetherian scheme.” Let
Shv(X, Z/¢?7) be the full subcategory of the co-category Fun(Schy’, Mod,, /ed7)
spanned by (hypercomplete) étale sheaves. Here Sche; denotes the category of
étale sheaves and Mody, a7 the oo-category of 7,/¢4Z-modules. The oco-category
Shv(X, Z/¢Z) is compactly-generated, its compact objects being constructible
sheaves (see [9, Proposition 3.38]). In what follows, we will denote Shv® (X, Z/Zd 7))
the full subcategory of Shv(X, Z/£?7) spanned by compact objects.

The ring homomorphisms Z/¢?Z — 7./£4~17 induce a sequence of oo-functors

Shv(X, Z/t?Z) — Shv(X, Z/¢?~'7) (2.4.1)

and it follows from [27, Proposition 2.2.8.4] that the image of a constructible sheaf is
again constructible, yielding

Shv®(X, Z/¢Z) — Shv’ (X, Z/¢~'7). (2.4.2)

We can then consider the limit of the diagram of co-categories

2 This assumption is needed in order to consider schemes of finite étale cohomological dimension, see [14,
Theorem 1.1.5].
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Shv{(X) := lim Shv‘ (X, Z/¢'Z). (2.4.3)

This co-category can be identified with the full subcategory of Shv(X, Z) generated
by £-complete constructible sheaves, i.e. by those objects F € Shv(X, Z) such that

L. ¥~ lim F/elT,
2. foranyd > 1, F /Edff is constructible.

We will refer to this co-category with the co-category of constructible £-adic sheaves.
The pushforward for a morphism f : X — Y of S-schemes of finite type induces
an oo-functors at the level of constructible £-adic sheaves

fx 1 Shvy(X) — Shvy(Y). 244
It admits a left adjoint
f* : Shvj(Y) — Shv{(X) (2.4.5)

that, at the level of objects, takes a constructible £-adic sheaf to the £-completion of
its pullback.
We next consider the ind-completion of such categories:

Shv,(X) := Ind(Shv§ (X)), (2.4.6)

the oo-category of £-adic sheaves. It is then a formal fact that we have a couple of
adjoint functors, also called the pushforward and the pullback, defined at the level of
£-adic sheaves.

Finally, we consider the localization of Shv,(X) with respect to the class of mor-
phisms {F — F[£!]}, obtaining the co-category of Q,-adic sheaves Shvg, (X).

2.5 Stable homotopy categories

In this section we will briefly recall the constructions and main properties of SHg
and of SHY, the stable oo-category of schemes and the stable oo-category of non-
commutative spaces (a.k.a. dg categories).

2.5.1 The stable homotopy category of schemes

The stable homotopy category of schemes was first introduced by Morel and Voevod-
sky in their celebrated paper [40]. The main idea is to develop an homotopy theory
for schemes, where the role of the unit interval—which is not available in the world
of schemes—is played by the affine line. It was first developed using the language of
model categories. We will rather use that of co-categories, following [48] and [49].
The two procedures are compatible, as shown in [48] and [49].

Let S = Spec(A) denote an affine scheme. One can produce the unstable homo-
topy category of schemes as follows: one considers the co-category Fun(Smgp, 8) of
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presheaves (of spaces) on Smg. Its full subcategory spanned by Nisnevich sheaves,
Shyis(Smg) is an example of an co-topos (in the sense of [35]). Then one has to
consider its hypercompletion Shy;s(Smg)™?, which coincides with the localization
of Fun(Smgp , §) spanned by objects that are local with respect to Nisnevich hyper-
covers. If we further localize with respect to the projections {A§( — X}, we obtain the
unstable homotopy oo-category of schemes, which we will denote by Hg. It is also
important that the canonical co-functor Smg — Hg can be promoted to a symmetric
monoidal co-functor with respect to the Cartesian structures. One then considers the
pointed version of Hg, Hg,: it comes equipped with a canonical symmetric monoidal
structure H§, and there is a symmetric monoidal co-functor Hy — H(, . The final step
consists in stabilization: in classical stable homotopy theory one forces stabilization
by inverting S'. However, in this context, there exist two circles, the topological circle
S := A'/3A! and the algebraic circle G,, 5. One then stabilizes Hg, by inverting
St A Gm.s ~ (PL, 00) := cofib(S = P§)3—this can be done using the machinery
developed in [49, §2.1]. As a result, we obtain the presentable, symmetric monoidal,
stable co-category SH? =Hy *[(IP)l , 00) 11, called the stable homotopy co-category
of schemes. It is moreover characterized by the following universal property (see [49,
Corollary 2.39]): there is a symmetric monoidal co-functor £$° : Smy — SH? and
for any presentable, symmetric monoidal pointed co-category D®, the map

Fun®(SHY, D®) — Fun®(Sm}, D®) (2.5.1)
induced by X{° is fully faithful and its image coincides with those symmetric monoidal

oo-functors F : Smg — D? that satisfy

e Nisnevich descent,
e Al invariance,

e cofib(F(S = ]P’fg)) is an invertible object in D.

Remark 2.5.2 1t can be shown, using results of Ayoub [4,5], Cisinski-Déglise [15]
and the machinery developed by Gaitsgory—Rozenblyum [28] and Liu—Zheng [37-
39], that the assignment S — SHy defines a sheaf of co-categories enhanced with a
Grothendieck 6-functors formalism. See [48] and [49] and the appendix in [9].

Among the objects of SHg, the spectrum of homotopy invariant non-connective K-
theory BUg # will play a crucial role in what follows. Recall that it is an object in SHg
such that, for every object X € Smyg,

Mapgy, (27X, BUs) >~ HK(X). (2.5.2)

Moreover, BUjy satisfies the algebraic Bott periodicity:

BUs >~ BUgs(1)[2]. (2.5.3)

3 Clearly, this cofiber is taken in Hg,.

4 More commonly, this spectrum is denoted K G Lg, see [16] We use the notation BUg, which comes from
topology, following the lead of [9], which is our main source of inspiration.



33 Page120f72 M. Pippi

2.5.2 The stable homotopy category of non-commutative spaces

Remark 2.5.4 This section is an exposition of the ideas and results of [48] and [49].
However, a theory of non-commutative motives was also proposed by Cisinski and
Tabuadain [17,18,57]. Their theory is dual to the one constructed by Robalo. For more
details about this, we refer to [49, Appendix A] and [9, Remark 3.4].

It is possible to mimic the procedure described in the previous paragraph to construct
a presentable, symmetric monoidal, stable oo-category SH'® defined starting with
non-commutative spaces rather than schemes, a.k.a. dg categories. The role of smooth
schemes is played by dg categories of finite type in this context. Moreover, there exists
an analog of Nisnevich square of non-commutative spaces (see [48] and [49]).
Remark 2.5.5 By convention, ¥ is a Nisnevich covering of the zero object in dgCatgt.
Remark 2.5.6 The notion on Nisnevich squares for smooth non-commutative spaces
is compatible with the classical one: if

VxxU——V

l l (2.5.4)

U—X

is an elementary Nisnevich square, then its image via Perf(e) is a Nisnevich square
of non-commutative spaces ([49, Proposition 3.21]).

One then considers the category of presheaves Fun(Ncgp, 8) and its localization
with respect to the class of morphisms {j(U) L;x) j(V) — j(W)} determined
by Nisnevich squares of non-commutative spaces, where j : Ncg — Fun(Ncgp, S)
is the Yoneda embedding. We further localize with respect to the morphisms
{X ® Perf(S) —> X ® Perf (A}g)}5 and obtain a presentable symmetric monoidal co-
category H2°’®. Pursuing the analogy with the commutative case, we should now force
the existence of a zero object in H® and then stabilize with respect to the topological
and algebraic circles. It comes out that the situation is simpler in the non-commutative
case: let

w@ : NC? N Hl;C,@ — SHI;C,@ = HI;C,®[(SI)—1]

denote the co-functor that we obtain if we force the topological circle to be invertible.
Then

e SHY is pointed due to the convention of Remark 2.5.5.
e The non-commutative motive

w(IP’}g, o0) = cofib(y (Perf(S) i*) Perf(IP’IS)))

5 Since the Yoneda embedding is symmetric monoidal (when we consider the Day convolution product
on the co-category of presheaves), then it suffices to localize with respect to the morphism j (Perf(S)) —
JjPerf(AL)).
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is invertible in SHI_}C’® ([49, Proposition 3.24]): indeed, it is equivalent to
Perf(S) >~ 1"° and therefore it is not necessary to force G,, s to be invertible.

2.6 The bridge between motives and non-commutative motives
We have now at our disposal the following picture:

Perf
Smj __eri}_} Nc?

% v® (2.6.1)
SH? ---—---—-> SHI*®
§ :RPerf §

The existence of the dotted map, which we name perfect realization, is granted by the
universal property of SH?. Indeed

e 1/ o Perf(e) sends (ordinary) Nisnevich squares to pushout squares in SHY’: this
is a consequence of the compatibility of non-commutative Nisnevich squares with
the classical ones and of the definition of SH'’,

o Al-invariance is forced by construction,

e ¥ (PL, 00) is an invertible object in SHgC’®.

The fact that Rperf commutes with colimits is also guaranteed by the universal property
of SH?. As both SHg and SHY" are presentable co-categories, the adjoint functor
theorem [35, Corollary 5.5.2.9] implies the existence of a lax-monoidal right adjoint

M® : SHY® — SHY. (2.6.2)

For our purposes, it will be very important the following result

Theorem 2.6.1 [49, Corollary 4.10] The image of the monoidal unit 1S via M is
equivalent to BUs.

In particular, the oo-functor M factors trough the full subcategory of SHg spanned
by modules over BUg:

M® : SHY® — Modgy, (SH)®. (2.6.3)

In [9], the authors introduced a dual version of this oo-functor. Consider the endomor-
phism of SHY induced by the internal hom:

RHomgpe (—, 1§°) : SH™™® — SH®. (2.6.4)



33 Page140f72 M. Pippi

Then consider

RHOmSch (—, 17¢s) M®

w@
dgCaty® —— SHP® SH"® == Modgy, (SHY)

e

idm,®
dgCat¢"

M@
(2.6.5)
ft,®

where the vertical map on the left is given by the inclusion of dgCaty™ in its Ind-
completion dgCatISdm’® and the oblique ¥ ® is induced by the universal property of the

Ind-completion. Let T € dgCatiSdm. Then MY (T) is the sheaf of spectra X € Smg
HK(Perf(X) ®s T):

MY(T)(X) = Mapgy (2 X, MY(T))

~ Mapggyye (Rpert (25°X), RHomgge (T, 15))
~ Mapggye (Reert (2°X) ®5 T, 1§) ~ HK(Perf(X) @5 7). (2.6.6)

Moreover, MY has the following nice properties

e it is lax monoidal (it is a composition of lax monoidal co-functors),

e it commutes with filtered colimits (see [9, Remark 3.4]),

e it sends exact sequences of dg categories to fiber-cofiber sequences in
Modgy;, (SHy)® (see [9, Corollary 3.3]).

We will refer to MY as the motivic realization of dg categories.

2.7 (-adicrealization of dg categories

We will need a way to associate an ¢-adic sheaf to a dg category. We follow the
construction given in [9, §3.6, §3.7], which relies on results of J. Ayoub and D.-

C. Cisinski - F. Déglise. Let HQ be the Eilenberg-MacLane spectrum of rational
homotopy theory. Then we get

— ®HQ : SHY — Mody(SHs)®, (2.7.1)

which identifies the co-category on the right hand side with non-torsion objects of
SH. Similarly, if one puts BUs @ := HQ ® BUy, then one gets

— ®HQ : Modgy (SHs)® — Modgyy o (SHs)®, (2.7.2)
where the right hand side identifies with non-torsion BUg-modules. This co-functor

is strongly compatible with the 6-functors formalism and Tate twists. Moreover, we
state for future reference the following crucial fact:
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Theorem 2.7.1 [47, Theorem 5.3.10], [15, §14.1], [9, Proposition 3.35] Let X be a
scheme of finite Krull dimension an let MBy € CAlg(SHy) denote the spectrum of
Beilinson motivic cohomology. Then the canonical morphism 1x(1)[2] — BUx ®
HQ = BUyx,q induces an equivalence of commutative algebra objects

MBy (8) := Sym(MBx ()[2])[v~!] ~ BUyx,@ = BUx ® HQ, (2.7.3)

where v is the free generator in degree (1)[2].

By using the theory of h-motives developed by the authors in [14] one can define
an £-adic realization oco-functor

R® : Modyp (SH) — Shvg, (—) (2.7.4)

strongly compatible with the 6-functors formalism and Tate twists, at least for noethe-
rian schemes of finite Krull dimension. Then, using the equivalence

Modgy(Modyp (SH)) >~ Modpy (SH) (2.7.5)

we obtain an £-adic realization oo-functor

—QH
R : Modgy (SH) — 2%, Modgi, (SH) — > Modage g, (Shvg, (—)

~ MOdQK(ﬂ) (ShVQ( (—))
(2.7.6)

strongly compatible with the 6-functors formalism and Tate twists. The last equiv-
alence above holds as (2.7.4) is symmetric monoidal and commutes with Tate twists

(see [9, Remark 3.43]):

RyBUx) = RySymMBx(D[2Dv "D
Theorem 2.7.1
~ Sym(R (MBx)(D[2D[v "] = Q¢ x (B) = Sym(Qe x (D[2D[v 1.
2.7.7)

We will use the notation
R@,V . RK Mv . idm,® M h 2
¢ = Rg oMy :dgCatg — Modg, ;) (Shvg, (S)) (2.7.8)

and refer to this co-functor as the £-adic realization of dg categories.

3 Motivic realization of twisted LG models

Notation 3.0.1 Let S be a noetherian (not necessarely affine) regular scheme. We will
label Schy the category of separated S-schemes of finite type.
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3.1 The category of twisted LG models

Consider the category Schg and let L be a line bundle on S. Then we can consider
the category of Landau-Ginzburg models over (S, L), defined as follows:

e Objects consists of pairs (X, sx), where p : X — S is a (flat) S-scheme and sy is
a section of Ly := p*Lg.

e Morphisms (X, sx) i) (Y, sy) consist of morphisms f : X — Y in Schg such
that sy = f*Sy.

e Composition and identity morphisms are clear.

We will denote this category by LG(s, ¢ ).

Remark 3.1.1 If L is the trivial line bundle, then LGs, ¢ ¢ coincides with the category
of usual Landau-Ginzburg models over S (as defined for example in [9]). Indeed, in
this case V(Lg) = Specog(Oslt]). Therefore, for any X € Schg, a section of Ly
consists of a morphism Ox[f] — Oy, i.e. of a global section of Ox.

Construction 3.1.2 It is possible to endow the category LG s, ;) With a symmetric
monoidal structure

|H: LG(S,LS) X LG(S,LS) — LG(S,LS)
(X, sx), (Y, s7)) = (X,sx) B(Y,sy) = (X x5 ¥,sx Hsy), (3.1.1)

where s, B sy = p%sx + pysy. This is clearly (weakly) associative and the unit is
given by (S, 0), where O stands for the zero section of Lg.
Notice that this tensor product is induced by the abelian group structure on V(L g) =

Specs(Symog(Ly)).

Remark 3.1.3 1If Ly is the trivial line bundle, then H coincides with the tensor product
on the category of LG modules over S.

We will now exhibit twisted LG models as a fibered category.
Definition 3.1.4 Let LG be the category defined as follows:

e Objects are triplets (f : ¥ — X, Lx, sy) where f is a flat morphism between
S-schemes, Ly is a line bundle on X and sy is a global section of f*Lyx.

e Given two objects (f; : ¥; — X;, Lx;, sy;) (i = 1,2), a morphism from the first
to the second is the datum of a commutative diagram

fi

Y — X3

f2

Yo — X»
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and of an isomorphism « : g% Lx, — Lx, such that sy, corresponds to sy, under
the isomorphism

8y [3LXo = flrgxlx, = fi'lx,. (3.1.3)
o

By abuse of notation, we will say in the future that gy (sy,) = sy, if this condition
is satisfied. We will denote such a morphism by (g, «).
e Composition and identities are defined in an obvious way.

We will refer to this category as the category of twisted Landau-Ginzburg models of
rank 1 over (S, Lg) (twisted LG models for short).

Notice that there is a functor

7:LG — BG, s(X) (3.1.4)
XeSchg
defined as
(fi:Y1— X1,Lx,,577) (X1, Lx,)
(g @) > (8x, @)
(f2:Y2 = X2, Lx,. 57,) (X2, Lx,)

Lemma 3.1.5 The functor (3.1.4) exhibits LG as a fibered category over
erSchS BGm,s(X).

Proof Consider a map (gx, o) : (X1,Lx,) - (X2,L%,) in erSchs BG,; s(X) and
let (f> : Y2 — X»3,Lx,,sy,) be an object of LG over (X2, Ly,). Consider the
morphism

(g a): (fi: Y1 =X1xx, Y2 = X1,Lx,,87,) = (2 : Y2 = X2,Lx,,5y,)

where gy is the projection Y1 — Y> (which is flat as it is the pullback of a flat
morphism), fi is the projection Y; — Y> and sy, is gl*/ (Sy,). It is clear that it is a
morphism of LG over (gx, o). We need to show that it is cartesian. Consider
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(h:Z—> W,Lw,sz)

~

((r, p), ﬁ)“\\

(fl . Y1—>X1, LXI,SYI) _— (f2 . Y2 ard XQ,LXZ, SYZ)

(g, @)
(W, Lw)

w
(gx, @)

(X1, Lx,) (X2, Lx,)

(3.1.5)

Then the universal property of Y] gives us an unique morphism r : Z — Y7 such that
the compositions with f] and gy are p oh and g respectively. We just need to show that
r*(sy,) = sz. But this is clear since sy, = gy (sy,), gy (sSy,) =szand gy or =gy. 0

Remark 3.1.6 Let (X, Lx) be an object of fXESChS BGy, s(X). Then the fiber of
(X, Lx) along 7 is LG(x, 0 y)-

Definition 3.1.7 We say thata collection of maps {(g;, o;) : (U;, Ly,) = (X, Lx)}ier
in fXESchS BG,, s(X) is a Zariski covering if {g; : U; — X},es is so. They clearly
define a pre-topology on |- XeSchg BG,,,s(X ).6 We will refer to the corresponding
topology by Zarisky topology on erSchS BG, s(X).

Lemma 3.1.8 LG is a stack over fXESChS BG,,s(X) endowed with the Zariski topol-
0gy.

Proof This is a simple consequence of the fact that a morphism of schemes is uniquely
determined by its restriction to a Zariski covering and that line bundles are Zariski
sheaves. O

We conclude this section with the following observation:

Lemma3.1.9 Let {(gi. ;) : (Ui, Ly,) — (X,Lx)}ier be a Zariski covering in
f XeSchs BG,,.s(X). Then the canonical functor

a5} . m
LG(x oy = ImLGy, o)) (3.1.6)

is a symmetric monoidal equivalence.

Proof Consider the functors

LGx,cy) = LG, v,
(f:Y—=>X,sy) = (fi : Y xx U; = U, syju;)- 3.1.7

6 Notice that pullbacks existsin [y e BGum,s(X): the pullback of (V1. £,) YaD oy gy d222

(Y2, Ly,) is (Y1 xx Y2, Ly, x yv,) with the projections defined in an obvious way.



Motivic and £-adic realizations of the category... Page 190f72 33

It is easy to see that they respect the tensor structure. Therefore, we get the desired
symmetric monoidal functor (3.1.6) in the (big) category of symmetric monoidal cat-
egories and symmetric monoidal functors. Then, in order to prove that is a symmetric
monoidal equivalence, it suffices to show that the underlying functor

Forget(LG?;Lx) — l(ir_nLG??,’_’LUi)) >~ (LGx,cq) — Forget(l(ir_n LG??!,-,Lui)))'
(3.1.8)

As the functor which forgets the symmetric monoidal structure of a category is a right
adjoint, it preserves limits. Thus,

Forget(imLG(y, 1, )) = imLGy,,cy,)- (3.1.9)
The assertion now follows from the previous lemma. O

3.2 The dg category of singularities of a twisted LG model

Let (X, sx) be a twisted LG model over (S, Lg). The section sy defines a closed
sub-scheme of X. Since we are not assuming that the section is regular, some derived
structure might appear. More precisely: let Ox — Ly be the morphism of Ox-
modules associated to sy. Then, taking duals, it defines a morphism L; — Ox. If
we apply the relative spectrum functor, we get a morphisms Specp, (Ox) = X —
Specoy (Symoy (LY)) = V(Lx),i.e. asection of the vector bundle associated to L.
By abuse of notation, we will label this morphism by sy. We can also consider the
zero section X — V(Lx), which is the morphism associated to 0 € Ly (X).

Definition 3.2.1 The derived zero locus of sx is defined as the derived pullback

1
Xy ———

sx (3.2.1)

X -~9-—>V(LX).

Remark 3.2.2 Notice that the zero section X 9 V(L) is an lci morphism (Zariski
locally, it is just the zero section a scheme Y in the affine line A ;). Itis well known that
this class of morphisms is stable under derived pullbacks. In particular, i : Xg — X
is a derived lci morphism.

Remark 3.2.3 There is a truncation morphism t : 79(X9) — X, where mo(X) is the
classical scheme associated to Xo. Whenever sy is a regular section, the truncation
morphism is an equivalence in the co-category of derived schemes.

Remark 3.2.4 Of major importance for our purposes is that i is an Ici morphism. Indeed,
by [61], if f : Y — Z is an Ici morphism of derived schemes and E € Perf(Y),
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then f E € Perf(Z). In particular, we get that Perf(X() is a full subcategory of
Coh? (Xo)perf(x), the full subcategory of Coh’(X() spanned by those objects E €
Coh?(X() such that f+«E € Perf(X).

The dg category of absolute singularities of a derived scheme is a non-commutative
invariant (in the sense of Kontsevich) which captures the singularities of the scheme.

Definition 3.2.5 Let Z be a derived scheme of finite type over S whose structure sheaf
is cohomologically bounded. Then the dg category of absolute singularities is the dg
quotient in dgCat‘Sdm

Sing(Z) := Coh’(Z)/Perf(Z). (3.2.2)

Remark 3.2.6 1t is a classical theorem due to Auslander—-Buchsbaum ([1, Theorem
4.1]) and Serre ([50, Théoreme 3]) that a noetherian ring A is regular if and only if it
has finite global dimension. This means that the category of perfect complexes Perf (A)
coincides with that of coherent bounded complexes Coh’(A), i.e. Sing(A) ~ 0. This
explains the name of this object.

Remark 3.2.7 Notice that the hypothesis on Z are crucial, as in general the structure
sheaf of a derived scheme might not be cohomologically bounded. As an example of
a derived scheme that doesn’t sit in this class of objects, consider

Spec(CIX] ®F, 1/ (ey) CIYD = Spec(CIXD) X% pe(cpe.yi/cayy) SPEC(CIYD.
By tensoring the projective C[x, y]/(xy)-resolution of C[x]
S Clx, y1/(xy) = Clx, yl/(xy) EN Clx, y]/(xy) = 0

with C[y] over C[x, y]/(xy) we get that this derived scheme is the spectrum of the
cdga

A em 2 epr S oy - o,

which has nontrivial cohomology in every even negative degree.

Since i is an Ici morphism of derived schemes, by [61] and by [28] the pushforward
induces a morphism

iy @ Sing(Xo) — Sing(X). (3.2.3)

Definition 3.2.8 Let (X, sx) be a twisted LG model over (S, Ly). Its dg category of
singularities is defined as the fiber in dgCat‘Sdm of (3.2.3):

Sing(X, sx) := fiber (i, : Sing(Xo) — Sing(X)). (3.2.4)
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Remark 3.2.9 Tt is a consequence of the functoriality properties of the pullback and
that of taking quotients and fibers in dgCatg1m that the assignments (X, sy) >
Sing(X, sx) can be organized in an co-functor

Sing(e, ®) : LG(§ ) — dgCatid™. (3.2.5)

We will need to endow the oco-functor (3.2.5) with the structure of a lax monoidal
oo-functor. In order to do so, we will introduce a strict model for Coh? (Xo)Perf(x)»
following the strategy exploited in [9].

Construction 3.2.10 Let (X, sx) be a twisted LG model over (S, Lg). The identity
morphism on LY induces a Sym ¢, (L} )-projective resolution of Ox, namely

Ly ®oy Symoy(Ly) = Symoy (Ly). (3.2.6)

This is a morphism of Sym o, (Ly)-modules (induced by the multiplication of
Symoy (LY)). Base changing along the morphism Sym o, (Ly) — Ox induced by

sx we obtain that the cdga associated to X is the spectrum of LY X0 X

Example 3.2.11 Consider the zero section of Lx. Then the cdga associated to the
structure sheaf of X x@( L X is the Koszul algebra in degrees [—1, 0] (recall that we
use cohomological conventions)

LY > 0x. (3.2.7)

Construction 3.2.12 Let S = Spec(A) be a noetherian regular affine scheme and let
L be a projective A-module of rank 1. Let LG be the category of affine twisted
LG models over (S, L), i.e. of pairs (Spec(B), s) where B is a flat A-algebra of finite
typeand s € Lp = L ®4 B. For any object (X, s) = (Spec(B), s), the derived zero
locus of s is given by the spectrum of the Koszul algebra K (B, s). The associated
cdga is

N

K(B,s)y=L} > B

concentrated in degrees —1 and 0, where we label s : leg — B the morphism
induced by s : B — L. Then, similarly to [9, Remark 2.30], there is an equivalence

between cofibrant K (B, s)-dg modules (denoted KTIR)) and QCoh(Xy). Under this

equivalence, Coh? (X) corresponds to the full sub-dg category of KTB,\S) spanned by
those cohomologically bounded dg modules with coherent cohomology (over B/s =

coker(Lg N B)) and Perf(X() corresponds to homotopically finitely presented
K (B, s)-dg modules. Moreover, the pushforward

ix : QCoh(Xp) — QCoh(X)
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corresponds to the forgetful functor
KTB?‘) — B.

Define Coh®(B, s) as the dg category of K (B, s)-dg modules whose underlying
B-dg module is perfect. Since X is an affine scheme, every perfect B-dg module
is equivalent to a strictly perfect one. Therefore, we can take Coh®(B, s) as the dg
category of K (B, s)-dg moodules whose underlying B-module is strictly perfect.
More explicitly, such an object corresponds to a triplet (E, d, h) where (E,d) is a
strictly perfect B-dg module and

h:E— EQ®pLp[—1]
is a morphism such that
(hQidr,[—1])oh =0 [d,hl=hod+ ({d®id[-1))oh=id Qs.

Notice that Coh® (B, s) is a locally flat A-linear dg category. This follows immediately
from the fact that the underlying complexes of B-modules are strictly perfect and from
the fact that B is a flat A-algebra.

This strict dg category is analogous to the one that has been introduced in [9]. It
gives us a strict model for the oco-category Coh? (Xo)pert(x)- Indeed, the following
result holds:

Lemma3.2.13 [9, Lemma 2.33] Let Coh®(B, s)*¥ be the full sub-category of
Coh® (B, s) spanned by acyclic dg modules. Then the cofibrant replacement induces
an equivalence of dg categories

Coh’ (B, s)[q.iso~'] ~ Coh® (B, 5)/Coh® (B, 5)*Y ~ Coh” (Xo)pert(x). (3.2.8)

As a consequence, if we label Perf® (B, s) the full subcategory of Coh® (B, s) spanned
by perfect K (B, s)-dg modules, there are equivalances of dg categories

Coh*(B, s)/Perf’ (B, 5) ~ Cohb(Xo)perf(X)/Perf(Xo) ~ Sing(X, s). (3.2.9)

Construction 3.2.14 We can endow the assignment (B, s) — Coh®(B, s) with the
structure of a pseudo-functor: let f : (B, s) — (C, t) be a morphism of affine twisted
LG models, i.e. amorphism of A-algebras f : B — C such that the induced morphism
id® f: Lp — Lc sends s to t. Then we can define the dg functor

— ®p C : Coh*(B, s) — Coh®(C, 1)
(E,d,h) — (E®p C,d ®id,h ®id) (3.2.10)

Indeed, itis clear thatif (E, d, h) is a K (B, s)-dg module whose underling B-module
is perfect, then the K (C, t)-dg module (E ®p C,d ® id,h ® id) is levelwise C-
projective and strictly bounded.
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This yields a pseudo-functor

Coh’(e, e) : LG?f{’zl; — dgCatlf, (3.2.11)

Construction 3.2.15 We can endow the pseudo-functor (B, s) +— Coh®(B, s) with a
weakly associative and weakly unital lax monoidal structure. For any pair of twisted
affine LG models (B, s), (C, t), we need to construct a morphism

Coh*(B, s) ® Coh®(C,t) — Coh® (B ®4 C,s Hrt) (3.2.12)
For a pair (B, s), let Z(s) denote Spec(K (B, s)). Moreover, let
V(L) = Spec(Sym(L")).

Then consider the following diagram

Z(s) xh z (1) L Z(sBt) ——— Spec(B®4 C)

l st
S zero V(L) (d, —id) V(L) xs V(L) (3:2.13)
+
¢ zero V)

where ¢ is the morphism corresponding to

K(B,s)®a K(C,1) Lyg,c —> Lgg,c®Lgg,c —>B®aC
1
¢ H I
K(B®s C,sB1) Lyjg,c ——> B®4C
(3.2.14)

Consider the two projections
Ps h Pt (3.2.15)
Z(s) <— Z(s) X Z(t) —> Z(1). 2.
Given (E,d, h) € Coh*(B, s) and (E’,d’, h’) € Coh*(C, t), define

(E.d, )R (E',d', ) = ¢(p;(E,d, h) ® p{(E',d', h)).  (3.2.16)
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This is a strictly perfect complex of B ®4 C-modules: its underlying complex of A-
modules is (E, d) ®4 (E’, d"), which immediately implies that it is strictly bounded.
In order to see that each component (E ®4 E')" = @!_ E " ®4 E ! is a projective
B ®4 C-module, the same argument given in [9, Construction 2.35] applies. The
morphism

EQ®sE — E®aE' ®pg,c Lpo,cl—1]

ish® 1+ 1®Hn. In particular, ¢>*(p;"(E, d,h)® pf(E',d', h’)) lives in Coh® (B ®4
C, s Ht). The map

A — Coh'(4,0), (3.2.17)

where A is the unit in dgCatIf{, i.e. the dg category with only one object whose endo-
morphism algebra is A, is defined by the assignment

o~ A.

It is clear that (3.2.16) and (3.2.17) satisfy the associativity and unity axioms, i.e. they
enrich the pseudo-functor (3.2.11) with a lax monoidal structure

aff,op,H

Coh’ (e, 0)® : LG(g'7)

— dgCat't®. (3.2.18)

Asin[9, Construction 2.34, Construction 2.37], consider Pairs-dgCatlf, the category
of pairs (T, F), where T € dgCatlj and F is a class of morphisms in 7. A morphisms
(T,F) — (T', F') is adg functor T — T’ sending F in F’. There is an obvious
functor Pairs—dgCatL{ — dgCatlAf defined as (T, F) — T. We say that a morphism
(T,F) - (T', F)in Pairs—dgCatlAf is a DK-equivalence if the dg functor T — T’
is a DK-equivalence in dgCatI/{. Denote this class of morphisms in Pairs-dgCatlj by
Wpk.

Also notice that the symmetric monoidal structure on dgCatlji induces a symmetric
monoidal structure on Pairs—dgCatL{

T, QT ,FYy=TxT,F®F). (3.2.19)

It is clearly associative and unital, where the unit is (A, {id}). We will denote this
symmetric monoidal structure by Pairs-dgCatlj@. Note that this symmetric monoidal
structure is compatible to the class of morphisms in Wpg, as we are working with
locally-flat dg categories.

Then as in [9, Construction 2.34, Construction 2.37], we can construct a symmetric
monoidal co-functor

loc§, : Pairs-dgCat'y ®[W}, ] — dgCaty *[W, ]~ dgCat§  (3.2.20)
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which, on objects, is defined by sending (T, F) to T[F ’l]dg, the dg localization of
T with respect to F. Let {g.iso} be the class of quasi-isomorphisms in Coh®(B, s).
Consider the functor

aff,op,HH If,®

LG, — Pairs-dgCat
(B, s) — (Coh*(B,s), {q.iso}) (3.2.21)

and compose it with the functor

locgg
Pairs-dgCat'y ® 19, pairs- dgCat't ®[Wp L] —% dgCat'y *[Wp k]
~ ) (3.2.22)
¢ ® loc idm,®
dgCat’ dgCat,

We get, after a suitable monoidal left Kan extension, the desired lax monoidal oco-
functor

op,H

Coh®(e)§.¢(,, : LGT™ — dgCat'{™®. (3.2.23)

Lemma3.2.16 Let S = Spec(A) be a regular noetherian ring. Let L be a line bundle
over S. The following equivalence holds in CAlg(dgCatldm ®)

Coh”(so);‘?erf(s) ~ Coh?(S9)® = Perf(Sym(L[—2])®. (3.2.24)

Proof The first equivalence is an immediate consequence of the regularity hypothesis
on S. As we have remarked in the Example (3.2.11), the cdga assocaiated via the

Dold-Kan correspondence to Sy is LY A A. By definition, A be a compact generator
of Perf(S). Also by definition, LY g A is a compact generator of Perf(Sp). It is

easy to see that A, with the trivial (L" LA A)-dg module structure, is a generator of
Coh? (Sp): if M is anonzero object in Cohb(So), then there exists 0 = m € H! (M) for
some i. We can moreover assume that i = 0. Then m induces a non-zero morphism
A—> M.

In particular, we get the equivalence

Perf(RHom , (A, A)) ~ Coh®’(Sp).
(LV—>A)

The endomorphism dg algebra RHom(Lv o A)(A, A) can be computed explicitly by

means of the following LY o A-resolution of A:

0 1 0
LLV®T S LY S LY S
= 5 =

(3.2.25)

o|::>
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Applying Hom4 (—, A) we obtain

L 1
1 2 3

A % Homu(LY, A) & Homu (LY, A) > Homa(LV®2, A). ..
L ] ) ]
0

S e (3.2.26)
3

0 1
- L —

~

[~

L
i
1

ol

which is quasi isomorphic to A. However, when we ask for (LY A A)-linearity, the
copies of L®" in odd degree disappear, as the local generators ¢ in degree —1 of (LY 9
A) act via the identity on (LY 9 A). Therefore we find that RHom(Lv o A)(A, A)is

quasi-isomorphic to

—>0—> L — -~ Symu(L[-2]). (3.2.27)

0
u
1

o>

L
]
2
This shows that there exists an equivalence

RH A A) > L[-2 2.2
om o (A A) = Syms(LI-2) (3.228)

0 . . .
as (LY — A)-dg modules. Notice that both these objects carry a canonical algebra
structure. In order to conclude that the two commutative algebra structures coincide,
we consider the dg functor

RHom o (A, —):Coh’(S,0) — Syma(L[-2]) —dgmod. (3.2.29)
(LY = A)

Notice that Sym 4 (L[—2]) is a strict cdga, seen as a commutative algebra object in
QCoh(A). Similarly to [9, Lemma 2.39], for (E, d, h) an object in Coh®(A, 0), the
Sym 4 (L[—2])-dg module RHom(L 0 A)(A, (E, d, h)) can be computed (in degrees

v—

iandi +1)as

d+h
@ Eiop @4 L 25 @ Eit1-2, ®a L®". (3.2.30)

n>0 n>0

The same arguments given in loc.cit. hold mutatis mutandis in our situation and there-
fore we obtain a symmetric monoidal functor

Coh*(S,0)® — Syma(L[-2]) — dgmod® (3.2.31)

which preserves quasi-isomorphisms. If we localize both the Lh.s. and the r.h.s. we
thus obtain a symmetric monoidal co-functor

Coh?(Sp)® — QCoh(Sym A (L[—2]))®, (3.2.32)
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from which one recovers the equivalence of symmetric monoidal dg categories
Coh?(S0)® ~ Perf(Syma(L[—2]))®. (3.2.33)
O

Corollary 3.2.17 Let S = Spec(A) be a regular noetherian affine scheme and let L be
a line bundle over S. The lax monoidal co-functors (3.2.23) factors as

i i
Coh” (&)Fy5a) 1 LG5 1) = Modpert(sym (1121 (dgCati™®.  (3.2.34)

Then, for a noetherian regular scheme S with a line bundle Lg, we obtain a lax
monoidal oco-functor

Coh”(e)f, ¢, : LGy ¢ | — dgCat{™® (3.2.35)
as the limit
: b g\® .1 o8B idm, ®
lim (Coh” () pert(e) * LGispeca), Ligjspeccs, — 98CaLL ) (3.2.36)

(Spec(A), L gspec(a))

where Spec(A) — S is a Zariski open subscheme. We have used Lemma 3.1.9 and
the definition

lim dgCat'{™® = dgCat{™®. (3.2.37)
Spec(A)—S

Remark 3.2.18 The monoidal structure on Coh? (o)i‘f’erf (0 implies that each dg category
Coh? (Xo)perf(x) is endowed with an action of Coh? (So) (recall that we are assuming
that S is regular). Similarly to [9, Remark 2.38] we can describe this action. Consider
the diagram

Xo Xg So -4 Xo
Px
Vo el
Xo X
PSy l |
S s (3.2.38)
/ l Aro
Zero

S V(Ls)
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Notice that X x@ So >~ Xo x})’( Xo. Given € € COhb(XO)Perf(X) and F € Coh?(Sy),

then EX F = a*(p‘;(OE ® p§09’). In particular, when F = L 9 Os = Og,, then

0
EX(Lg = Os5) = ax(p, € ® p5,050) = ax(pk, & ® a*Ox,)
(3.2.39)

~ * ~ HoH
= aDx, & ~ i*1,.E.
proj. form. der. prop. base change

When F = Og = 1,0y, where t : S = 79(Sg) — Sp is the truncation morphism, the

(homotopy) cartesian square

id X t
14 x X()X@S()

Xo x5 S
q DS, (3.2.40)
S So
implies that
ENOs = ax(py,€ ® ps,t:0s) = ax(px, € ® (id x 1)x0x,)
der. prop. base change
= a.(id x 1)((id x t)*p;‘(oé’) ~ €. 3.241)
proj. form.

. . . .. 0
Finally, we can consider Lg endowed with the trivial Lg — Og dg module structure,

namely t*L\S’. Then, for any € € COhb(X())Perf( X), we have

ER 1LY = as(px, € ® pi,txLy) = ax (P, € ® (id x 1)4q™Ly).
der. prop. base change
(3.2.42)

Notice that g*L ¢ ~ Ly ®0, Ox,, thus we can continue

~ a,(py, € ® (id x 1)4(Lx B0y Oxy)) = € By, Ox, ®oy Ly = E®oy Ly.
(3.2.43)

We will construct, using Coh? (°)§)erf(.)’ a lax monoidal oo-functor
(3.2.44)

. ,H idm,
Sing(e, ¢)® : LG?;”LS) — dgCatlsdm ®

following [45] and [9].
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Construction 3.2.19 As in Lemma 3.2.16, consider the strict commutative dg alge-
bra Symg,(Ls[—2]) as a commutative algebra object in QCoh(S). Consider the
Sym o (Ls[—2])-algebra

R:= Sym@S(LS[—Z])[v_l] (3.2.45)

where v is the generator in degree 2. More explicitly,

R=- 5 LY 505 LY 50> 05> 0 Ly — 0 L5 - ...
| I |_2| IT' IT' I
) - 4

(3.2.46)

Then we have a symmetric monoidal co-functor — ®Perf(5ymos( Lsi-21) Perf(R)
MOdPerf(Symos (Ls[=2D) (dgCatiSdm)® — Modper(R) (dgCati_gm)‘@ . (3.247)
Composing it with (3.2.34) we obtain a lax monoidal co-functor
LG | — Modper(, (dgCatii™)® (3.2.48)
which, at the level of objects, is defined by
(X, sx) > Coh®(Xo)pert(x) ®Perf (Symo  (L[-2]) Perf(R).

Remark 3.2.20 Let U = {U; = Spec(A;)} be a Zariski affine covering of S, such that
L sy, is equivalent to A;. Then the restriction of R to U; is equivalent to the dg algebra
A;[u, u~'], where u sits in cohomological degree 2.

Lemma 3.2.21 Let U = {U; = Spec(B;)} be an affine open covering which trivializes
Lsand LY.

Under the equivalence (3.2.24), the full sub-category Perf(Sp) of Coh’(Sp) cor-
responds to the full sub-category of Perf(Symo,(Ls[—2])) spanned by perfect
Sym o (Ls[—2])-modules whose restriction to each U is a u-torsion perfect B;[u]-dg
module, that we will denote Perf (Sym o, (Ls[—2]))"".

Proof Let M € Perf(Sp). By definitions this means that, for every Zariski open
f : Spec(A) — Sp, the pullback f*M € Perf(A). Consider our covering U. Then,
for every i € I, M|y, is a perfect B;-module. By the same argument given above,
we get equivalences Coh? U, ,-,o)® ~ Perf (B;[u])® and the argument provided in [9,
Proposition 2.43] guarantees that Perf (U; ) corresponds to Perf (B;[u])¥ '™ under
this equivalence. This shows that every perfect complex is locally of u-torsion. The
converse follows by the local characterization of perfect complexes and by the char-
acterization given in [9, Proposition 2.43]. O
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Lemma 3.2.22 The dg quotient Coh?(Sy) — Sing(Sy) corresponds to the base-
change

— ®symo (Lsi-2)R : Perf(Symo s (Ls[—2])) — Perf(R)  (3.2.49)

under the equivalence (3.2.24)

Proof This follows by the fact that the categories involved satisfy Zariski descent, by
the previous lemmas and by [9, Proposition 2.43]. O

Lemma 3.2.23 There is an equivalence of dg categories

Coh® (Xo)pert(x) ®Pert(Symo s (Ls(—21) Perf(Symo (Ls[~21))"" = Perf (Xo).
(3.2.50)

Proof By definition,
Coh” (Xo)pert(x) @Pert(symo  (£si-21) Perf(Symos (Ls[-21)'"  (3.2.51)

is the subcategory spanned by locally u-torsion modules in Coh” (Xo)pert(x). We
will show that they coincide with the subcategory of perfect complexes, using [9,
Proposition 2.45]. Suppose that M is in Perf (Xg). Then, for every affine open covering
J 1 Spec(A) — X which trivializes Lx,, j*M is perfect, and thus it is a u-torsion
perfect A[u] module by loc. cit. Conversely, if M is locally u-torsion, each restriction
J*M is u-torsion, i.e. perfect. This proves the lemma. O

Corollary 3.2.24 Let (X, sx) be a twisted LG model over (S, Ls). Then the exact
sequence in dgCatid™

Perf(Xo) — Coh®(Xo)pert(x) — Sing(X, sx) (3.2.52)
is equivalent to

Coh® (Xo)pert(x) ®Perf (Symo (L s[-21) Perf (Sym oy (Ls[—2]))""

!

Coh”(Xo)pert(x) (3.2.53)

!

Coh” (Xo)pert(x) ®Pert(syme sst-21) Perf(R).

Proof This is an obvious consequence of the previous lemmas and of the fact that the
oo-functor

T + Coh®(Xo)pert(x) ®Perf(Symo ¢ (Ls[-21) T

preserves exact sequences in Modperf, Symo ¢ (Ls[-21) (dgCatigm). O
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Construction 3.2.25 Consider the following lax monoidal co-functor

b(e)®
op,@ Coh (.)Perf(o)

LG5y

Modpert (syme (£ s[-21) (dgCati{™®
i— ®symo(Lsi-2) R
Modperf(x) (dgCatii™)®.
(3.2.54)

The previous corollary means that its underlying co-functor, composed with the for-
getful functor

Modperf() (dgCatid™) — dgCatid™, (3.2.55)
is defined on objects by the assignment

(X, s) — Sing(X, s).

3.3 The motivic realization of Sing (X, sy)
Recall from Sect. 2.6 that there is a motivic realization lax monoidal co-functor
MY : dgCati{™® — Modgy, (SHy)® (3.3.1)

with the following properties

e MY commutes with filtered colimits.
e For every dg category T, M (T) is the spectrum

Y € Smg — HK(Perf(Y) ®s T).

e MY sends exact sequences of dg categories to fiber-cofiber sequences in
Modgy, (SHS).

Our main scope in this section is to study the motivic realization of the dg category
Sing(X, sx) associated to (X, sx) € LGs, ¢ ), under the assumption that X is regular.
The first important fact is the following one:

Proposition 3.3.1 [9, Proposition 3.13] Let p : X — S be in Schg. Then
MY (Perf(X)) ~ BUy (see Sect. 2.5.1 for notation).

Proof Consider the construction given in Sect. 2.6 with S replaced by X:

Perf(e)

; RHom(—,1%°)
X idm,op,® ¢ nc,op, ® X
_ — _
Smy dgCat SH,,

sHI® 2 g,
(3.32)
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We wish to show that Mx (RHom(: o Perf(X), 1)) >~ BUy. Notice that since the
oo-functor above is right lax monoidal and Perf(X) is a commutative algebra in
dgCatid™°P-® there is a canonical morphism of commutative algebras

BUx — My (RHom(: o Perf(X), 1%)). (3.3.3)

It suffices to show that they represent the same co-functor. Let Y be an object in SH?.
Then

MaPSHX (Y, Mx (RHom(: o Perf(X), lr)l(c)))
=~ Mapgye (Rper(4), RHom(c o Perf (X)), 1))

~ MapSHr;(c (Rpert(Y) ® RPerf(EioX)s 1?(0) = MaPSH')'(C (Rpert(Y ® E_?_OX), 1?(0)

= MapSHX (Rperf(Y), 1';(6) x~ MaPSHX Y, MX(V)'(C)) x~ Mapsﬂx (Y, BUy)
(3.34)

where we have used that : o Perf(e) >~ Rpef o £3°, which are all symmetric monoidal
functors, Ef(X ) is the unit in SH®, that Rpe is left adjoint to My and Robalo’s
result My (1Y) >~ BUy ([49, Theorem 1.8]).

The fact that the equivalence holds in CAlg(SH?) follows immediately from the
conservativity of the forgetful functor

CAlg(SHY) — SHY. (3.3.5)

O

Remark 3.3.2 Notice that since the equivalence BUy — M}V((Perf(X )) holds in
CAlg(SHy), if we consider a perfect complex € scheme X, then the image of

Perf(X) —25 Perf(X) (3.3.6)

along M)V( coincides with multiplication by the class [€] € HK((X) in the commu-
tative algebra BUy, which we denote m¢. In a formula : M}V((— ®E ~ meg €
Mapgy, (BUx, BUx). Moreover, for any exact triangle & — & — & we get
[E]1=[€'1+[€"] € HKo(X). Then mg = mgs + mer. In particular, mep) = —me.

The next step will be understanding the motivic realization of the category of
coherent bounded complexes Coh? (Z) of an S-scheme Z, at least when it is possible
to regard it as a closed subscheme of a regular S-scheme X.

Proposition 3.3.3 [9, Proposition 3.17] Let p : X — S be a regular S-scheme of finite
type. Consider a closed subscheme i : Z — X and label j : U — X the embedding
of the complementary open subscheme. Then there is an equivalence

My (Coh?(Z)) ~ i,i'BUy. (3.3.7)



Motivic and £-adic realizations of the category... Page330f72 33

Proof Consider the exact sequence of dg categories

Coh®(X); — Coh®(X) ©> Coh’(U) (3.3.8)

where Coh?” (X)z denotes the subcategory of objects in Coh? (X) whose support is in
Z.

Recall that, if X is a scheme, an O x-linear dg category is a sheaf of dg categories on
the Zariski site of X. Then the above sequence of dg categories is exact by definition
and if we apply MY, to it we obtain a fiber cofiber sequence in SHy (see [69, Remark
2.2.2)).

The regularity hypothesis imposed on X implies that Coh”(X) ~ Perf(X) and
Coh?(U) ~ Perf (V). If we apply MY and use the previous proposition, we obtain

My (G

Y (Coh’(X)z) — BUx ——— MY, (Perf(U))), (3.3.9)

which is a fiber-cofiber sequence in SHy (since My sends exact triangles of dg
categories to fiber-cofiber sequences). Moreover, M, is compatible with pushforwards
and My (j*) ~ j*. As the spectrum BU of non-connective homotopy-invariant K-
theory is compatible with pullbacks (see [15]), the previous fiber-cofiber sequence is
nothing but

MY (Coh® (X)) - BUx — j.j*BUy, (3.3.10)

where the map on the right is induced by the unit of the adjunction (j*, j,).Inparticular,
we get a canonical equivalence

My (Coh®(X)z) ~ i,i'BUy (3.3.11)
and therefore we are left to show that we have an equivalence
MY, (Coh®(Z)) ~ MY (Coh” (X),). (3.3.12)
Here Coh”(Z) is the sheaf of dg categories
V = Spec(R) — Coh’(Z xx V), (3.3.13)

where V is an affine open subscheme of X.
Notice that there is a canonical morphism

MY (is) : My (Coh®(Z) — MY (Coh®(X)2)).

The collection of objects Z‘fY ® BUy, where Y € Smy, forms a family of compact
generators of Modgy, (SHx). As M)V( commutes with filtered colimits, it suffices to
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show that the morphism

Mapgy, (2°Y ® BUx, My (Coh”(2)))
l (3.3.14)
Mapg;, (25 ® BUx, My (Coh”(X)2))

is an equivalence of spectra. Notice that

MaPBIUX(EiOY ® BUy, M}((Cohb(Z))) ~ MapSHX(EiOY’ M;v((Cohb(Z)))
= Mapgge (Rpert © =Y, RHom(Coh?(2), 17))
~ Mapsyyy (Perf(Y) @ Cob” (2), 1%/). (3.3.15)

By [45], Perf(Y) ® Coh’(Z) ~ Coh’(Y) ® Coh?(Z) ~ Coh®’(Y xx Z), and
therefore the spectrum above coincides with HK(Cohb (Y xx Z)), which by the
homotopy-invariance of G-theory and by the theorem of the Heart ([7, Corol-
lary 6.4.1]) coincides with the G-theory of ¥ xx Z. In the same way, we obtain
that Mapgy, (253°Y, My (Coh”(X)z)) coincides with the G-theory spectrum of the
abelian category Coh(Y )y x 7 (the heart of the dg category Coh®(Y)y vz). The claim
now follows from Quillen’s dévissage. O

Remark 3.3.4 An anonymous referee has pointed out that in order to deal with Ox-
linear dg categories one can use the theory of 1-affiness of Gaitsgory [26]. One can
use this to give an alternative proof of the proposition above.

As a final observation, we remark that the assignemnt Z > M; (Coh’(2)) is
insensible to (derived) thickenings.

Lemma 3.3.5 [9, Proposition 3.24] Let Z be a derived scheme of finite type over S
and let t : mo(Z) — Z be the canonical closed embedding of the underlying scheme
of Z. Then

MY (Coh?(Z)) ~ MY (Coh® (0(2))). (3.3.16)

Proof By the proof of the previous proposition, Mg(Cohb (Z)) represents the spectra
valued sheaf ¥ — HK(Coh’(Y xgs Z)). Similarly, J\/[g (Coh® (4(2))) represents
the spectra-valued sheaf ¥ — HK(Coh?(Y xg 79(Z))). Notice that mo(Y xg Z) =
70(Y) Xzo5) T0(Z) =Y x5 mo(Z) and that the heart of Cohb(Y X s Z) is equivalent
to the heart of Coh? (Y x s 7(Z)). Then the theorem of the Heart and the computation
above allows us to conclude. O

Now consider a twisted LG model (X, sx) over (S, Lg) and assume that X is a

regular scheme. As above, let X 5 X be the derived zero section of sx in X and
let j : Xy = X — Xo — X be the corresponding open embedding. In this case, we
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idm

have that Sing(X, sx) =~ Sing(X). Consider the diagram in dgCat;™ and its image
in SHy

Perf(Xo) — Coh?(X,) — Sing(Xo)

o

Perf (X) (3.3.17)

b
Perf (Xq)
My (Perf (X)) — MY, (Coh®(X()) — M (Sing(Xo))

U £ 10

(i
~ MY, (Perf (X)) (3.3.18)
Mv
X lj*
MY, (Perf(Xq()).

By the previous results, the second diagram can be rewritten and completed as follows

My (Perf (Xo)) ——— i, i'BUy ———— My (Sing(Xo))

WA My (i)

j1j*BUy BUyx i,i*BUy (3.3.19)

\ counit (j*, ji)

J«J*BUx

where i =iot : mo(Xo) — X is the closed embedding of the underlying scheme of
Xoin X.

Remark 3.3.6 The morphism BUy — i,i*BUy can be factored as

M\/ 3 M\/ £
Y (Perf (X)) M@ ¥ (Perf (X)) M) Y (Perf (10 (X0))) .
I — L 1

BU,\/Z Zi*i*BUx

(3.3.20)
Lemma 3.3.7 The endomorphism

MY (%) 0 MY (i) : MY (Perf(Xo)) — My (Perf(Xo)) (3.3.21)
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is homotopicto 1 —m Ly where m Ly is the autoequivalence induced by — ® L}/(O :
0
Perf(Xy) — Perf(Xy).

Proof Indeed, by Remark 3.2.18, the endomorphism i*i, is equivalent to — X (L o
Os), the identity is equivalent to — X Og and — X L corresponds to — ® L}O :
Perf(X() — Perf(Xy). Then, considering the cofiber sequence of dg functors

—®OSL§—O>—®OSOSZid

l l (3.3.22)
0 ———— i*i,
we see that i*i, is equivalent to the dg functor

Perf(Xy) — Perf(Xy)
Er> EBE®Oy, Ly, [l (3.3.23)

By Remark 3.3.2 we conclude that
Vosk: N L ~1_ v
X(l l*) =~ mOXOEBL\)?O[I] ~1 mLXO. (3324)
O

Corollary 3.3.8 Let (X, sx) € LGs,c ) and assume that X is regular. Then there is a
fiber-cofiber sequence in Modgy, (SHx)

My (Sing(X, sx))

¥
cofiber My (t*) o (1 — mL)vfo) : My (Perf(Xo)) — i,i*BUx) (3.3.25)

¥
cofiber(a : jij*BUx — j,j*BUy).

In particular, if we apply the co-functor i*, we get the following fiber-cofiber sequence:
i*My (Sing(X, sx))

BN My, (3:3.26)
i*cofiber My (Perf(Xo)) ————— i,i*BUy)

i*jj*BUx.

Proof The second statement is an immediate consequence of the first and of the equiv-
alence i*ji >~ 0. The first fiber-cofiber sequence can be obtained by applying the
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octahedreon axiom to the triangle
My (Perf(X()) — ,i'BUy
My (i*) o My (ix) l
ixi*BUx
which appears in diagram (3.3.19) and by the fact that
cofib(a) ~ cofib(ixi'BUx — iyi*BUy)

(see [44, Lemma 4.4.2.8]). m]

Let ME,Q denote the composition

dgCati™® — Modpy, (SHy)® —2% Modgy, ,(SHs)®.  (3.3.27)
We shall now study the commutative algebra object

§.o(Sing(S,0) = M o(Sing(So)). (3.3.28)

S regular

This is a particularly important object for our purposes as, for every (X, sx) €
LGs, ), the Q-linear motivic realization of Sing(X, sx) lies in the category of
Mg,Q(Slng(So))—modules ModM;Q(Sing( s (SHig).

Proposition 3.3.9 There is an equivalence in CAlg(SHy):

1-m v
E,Q(Sing(s, 0)) ~ cofiber (BUs @ — 5 BUs ) (3.3.29)
Here
]7mL§
cofiber(BUs g — BUs @) := BUs ¢ ®ugp:) HQ € CAlg(SHy),

(3.3.30)

where we consider the morphisms HQ[t] — HQ induced by t — 0 and HQ[t] —
BUs,q induced by t = 1 —mpy.

Proof The underlying object of the commutative algebra BUg g ®ugp) HQ is

I—mpv

cofiber(BUgs g — 5 BUg, ). This follows easily from the fact that

HQ[1] - HQIr] (3.3.31)
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is a free resolution of HQ. Consider the diagram

i

So S 7 )
l lio l (3.3.32)
s —0 V.= V(L) U=V

where both squares are (homotopy) cartesian. Notice that in this case 7y(Sp) = S and
therefore i = i ot = id. Then, the fiber-cofiber sequence of the previous corollary
gives us an equivalence

Mg@(t*)o(l va)
My o(Sing(So)) = cofiber (Mg o (Perf(Sp) —— %5 BUs ).

(3.3.33)
Since the square
1—m ¥
M, o (Perf (S)) ——————— My , (Perf (So))
M (1) MY (1%) (3.3.34)
1-— mpeyv
My o (Perf(5)) S MY o (Perf(S))

is commutative up to coherent homotopy, to get the first desired equivalence

{ o (Sing(s, 0)) ~ MY ¢ (Sing(Sy))
Mg/@(t*)o(l va)
~ cofiber(M Q(Perf(So) - 5 BUs, Q)) (3.3.35)

it suffices to show that Mg‘@(t*) is an equivalence. Thisistrueasiot =id andf oi
is homotopic to the identity (see [9, Remark 3.31]). O

Proposition 3.3.10 There is an equivalence in CAlg(SHg)
M}/’Q(Sing(S, 0)) =~ i jos«BUr @- (3.3.36)

Here ig : S — V(Ly) is the zero section, jy : U = V(Lg) — S — V(Lg) the open
complementary.

Proof Let V := V(Lg). Consider the equivalence that we get from the localization
sequence of (ig, jo)

it joxBUy @ = cofiber(igio«ipBUy. g ~ iyBUy.g — BUs.g ~ itBUy.q),
(3.3.37)
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where the map c is the one induced by the counit io*i(!)B[Uv,Q — BUy, . Notice that
ip : § — V is aclosed embedding between regular schemes. In particular, absolute
purity holds. It follows from [15, Remark 13.5.5] that the composition

i

BUv,g — ioxifBUv.g — BUvg (3338)

corresponds to 1 — mpy, as the conormal sheaf of ig : § — Vis LY. If we apply it
we obtain

iy

i'(1—=mgy) :i'BUy g > BUs g —>, i'BUyq, (3.3.39)
=~ abs. pur.
which under the equivalence BUg ¢ ~ i!BUv,@ corresponds to 1 —m Ly O

Construction 3.3.11 Let (X, sx) € LGs, 1 ). Consider the morphism

l—m v

BUy — BUy (3.3.40)

Since j : Xy — X is the complementary open subscheme to the zero locus of the
section sy, it follows that j *L} >~ Ox,,. In particular,

X Xy

Then we obtain a morphism

l—va

sp® : cofiber(BUx —% BUy) — Jj.j*BUy. (3.3.42)

Proposition 3.3.12 Let (X, sx) € LGs ) and assume that X is regular and that
x X V(Ls) &2 Sis Tor-independent (i.e. X Xy S = X X%,(LS) S). Then

¥ (Sing(X, sx)) =~ fiber(i*sp¥®). (3.3.43)

Proof This follows immediately from the octahedron property applied to the triangle
in the following diagram

BUx, i'BUy i* My (Sing(Xo))
1— Lv\\ 1’
BUy, (3.3.44)
¥
i*jxj*BUx

and from the compatibility of 1 —m Ly, with pullbacks. O
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4 Monodromy-invariant vanishing cycles
4.1 The formalism of vanishing cycles

We shall begin with a quick review of the formalism of vanishing cycles. We hope that
this will be useful to understand the analogy which led to the definition of monodromy-
invariant vanishing cycles.

Notation 4.1.1 Throughout this section, A will be an excellent henselian trait and S
will denote the associated affine scheme. Label % its residue field and K its fraction
field. Let o be Spec(k) and 1 be Spec(K). Fix algebraic closures k%/¢ and K¢ of k
and K respectively. We will consider:

e The maximal separable extension k*°” of k inside k*/¢. We will use the notation
o = Spec(k*°P).

e The maximal unramified extension K" of K in K*&. We will use the notation
nunr — Spec(Kunr).

e The maximal tamely ramified extension K’ of K inside K*¢. We will use the
notation n’ = Spec(K").

e The maximal separable extension K°¢” of K inside K *¢. We will use the notation
n = Spec(K*°P).

Moreover, we will fix an uniformizer 7.

Remark 4.1.2 1t is well known that there is an equivalence between the category
of separable extensions of k and that of unramified extensions of K. In particular,
Gal(k*“? /k) ~ Gal(K"™"" /K ). This, together with the fundamental theorem of Galois
theory, implies that there is an exact sequence of groups

1 — Gal(K**? /K"y — Gal(K*? /K) — Gal(k**’ /k) — 1. “4.1.1)

The Galois group on the left is called the inertia group and it is usually denoted by 1.
The chain of extensions K" C K' C K*° gives us the following decomposition of
I:

1 - Gal(K**’ /K'Y - I — Gal(K**’/K) — 1. (4.1.2)
I — | —
=:1y =:1;

The Galois group I, is called wild inertia group, while I; is called tame inertia group.
See [51] for more details.
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Remark 4.1.3 Let A®" be a strict henselianisation of A and let S = Spec(A*"). We
then have the following picture

J
Q Jt \ \
o C _ S, )nunr 77t f]
i junr
b T
j (4.1.3)
o ¢ S 5 1

where both squares are cartesian_. In particular, notice that (o, ) and (o, n*"") form
closed-open coverings of S and S respectively.

Let p : X — S be of finite type and let X = X x g S. Consider the following diagram,
cartesian over the base (this is also called Grothendieck’s trick in the literature)

X& C )_( 5 X”unr Xnt Xf]
l l l l (4.1.4)
& C Sv 5 nunr nt T_’.

Remark 4.1.4 The oo-category Shvg,(X) is the recollement of Shvg,(Xs) and
Shvg, (X;unr) in the sense of [34, Appendix A.8].7 Indeed, Shvg, (X) is a stable
oo-category and therefore it admits finite limits. Moreover, both i, : Shvg, (X5) —
Shvg, (X) and JE  Shvg, (X yur) — Shvg, (X) are fully faithful co-functors: these
are immediate consequences of the proper and smooth base change theorems applied
to the cartesian squares

id id

X5 ——> X5 X5 —> X5
l_. _ jn"“” _
X6 —> X Xs —> X.

It is known that the conditions of [34, Definition A.8.1] are verified. In particular,
using the equivalence of Shvg, (X ;) with the co-category of £-adic sheaves on the
generic geometric fiber endowed with a continuous action of / Shvg, (X ﬁ)l , we have
that Shvg, (X) is the recollement of Shvg, (X5) and Shvg, (X7)!.

7 Strictly speaking, one should consider the full subcategories of Shvg, (X) spanned by the images of i
and jyunr which are closed under equivalences.
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Remark 4.1.5 Notice that we have the following diagram where each arrow is an equiv-
alence:

Je(—M

s )
Shvgy, (X unr) I Shvg, (X;)!

A b (4.1.6)
Jrx ()M Juws (=M

Shvg, (X,,r)[’.

Construction 4.1.6 We will now sketch the construction of Deligne’s topos in the co-
categorical world. Notice that, by the recollement technique, the étale co-topos of §
is the recollement of the étale co-topos of o and that of n""*". Moreover, notice that
the étale co-topos of """ is equivalent to the co-category of spaces with a continuous

action of . For a scheme Y over &, we consider the lax co-limit Y, Xz . Ser, which
e

exists by [35, pag. 614]. The decomposition of 5’6, gives us a digram
?et — ?Et X Set D Yel Xéel nlfnr

et

4.1.7)

= R unr
Oet Ser [/t

We will label the co-category of £-adic sheaves on Y, Xz ninr . by Shvg, (V) asit
is the oo-category of £-adic sheaves on Y endowed with a continuous action of 7. The
oo-category Shvgy, (Y)’ of ¢-adic sheaves on ¥ endowed with a continuous action of
I; identifies with the full subcategory of ShVQZ(Y)I such that the induced action of
I, is trivial.

Definition 4.1.7 Let p : X — S be an S-scheme. Let € € Shvg, ()_(,,unr). The ¢-adic
sheaf of tame nearby cycles of € is defined as

Wi (&) :=i* i€ x,, € Shvg, (Xs)". (4.1.8)
Analogously, the ¢-adic sheaf of nearby cycles of € is defined as
W(E) :=i*j.&x; € Shvg, (X5)'. (4.1.9)

Remark 4.1.8 With the same notation as above, the following equivalence holds in
Shvg, (X5)%:

W, (&) ~ W(&)Mw, (4.1.10)
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Definition 4.1.9 Let p : X — S be an S-scheme. Let F € Shvg, (X). The unit of the
adjuction (j, ji+) induces a morphism in Shvg, (X5)"

7T = W(Ty ), (4.1.11)

where we regard the object on the left endowed with the trivial I;-action. The cofiber
of this morphism is by definition the £-adic sheaf of tame vanishing cycles of &, which
we will denote by &,(F). In a similar way, we define the £-adic sheaf of vanishing
cycles @ (F) as the cofiber of the morphism (called the specialization morphism in
literature)

i*F v (Ty,) 4.1.12)

induced by the unit of the adjunction (j*, j.).

4.2 Monodromy-invariant vanishing cycles

Context 4.2.1 Assume that S is strictly henselian, i.e. that k is a separably closed field
and that p : X — S is a proper morphism.

For our purposes, we are interested in the image of ®(Qy, x) via the co-functor

()M 2 Shvg, (X,)! — Shvg, (X,).

It is then important to remark that it is possible to determine py+® (Qy, X)hl without

ever mentioning this oco-functor. Notice that ® (Qy, )M is the cofiber of the image of
the specialization morphism via (=)

( )hl
Qbly, 2= W(Qex)" — ®(Qe )M “.2.1)

is a fiber-cofiber sequence in Shvg, (X,).

Remark 4.2.2 There are equivalences in CAlg(Shvg, (o))

h! ..
° (po*Qz,xg) >~ pesQe.x, ®Q,, Q?{U (see [9, Proposition 4.32]),
kT hi e ..
. (pg*z*]*Qg,Xﬁ) >~ posi*jxQu x, (see [9, Proposition 4.31]),
o (@2’6 >~ i} jox Qe (see [9, Lemma 4.34]).

Consider the object p,« pjsig jo+Qe,, in Shvg, (o). The following chain of equiva-
lences, together with the previous remark, identify it with (py+Qp, x”)hl
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Pa*pﬁiéjo*Qz,n

~ poi(Qu.x, ®Qux, PoiciorQen) = PosQex, ®q, igjoxQey-
proj.form.

4.2.2)

Definition 4.2.3 Consider the canonical morphism in Shvg, (X4)

spI™ s i jos Qe = i p* jox Qe — i jupiQuy = i*jQex,  (4.2.3)

induced by the base change natural transformation p* jo. — Jj p;. We will refer to
it as the monodromy-invariant specialization morphism. We will refer to the cofiber

of this morphism in Shvg, (X ) as monodromy-invariant vanishing cycles, which we
will denote CD};,m Qo).

In order to justify the choice of the name of this morphism, we shall prove the
following:

Lemma 4.2.4 The two arrows pg+(sp)™

alences

and p(,*spgm are homotopic under the equiv-

T hi RO
(Po*l*]*QZ,X;,) = po*l*]*QE,XW
hl Sk .
(pa*QK,X”) ~ poxQe x, Q.o QZIU = pa*p:l()kJO*Qﬁ,n-

Proof We shall view both arrows as maps ps+Qe x, ®q,, Q?IO — pg*i*j*(@g,xn.
Since the tensor product defines a cocartesian symmetric monoidal structure on
CAlg(Shvg, (o)) (see [34]), it suffices to show that the maps of commutative alge-

bras obtained from py+(sp)™ and po*spgm by precomposition with ps. Qe x, —

hI hI h! - -
Pox Qe x, ®q,, Qp, and Qp'; — poxQe x, ®q,, @, respectively are equiva-

lent. It is essentially the proof of the main theorem in [9] that the precompositions of
Do (sp)M with these two maps are induced by the canonical morphisms 1 — j, j* and
1 — pps pz. We are left to show that the same holds true if we consider s pgm instead
of (sp)M . Recall that spgm is induced by the base change morphism p* jo. — Jji p;’;,
i.e. the morphism which corresponds under adjunction to josx — jos Py« p;;, induced
by the unit of the adjunction ( pj;, Dy+). From this we obtain the following diagram

L= pppy . N
lo]O*QK,n _— l()]O*Pn*anZ,r] = Poxl J*an/Z,n
V1 = posxpgy ¥

PosPa Qoo — PoxDyig josQe.y ———————> PosxPy Poxi™ jxPyQey id

\\\J Ky hm . \L *
oxSPp Poxl ]*anZ,rr

(4.2.4)
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In particular the composition i 5 Jj0xQen — pg*paloj()*Qg 1 % Do ™ JxQp, X,
is homotopic to the map induced by 1 — py.pj.

The composition ps+«py;Qe.o — poxpyiajoxQen — poxi™jxQe x, is homotopic
to the map posQrx, — Ppoxi”jxQe x, induced by 1 — j,j* by the following
commutative triangle

1 o P*joxjyQe,s
s
P*Qe.s (4.2.5)
1 — juj*
JxPyJoQe.s = juj*p*Qe.s-
a)

Remark 4.2.5 Notice that what we said above is actually true for any ¢-adic sheaf in
the image of p* : Shvg, (S) — Shvg, (X).

The advantage of this reformulation is that it allows to define inertia invariant
vanishing cycles without ever mention the inertia group. We will adopt it for the
situation we are interested in.

Assume that S is a noetherian regular scheme.

Definition 4.2.6 Let (X, sx) be a twisted LG model over (S, Lg). Consider the dia-
gram obtained from the zero section of the vector bundle associated to Lx:

J

m0(Xo) L,ox Xu
Jso [sx s (4.2.6)
X —>V(Ly)<~—Ux :=V(Lx) —
10 Jo

Define the monodromy-invariant specialization morphism associated to (X, sx) as the
map in Shvg, (o (Xo))

Sp?}},sx) : S(’)ﬁl’(ﬂ):]'O*QLux x~ i*s§j0*@e,ux - i*j*QZ,Xu ~ i*j*s’t(@e,uX
42.7)

induced by the natural transformation s}"( Jox — j*s;&. We will refer to the cofiber
of s p( x sx) 88 monodromy invariant vanishing cycles of (X, sx), that we will denote

I(r;( YX)((@K)

Proposition 4.2.7 Let (X, sx) be as above and assume X regular. There is an equiv-
alence

i joxQeuy = cofib(c1(Lx) : Qrx(—D[-2] = Q¢ x). (4.2.8)
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Proof Consider the diagram

X% vy = vy &

counit

The ¢-adic sheaf i jo«Qe 1 is the cofiber of the morphism ij (io*i(!)(@g,vx
Ql,Vx) in Shvg, (X). Recall that i(")‘io* ~ id. Therefore, we can consider the fol-
lowing triangle

ié@e,vx —> Qe x

¥ / 4.2.9)
abs. pur.

Qe x (=D[-2].

The absolute purity isomorphism is given by the class ¢/ (X) € H% (Vx,Q¢(1)), whose
image in H2(X, Qe(1))iscy (N)V(WX), the first Chern class of the conormal bundle (see
[25]). The map Q¢ x — Qg x(1)[2] corresponding to this class is the image of the
right vertical arrow in the diagram above via the oo-functor —(1)[2]. It suffices to

notice that NJV(WX ~ Ly to conclude. O

5 The comparison theorem
5.1 2-periodic ¢-adic sheaves

We shall now approach the comparison between monodromy-invariant vanishing
cycles and the £-adic realization of the dg category of singularity Sing(Xo). In order
to do so, we need to work with the category of Q¢ s(8)-modules in Shvg, (S). Recall
that there is an adjucntion of co-functors

Shvg, (S) = Modg, (g (Shvg, ($)) (5.1.1)

given by — ®q, ¢ Q¢,s(B) and by the forgetful functor.
Notice that Modg, , (Shvg, (e)) defines a fibered category over the category of
schemes, which satisfies Grothendieck’s six functors formalism.

Definition 5.1.1 With the same notation as above let

5010 J0x Qe 1y (B) 2 i*5% jox Qe 1y (B) — 1™ jusy Qe (B) (5.1.2)

be the arrow in Modg, ,(s)(Shvg, (X)) induced by the base change morphism
sk Josx = Jxs7(- Denote by CD?;} sx)(Qf (B)) its cofiber.
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Proposition 5.1.2 The maps (5.1.2) and sp{} | | ®Qy x,) Qe.x(xo)(B) (see Defini-
tion 4.2.7) are homotopic. In particular, there is an equivalence

O o) (Q0) By vy Qun(x)(B) = P ) Qe x(B))- (5.1.3)

in MOsz.n(XO)(ﬂ) (ShVQz ( (XO)))

Proof This is analogous to [9, Proposition 4.28]. As a first step, notice that both -
pullbacks and *-pushforwards commute with Tate and usual shifts. Since —®gq, Q¢ (8)
commutes with x-pullbacks, we have

i*s;((jo*Q@,uX ®QZ.N(X0) QZ,T[(XO)(IB) = l*SB‘(( (jO*QZ,uX ®QLVX QZ,VX (,8))7 (514)
1% 1+ Qe Xop ®Q ) Qemo(x) (B) 2 1% (jxQe, x4y ®Q x Qe x(B))- (5.1.5)

Using the equivalence Q¢ v, (8) =~ @,z Qe vy ()[2i], we see that

J0:Qety ®0.y, Qevy (B) = @D Qeuy (120D (5.1.6)

i€
We shall show that the canonical map
P GoxQe.atx D121 = jou (@D Qeaty (D120]) (5.1.7)
i€ i€l

is an equivalence. This follows immediately from the fact that the *-pushforward
commutes with filtered colimits and from the equivalence @, ; Q¢ 1, ()[2i] =~

colimi=0 @' _; Q¢ (k)[2k]. This shows that

i*sy joxQe, Uy ®Qy.. (x0) Qe.x(x0) (B) = %5y joxQe,1uy (B)- (5.1.8)

The same argument applies to show that

i 1+ Qe Xy ®Qprgoy Qo) (B) 2 i jx Qe x4 (B).- (5.1.9)

To show that the two maps are homotopic, it suffices to show that they are so before
applying i*. Notice that (Qg 1, — Sus57 Qe uy) ®Qeaty Qr.ux (B) is homotopic

to Q¢uy (B) = 51057 Qe uy (B), as — ®qyy, Qe,uy (B) is compatible with the -
pullback and with the !-pushforward, which coincides with the x-pushforward for sq(
as it is a closed morphism. For what we have said above,

Jox((Qeuy = susesy Qe uy)
®Qp 11, Qe ux (B)) 2 josQe,uy (B) = Jousras Qe,ux (B)
(5.1.10)

and — ®q, Q¢(B) is compatible with x-pullbacks. The last assertion follows as — ®g,
Q¢ (B) is exact. O
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Corollary 5.1.3 Let (X, sx) € LGs, ) and assume that X is a regular scheme. The
following equivalence holds in Modgy, , (s)(Shvg, (X))

i jox Qe 1y (B) = cofiber(c1(Lx) ®q,x Qe.x(B) : Qex(B) = Qe.x(B)).
(5.1.11)

Proof This follows immediately from the previous Proposition, Proposition 4.2.7 and
from algebraic Bott periodicity Qg x (8)(—D[—2] =~ Q¢ x (B)- O

Remark 5.1.4 Notice that ij jos and i* j, are lax monoidal functors. In particular,
50i0.J0xQe 1y (B) and i* jQe, x,, (B) have commutative algebra structures. The map
sp‘(‘}}’sx) ®Qy.x, Q¢ x,(B) is a map of commutative algebras as s§j0*Q€,Xux B) —
Jx59Qe, Xuy (B) is so. In particular, the £-adic sheaf CD‘(“}}’SX)(@E (B)) lives in
Mod;g jo, @ 1., (B)(Shvg, (X0)).

5.2 The main theorem
Proposition 5.2.1 Let X be a regular scheme and let L € Pic(X). Then

cofib(1 — R4 (mg) : R§ (BUy) — R (BUx))
> cofib(ci1(L) ®q,x Qe,x(B) : Qe,x(B) = Qe x(B)), (5.2.1)

where c1(L) is the first Chern class of L.
Moreover,

cofib(c1(L) ®qg, x Qe.x(B)) = cofib(c1(L”) ®qg,x Qex ().  (5.2.2)

Proof We start by noticing that the composition

HK(X) ®2 Q= H?;* (X, Z) ®,Q =~ H7;" (X, Q), (5.2.3)
where H>5* denotes motivic cohomology, coincides with the Chern character (see

[15, §11.3.6]) which is compatible with the £-adic Chern character (see [9, §3.6 - §3.7]
and [15]). Now, according to [15, Proposition 12.2.9] and [20, Proposition 3.8], c{ (L)
is nilpotent and therefore the Chern character of £ can be written as 1 + ¢;(L) +
%cl L2+ + %cl (L)™ for some m > 1. Then

1 1
1—R(me) = —c1 (L) + Ecl(L) 4o ﬁcl(L)m_l).

As c1(L) is nilpotent, so is %cl L)y+---+ %cl(ﬁj)m_l, whence (1 + %cl(L) +-- 4+
%c 1(£)™~1) is invertible. This shows that

cofiber(1 — R (mg)) = cofiber(—c1(L) ®q, x Qu,x(B))
~ cofiber(c1(L) ®q, y Qe.x(B))-
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The last equivalence follows from the fact that, by [15, Proposition 12.2.9 and Remark
13.2.2], we have

0=ci(L®LY) = Flc1(L), c1(LY) = c1(L) + 1 (V) + 7 - e1(L) - e (&).
(5.2.4)

In particular,
(L) = =LA+ B (L) (5.2.5)

and, as we have remarked above, —(1 + B~! - ¢1(LY)) is invertible as c1(LY) is
nilpotent. o

We are finally ready to state our main theorem:

Theorem 5.2.2 Let (X, sx) be a twisted LG model over (S, Ls). Assume that X is
regular and that 0, sx : X — V(L x) are Tor-independent. The following equivalence
holds in MOdi*S?{jO*Ql.ux B) (ShVQ( (X()))

P*RYY (Sing(X, sx)) = O | (Qe(B)I-11, (5.2.6)

where the i*s}“(jo*Qg,ux (B)-module structure on the l.h.s. is the one induced by the
equivalence of commutative algebras

P*R%Y (Sing(X, 0)) = i*5% jox Qe.1cy (B)- (5.2.7)

Proof We start by noticing that i = so : Xg — X. Indeed, ig o 9 = sx o i and both
ip and sy are sections of the canonical morphism Vy = V(Lx) — X. In particular

"Ry (Sing(X, 0)) = s5RY Sing(X,0) = i*s%joxQeay (B).
Proposition 3.3.10
(5.2.8)

Since X is supposed to be regular, Sing(X, sx) =~ Sing(Xg). By Propositions 3.3.8
and 5.2.1 we have a fiber-cofiber sequence

i*RS, (Sing(Xo))
¥
cofiber(c1(Lx,) ®qyx, Qe,x0(B) : Qe,x,(B) = Qe,x0(B)) (5:2.9)
vf
i* j« Qe xp, (B).
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in Modi*s;ﬁ( joxQeaiy B) (Shvg, (Xo)). On the other hand, by Proposition 5.1.2, we have
another fiber-cofiber sequence

om (Qu(B)I-1]
'

cofiber(c1(£x,) ®q, x, Qe.xo(B) : Qe.xo(B) = Qe.xo(B)  (5:2.10)
Y8
i* jx Qe x, (B).

Both f and g in these two fiber-cofiber sequences are defined by the universal property
of the object in the middle. Therefore, if we consider the diagram

C1l (L\)/(o) ®Ql,x0 QZ,XU (ﬂ)

Qe,x,(B) Qe.x,(B) —> cofiber (c1(Ly) ®q, x, Qe.x,(B))
z0 s f 5.2.11
f g g ( ol )
i* 7 Qe x4 (B),

where the middle vertical arrows induce the morphism f and g respectively, it
suffices to show f ~ g. By definition, f is induced by the counit Q x(8) —
JxJ*Qe,x (B), while g is induced by the base change morphism b.c. : 5% joxQ¢ 1, (B)
- j*S:&QZ,"L(X (B):

g i%sx Qe vy (B) = i*sX josjo Qe vy (B) = i jusyjo Qevy (B). (5.2.12)

It also suffices to show that the two arrows are homotopic before applying i *. Consider
the diagram

5 Qe vy (B) — > 5% jos jiQe,vy (B) 25 jusi jiQevy (B) = jxj*s% Qe vy (B)

l (5.2.13)
s Sxx x5y Jg Qe vy (B) sySxx = 1

~

sySxaJxJ 5% Qe vy (B),

If we analyse the commutative triangle on the left, we see that the objlique arrow
corresponds to the unit of the adjunction ((sx o j)*, (sx o j)«). Indeed, by definition,
the vertical arrow is

. - unit (s7;,510+) -
5 Jox(Jo Qe vy (B) —————> suasyJo Qe vy (B)) (5.2.14)
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and the horizontal arrow is the one induced by the unit of (j;, jo«). The composition
is exactly the unit of the adjunction ((jo o s1()*, (Jo o sy )«). Hence, the claim is proved
as jo o sy =~ sx o j. Now notice that sy, is conservative (sx is a closed morphism),
i.e. the counit sy sy, — 1 is a natural equivalence. If we compose the oblique arrow
with it, we obtain the unit of (j*, j,) evaluated in s Qp v, (8). The statement about
the module structures is clear. O

Remark 5.2.3 Notice that our main theorem provides a generalization of the formula
proved in [9]: assume that we are given a proper flat morphism p : X — S from
a regular scheme to an excellent strictly henselian trait.® Let sy : X — A}( be the
pullback of the section § — Ag given by the uniformizer . Then we can consider
the diagram

o iy S Jn 0
JTT )
X, i X J ) (5.2.15)
o] b e
X " A}( - Gm,X
io Jo

where all squares are cartesian. The theorem we have just proved tells us that

"R (Sing(X, 5x)) = OF . (Qe(B)[-11.

By the regularity assumption on X, Sing(X, sx) =~ Sing(X¢). If we apply py« to the
formula above we find:

Poxi* Ry (Sing(Xo)) ~ i R (Sing(X0))
~ P @ (Qe(B)I-1] (Pos®pQex (BI-11)" (5.2.16)

~
=

Lemma4.2.4

which is exactly the content of [9, Theorem 4.39]. Also notice that in this case

i*sx joxQe,G,, x (B) = Qe x, (B) ® Qe, x, (B[], (5.2.17)

as the first Chern class of the trivial line bundle is zero. This recovers the equivalence

(Qe.o (BN = Qro(B) ® Qe (B[] (5.2.18)

proved in loc.cit.

8 We shall recycle the notation that we have introduced in § 4.1.
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6 The {-adic realization of the dg category of singularities of a twisted
LG model of rank r

In this section we will explain how, by means of a theorem due to D. Orlov and
J. Burke—M. Walker, the main theorem we proved in the previous section allows us to
compute the £-adic realization of the dg category of singularities of the zero locus of a
global section of any vector bundle on a regular scheme. This is the reason that led us
to consider twisted LG model, as defined in §3.1, as the author was initially interested
in computing the £-adic realization of the zero locus of a multifunction X — A’s (with
X regular).

6.1 Reduction of codimension

In this section we will provide an oo-functorial lax monoidal enhancement of the
“reduction of codimension” equivalence proved by Orlov ([42, Theorem 2.1]) and by
Burke—Walker ([11, Theorem A.4]).

Context 6.1.1 Let S be a regular noetherian scheme of finite Krull dimension.

Definition 6.1.2 Notice that all we said in section Sect. 3.1 can be generalised mutatis
mutandis to the situation where line bundles Lg are replaced by vector bundles of
a fixed rank r Eg. In particular, for a fixed vector bundle g on S, we can define a
symmetric monoidal (ordinary) category LG% eg) analogous to the one we defined
in section Sect. 3.1.

Notation 6.1.3 Let &g be a vector bundle of rank r over S. We will denote P(Eg) =
Projs(Symog (8;)) and g : P(Eg) — S the associate projective bundle and projec-
tion. Moreover, we will denote by O(1) the twisting sheaf on P(Ey).

Construction 6.1.4 We will construct an (ordinary) symmetric monoidal functor

=0 .1 2
E¥ 1 LG{.e5) ~ LGrey), 00y (6.1.1)

following the lead of [11] and [42]. Let (X,s) € LGs,e,). Consider Wy €
C'(P(EY), O(1)) defined as the morphism

—_~—

W . O]p(g)v() >~ Symo, (Ex) = Syme,(Ex)(1) = 0(1) (6.1.2)

induced by the morphism of modules
Symo,(Ex) = Sympo,(Ex)(1) (6.1.3)

induced by s : Ox — 8}. Here (:3 is the functor that associates a quasi-coherent
module on IP’(S)V() to a graded Sym o, (€ x)-module. The assignment

(X, 5) = (P(Ex), W),
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together with the obvious law for morphisms defines a functor
= N LG(S,Es) —> LG(P(S?),O(I))' (614)

It is immediate to observe that (S, 0) — (]P’(Sg), 0), i.e. the functor is compatible
with the units of the two symmetric monoidal structures. It remains to show that

E((X,s)B(Y,n) ~EWX,s)BEWY,1).
On the left hand side we have
(P(ExX xgy)- Wsemn)),
while on the right hand side we have
(P(EY) Xp(ey) P(Ey), Wy B Wy).

Since P(Ey) Xp(gg/)P(g\Y/) ~ (X xsP(EY)) Xp(ey) (Y xsP(E{)) = (X x5Y) X5
P(EY) ~ IP(E)V(XSY), it suffices to show that W, = W, B W;. It is enough to do
it Zariski-locally (O(1) is a sheaf). Locally, IP(S)V(XSY) is isomorphic to a projective
space. We may consider the covering of IE”(S)V(XSY) consisting of open affine sub-
schemes Spec(B®a4 C[%, el T—;’_]), where Spec(A) (resp. Spec(B), resp. Spec(C))
is an open affine subscheme of S (resp. X, resp. ¥). The restriction to this open subset
of Wym; is of the form

n

T T,
(ARI+1Rg) =+ +(fi®1 +1®gy) - =,
T; T;

while that of W; HH W, is

(f-£®1+1® ~ﬁ)+-~+(f.£®1+1® -ﬁ)
1 Tj 81 Tj n Tj 8n Tj.

The claim follows and thus we obtain the desired symmetric monoidal functor.

If we compose the symmetric monoidal functor (6.1.1) with the lax monoidal co-
functor defined in Sect. 3.2 we get

. | .
Sing(P(€)), Wa)® : LGSz | — Modsing(p(cy).0) (dgCatid™)®  (6.1.5)

which, at the level of objects, corresponds to the assignment

(X, s) > Sing(P(EY), Wy).
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We define the dg category of singularities of a twisted LG model (X, s) of rank r
over (S, €g) in the following way: consider the derived zero locus of s, defined as the
homotopy pullback of s along the zero section

Xo —l>- X
l ls (6.1.6)
s — 9 vy,

As0:§ — V(Es) is a closed Ici morphism (locally, is of the form U — AY), so
isi : Xo — X. Thus the pushforward induces a dg functor

iy : Sing(Xp) — Sing(X). (6.1.7)

Definition 6.1.5 We define
Sing(X, 5) := Ker (i : Sing(X() — Sing(X)). (6.1.8)

Similarly to what we did in Sect. 3.2, we can define a lax monoidal co-functor

. H i
Sing(e, ¢)° : LGE'¢ | — Modsing(s.0) (dgCat’s™)® (6.1.9)

At the level of objects, it is defined by (X, s) — Sing(X, s).

Remark 6.1.6 Let Spec(B) be an affine scheme and let Ep be a projective B-module
of constant rank r and s € Ep. The derived zero locus of s is the spectrum of

B ®]L‘ v, B, where the two augmentations Sympg(E}) — B are determined
S)mB(EB) B
by s and 0. The dg algebra associated to the simplicial ring B ®%ym3 (EY) B via the
B

Dold-Kan correspondence is the Koszul dg algebra associated to (B, E};, )

r r—1 2
K(B,Ej,s):=0— /\E}é—) /\E},f—) /\E}f—) E} > B—0

(6.1.10)

concentrated in degrees [—r, 0]. This is locally true (see for example [43, Remark

1.22] or [31]) and the global statement follows from the existence of a morphism of
dg algebras

L
K(B,Ej,s) — N(B ®SymB(E§) B), (6.1.11)

where N is the normalized Moore complex functor.
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Construction 6.1.7 Similarly to what we said in Construction 3.2.12, there is an equiv-

alence between QCoh(B ®H§ym3 (EY) B) and the category of cofibrant K (B, E},, s)-dg
B

modules, denoted by K (B/,E , §). Under this equivalence, Coh? (B ®I§‘ v, B)
ymp(Eg)

corresponds to the full subcategory of K (ﬁ ,s) spanned by K (B, E}, s)-dg
modules that are cohomologically bounded and whose cohomology is coherent over
coker(E}, % B).

Similarly, Perf (B ®H§ym3 (EY) B) corresponds to the full subcategory of K (ﬁ ,8)
spanned by homotopically finitely presented dg modules. We consider the full subcat-
egory Coh* (B, EY;, s) spanned by K (B, E};, s)-dg modules that are cohomologically

bounded, whose cohomology is coherent over coker (E 2> B)and whose underlying
complex of B-modules is strictly perfect.

Lemma 6.1.8 [9, Lemma 2.33] Let Coh*(B, E}, s)*Y be the full sub-category of

Coh’(B, EY,, s) spanned by acyclic dg modules. Then the cofibrant replacement
induces an equivalence of dg categories

Coh’ (B, E}. s)[q.iso~'] ~ Coh® (B, E}, 5)/Coh* (B, E}, )™  (6.1.12)

=~ Coh®(Xo)pert(x)-

Ifwe label Perf® (B, EY,, s) the full subcategory of Coh’ (B, E},, s) spanned by perfect
K (B, E},, s)-dg modules, there are equivalances of dg categories

Coh’(B, E}, s)/Perf* (B, E};, s) ~ Coh®(Xo)pert(x)/Perf(Xo) ~ Sing(X, 5).
(6.1.13)

Proof The proof of [9, Lemma 2.33] applies, mutatis mutandis. O

In the same way as in Construction 3.2.14 and in the following discussion, we can
construct a lax monoidal co-functor

:: idm,
Coh” (&g - LG(5 e, — dgCatg™® (6.1.14)

Moreover, using the same arguments as in the discussion following Remark 1.27 in
[43], we get the lax monoidal co-functor (6.1.9).

At this point, the reader might complain that there are too many Sing’s involved,
and this may cause confusion. As a partial justification to the choice of notation we
made, let us show that these different oo-functors are closely related.
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Definition 6.1.9 Let (X,s) € LGs e5). We define the projective bundle over Xo
associated to Ex, = i*Ex as the derived pullback

P(Ey) — > P(EY)
pol lp (6.1.15)

Xg —— X.

Recall that, given a global section of a line bundle on a scheme, we define its
(derived) zero locus as in Definition 3.2.1. In particular, for (X, s) € LGs ¢ ) we have
a global section W of the line bundle O(1) on IP’(S)V() and thus we have a (derived)
pullback square

VW, —F s pey)

& |, (6.1.16)

Py —2 s vo).

Let (X, s) € LG, &) and consider the following diagram, where both squares are
homotopy cartesian:

PEY) s veoay)
4
P(EY,) s vwy K pey 6.1.17)
lpo lp
Xo : X.

By [28, Chapter 4, Lemma 3.1.3, Lemma 5.1.4], j.p; preserves complexes with
coherent bounded cohomology. The derived proper base change equivalence ky jx pj =
p*i, implies that we have a dg functor

Yex,5) = jxpp : Con’(Xo)pert(x) = Coh”(V(W))pertz(eyy-  (6.1.18)

and it is functorial in (X, s). We will need to enhance the assignment (X, 5) = Y(x )
with a lax monoidal structure. We will use strict models.

Assume that S = Spec(A) is affine and let E be a projective A module of rank r.
Since E is an A-module of finite type, there exists a surjection

A" > E. (6.1.19)

Denote by ¢; i = 1,...,n) the images in E of the elements (1,0,...,0), ...,
©,...,0,1) e A™.
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We will define a lax monoidal co-natural transformation

T : Coh’ (V (@) gty = COB’ (V(Wa))iurt oy (6.1.20)
where
b ® b ® . 1 «B.affop idm,®
Coh” (V (8))perg(a): CON”(V (W) perg(piyy * LO(sg) - — dgCaty™®.
6.1.21)

For every (Spec(B), s) € LG?g,e}fg,op’

P(Eg) = Proj(Symp(Ep))
has a Zariski affine covering {D4 (#;)}7_,, where
D (t;) = Spec(Symp(E})«))- (6.1.22)

Here SymB(Eg)(,i) denotes the ring of degree O elements of the graded ring
Symg(E})[t"1. Since

Coh” (V (W, , = 1im Coh” (V (W) erp o) (6.1.23)

®
))Perf(IP(E;)

where U* is the Cech hypercover of {D, (7;)}!_,, it will suffice to define an homotopy
coherent diagram of lax monoidal co-natural transformations

Coh’(V (&) gy = COM’(V (Wapue) s o) (6.1.24)
Recall that Coh® (B, EY}, sg) is the A-dg category of K (B, EY;, sg)-dg modules

whose underlying B-dg module is strictly perfect. In other words, it is the dg category
of B-dg modules (M, d) endowed with a B-linear map

h:M— M®p Eg[—1] (6.1.25)
such that
W=0, [dhl=idy®sg:M—> MQpEg. (6.1.26)
. A, aff,op .
Construction 6.1.10 For every (B, sp) € LG(S E) andeveryi = 1,...,n,define a

pseudo-functor

Yi : Coh*(B, Ey, s3) — Coh® (Symp(Ep) ). 1 - Symp(EB)(i)> Wpp, ()
(6.1.27)
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as follows. For (M, d, h) € Coh®(B, EY,, sg), let
Yi(M,d,h) = (M Q@p Symp(Eg),d ®id, xin). (6.1.28)

Themap x; p : MQp Symp(Ep) — M Qpt; - Symp(Ep) is defined as the restriction
to D4 (¢;) of the composition

h®id
M ®p Symp(Ep) ———> M 8 Eg ®p Symp(Ep)[—1]
(6.1.29)

M ®p Symp(Ep)(D[—-1],
where Symp(Ep)(1) is the Symp(Ep) module Symp(Ep) with the grading
shifted by 1 and the second morphism is induced by multiplication. Notice that

Symp(EB)(1) ®symg(Eg) @Symp(ER) ;) = ti - Symp(Ep)(;). The desired proper-
ties that

Wy =0 [d®id, xinl =Wy, ®id (6.1.30)

are local (on Spec(B)) and if Egp = B”, sp = (sB.1,.-.,5B.n), then Y; admits the
explicit description

Yi(M,d,h={h;}j=1,.,)=(M ®p Blx1,...,%],d®id,x1 -hi1 + -+ x - hy)
(6.131)

and WSB|D+<r,-> =X|-SB1+ -+ X -SB,.

It follows immediately from the definitions of the pseudo functorial struc-
tures of (B, sp) +> Coh*(B, EY,sg) and (B,sg) > Coh®(Symp(Ep)q).t; "
Symp(EB) ), Wi, Dy <t;>) that Y; is a pseudo natural transformation.

Remark 6.1.11 Let X = Spec(B) and Xg = Spec(K (B, E}, sg)). Notice that Y;
models the dg functor

Jj«p§ + Coh” (Xo)pert(x) — Coh”(V(Wy,) N Dy (t)pext(ps(ry)s  (6.1.32)
where
po : Dy (t) xp(ey) P(Ey)) — Xo
and

J 1 D) xpepy PIEY,) = V(Wey) N Dy (8).
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Construction 6.1.12 We will now endow Y; with a pseudo lax monoidal structure. If
(B, sp) and (C, s¢) are affine twisted LG models of rank » over (A, E), then

w : Coh®* (B, E}, sg) ® Coh*(C, El, sC) — Coh®(B ®4 C, E§®AC, sg Bsc)
(6.1.33)

is defined on objects by
((M,dpy,hy), (N,dy,hy)) = (M Q@4 N,dyg,n, hy Bhy), (6.1.34)

where h s H hy is the map

hy ® C
B®hn &2
M@ N ——">(M Qs N)pg,c Egg,cl—1]
[1 1] (6.1.35)

(M ®a N)®po,c Epg, cl—1]

It is defined on morphisms in the obvious way.
The dg functor

Cob®* (Symp(EB)), 1; " - Sym(EB) ), Wepip, ()

®

Coh* (Symc(Ec) . 17" - Syme (Ec) ), Wiein, o)

i

Coh® (Sympg,c (Epe,)is ;- SYMpg e (EBo,c) ), WesBscin, o))
(6.1.36)

is defined similarly.
We need to verify that the two compositions

Coh*(B, EY,, sg) ® Coh*(C, EY, sC)
wo (V(.sp) ® Y(C,s5¢c)) T (B®,C,spBsc) © 1 (6.1.37)

: -1
Coh®(Sympe,c(EBoaC) )+ ;- SYMBo,C(EBosC) ) WispBse)n, i)
are isomorphic up to natural isomorphism. The composition Y'(gg ¢ szHsc) © M 18

((M,dpy, hy), (N,dn, hy)) =
(M @4 N Qpg,c Sympe,c(Epo,C) ), d ®id, Xi nyBry), (6.1.38)
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while the composition o (Y(B,55) ® Y(C,sc)) 18

((M,dy, hy), (N,dn, hy)) —
(M ®p Symp(EB) 1)) ®Sym(E)q,)
(N ®c Symc(Ec)@)),d ®id, Xiny B Xiny)-
(6.1.39)

It is clear that there is a canonical isomorphism of B ® 4 C-dg modules

(M ®4 N ®pg,c Sympe,c(Epg, ) ), d ® id)
~ (M ®p Symp(EB) 1)) ®syma(E)y,) (N &c Symc(Ec) ), d ® id).
(6.1.40)

Then we only need to show that

XihyBhy = Xishy B Xiohy (6.1.41)

under this natural isomorphism. This follows from the definitions.
The units of the lax monoidal pseudo functors (B, sg) +— Coh®(B, EY;, sg) and

(B, sg) — Coh®(Symp(EB)), ti_l - Sympg(Eg);), Wsy) are compatible: the dia-
gram

Coh®(A, EV, 0)

< l (6.1.42)

Coh® (Sym 4 (E) gy ;" Syma(E) ), 0)

commutes. Here A is the dg category with one object x and End(x) = A. The
diagonal arrows are determined by

* > A, * = Syma(E) ) (6.1.43)

where A (resp. Syma(E)(;)) is concentrated in degree 0 and the map A — E[—1]
(resp. Syma(E) @) — t;Syma(E)y,) is zero.

The previous constructions provide us with pseudo lax monoidal natural transforma-
tions
T : Coh'(e, E), 50)® — Coh* (Syme(Ee) s ;' Syme(Ea), Wy,)®.
(6.1.44)
It is obvious that the Tl.® preserve quasi-isomorphisms and that they are compatible

with one another. In other words, they can be used to define the homotopy coherent
diagram of lax monoidal co-natural transformations (6.1.24).
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Therefore, we get a lax monoidal co-natural transformation
T® 1 Coh? (V () erpia) = CON*(V(Wa)) prrsoiyyy (6.1.45)

between the co-functors

b b ) ff, &, idm,®
Coh” (V () pert(e): CON* (V(We))pergpiyy) : LG(a gy - — dgCatg™®.

(6.1.46)
By Kan extension and descent, we extend Y® to a lax monoidal oo-natural trans-
formation between

- ‘
Coh” (V () fert(a)» CON” (V (WD) prp ey : LG4 F) — dgCaty™®(6.1.47)

i.e. we extend to all twisted LG models of rank r over (A, E).
Finally, if S is not affine, we define the lax monoidal co-natural tranformation

T® : Coh’(V (8))pert(s) — Coh”(V(Wo)pert(pey)) (6.1.48)
of lax monoidal co-functors LG(Ei’,ng) — dgCatiSm’® as

. ® ) b ® b ®
lim (T(A,a,,) : Coh”(V(e))pes(e) — Coh (V(W‘))Perf(P(E.v)))’
Spec(A)—S
(6.1.49)

where the limit is taken over Zariski open subschemes Spec(A) — S. Here Ta €0
is the lax monoidal co-natural transformation we defined above. Once again, we have
used that

dgCat{™® = lim dgCat™® (6.1.50)
Spec(A)—S
and that
LG5 ¢) lim LGE ¢, (6.1.51)
Spec(A)—S

(this is an analogue of Lemma 3.1.9 for twisted LG models of rank r, which can be
proved mutatis mutandis).

Remark 6.1.13 Let (X, sx) be a twisted LG model of rank r over (S, £). Then

TX.5x) = s P+ Coh?(Xo)pert(x) — COhb(V(va))Perf(P(g;))» (6.1.52)

where we have used the notation of diagram (6.1.17)
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Lemma6.1.14 j : IP’(E}’(O) — V(W) is an Ici morphism of derived schemes.

Proof Since the property of being Ici is local, we can assume that Ex ~ O’ and
sx = f € O%(X). Since j is clearly of finite presentation, we will only need to show
that the relative cotangent complex is of Tor amplitude [—1, 0]. Recall that we have
the fundamental fiber-cofiber sequence

Lyt = Let pet = Lot vany (6.1.53)

at our disposal. Since IP’;(;] ~ S xi"vs ]P’;;l, ]LP;(Bl /B! is equivalent to the pull-
back of Lg/a, =~ O%[1] along P! — &, ie. Lyt = %&;,[11. On
the other hand, LV(WL)/]P;(_I ~ k*ILP;(_I/V(O(_l)) ~ k*(O(—=1[1]). Therefore,
j*]LV(WL)/P;;l ~ O]P);(:)l ®OP§;' O(—1). We just need to identify the morphism

j* ~ _ r ~ . . .
Jj ]LV(WL)/P;;l ~ OP;)-(BI ®OP§;1 O=D[1] — OPZ)I[H ~ LP%LIt coincides with the
morphism (71, ..., 7). In particular, the cofiber of this morphism, i.e. LP;(—I VW)’ is

0 S
equivalent to O]Z;_] (1. |
Xo

Construction 6.1.15 Since j is an lci morphism, the dg functor (6.1.48) preserves
perfect complexes. Therefore, for every (X, sx) € LG, eg), we have an induced dg
functor

Yixusx) 1= Jupf : Sing(X, sx) — Sing(P(EY), Wyy) (6.1.54)

Starting from (6.1.48), by the usual standard arguments we thus obtain a lax monoidal
oo-natural transformation

Y® : Sing(e, 0)® — Sing(P(E)), W,)® (6.1.55)

of functors

op,H

LG(S,SS)

— Modsing(s,0) (dgCat'{™®,
where Sing(P(EY), W,)® denotes the composition of (6.1.5) with

Modsing(F(¢ 5).0) (dgCats™® — Modsing(s.0) (dgCati{™)®.

Theorem 6.1.16 ([11,42]) If sx is a regular section, the lax monoidal co-natural trans-
formation (6.1.55) induces an equivalence of dg categories

Y(x,sy) : SIng(X, sx) =~ Sing(P(Ey), Wsy). (6.1.56)
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Proof This is an immediate consequence of [11, Theorem A.4]. Indeed, as the dg
categories are triangulated, it suffices to show that the statement is true on the induced
functor of triangulated categories. This coincides by construction with that of loc. cit.

O

Remark 6.1.17 We actually believe that the statement above remains true even if sy
is not assumed to be regular, as long as one considers the derived zero loci instead of
the classical ones.

6.2 The {-adic realization of the dg category of singularities of a twisted LG model
of rankr

It is now easy to obtain the following computation:

Theorem 6.2.1 Let (X, sx) be a twisted LG model of rank r over (S, Eg). Assume that
X is a regular scheme and that sx is a regular global section of Ex. The following
equivalence holds in MOdeg(’v(Sing(X,O)) (Shvg, (X))

Ry (Sing(X. 5x)) = puis®{fe ) y, (QeB)I- 6.2.1)

where i : V(W) — P(EY) is the closed embedding of the zero locus of Wy, and
p:P(EY) — Xisthe canomcal projection.

Proof As X 1is regular and sy is a regular section, we have an equivalence
Sing(X, sx) =~ Sing(V (sx)). Notice that in this situation V (sy) coincides with the
underived zero locus of sx. As P(EY) is regular, by Theorem 6.1.16, we have that

Sing(X, sx) =~ Sing(V (W, )) =~ Smg(IP’(E ), Wiy).
Then

R&V(Singmsx)): PR o (SingB(EX). Wey )

Theorem 5.2.2

Notice that since sx is aregular global section of € x, W;, is aregular global section
of OP(E\/) and the hypothesis of Theorem 5.2.2 apply to the pair (P(Ey), Wy, ).
The fact that this equivalence holds in Mod (ShVQg (X)) follows

immediately from the fact that

R4V (Sing(X,0))

R, (SIPEY), Wo)) = i@l ooy (QuBNI-1]

is an equivalence of REY )(Slng(IP’(E}g) 0))-modules and from the fact that

P(EY
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Ry” (Sing(X.0)) — puRy . (Sing(P(EX). 0)) (6.2.3)

is a morphism of commutative algebras. O

Corollary 6.2.2 Assume that S = Spec(A) is a noetherian regular local ring of dimen-
sion n and let w1, ..., 7, be generators of the maximal ideal. Let p : X — § =
Spec(A) be a regular, flat S-scheme of finite type. Let t : S — A’ be the closed
embedding associated to w1, ..., mw,. Then 1t o p is a regular global section of O'.
Then the equivalence

L,V Qs ~ . i
Ry (Sing(X, w0 p) = quin @, (QuANI-1]

holds in MOde[)‘(‘v(Sing(X‘Q))(ShVQK (X)).

Here q : ]P’;‘{l = Projx(Ox[T1,...,T,]) — X is the canonical projection and
i:V(Wrop) — IP"}’(_1 is the closed embedding determined by the equation

Wgop = P*(Tfl) T+ +p*(7'fn) -1, =0.

7 Towards a vanishing cycles formalism over A}/Gm,s

The discussion in Sect. 4 suggests that it should be possible to construct a vanishing
cycles formalism where the role of the base henselian trait is played by some more
general geometric object. Moreover, the monodromy-invariant part of this construction
should recover the sheaf of Definition 5.1.1.

Notice that similar ideas, i.e. to develop a formalism of vanishing cycles over a base
scheme B with a closed-open decomposition (o, 1), already appeared in J. Ayoub’s
works [4-6].

We will give a complete account on the formalism of tame vanishing cycles over
A}v /G, s in a forthcoming paper in collaboration with D.-C. Cisinski.

7.1 Tame vanishing cycles over A}

It is well known that even if tame vanishing cycles where first defined for schemes
over an henselian trait, what one actually uses is the geometry of A}g. Indeed, one can
consider the following diagram

s U AL = Specs(Oslr]) €% G5 «——lim, oo G slx)/ (" —1)
(7.1.1)

and use it to replace the one considered in [54,55] when S = Spec(A) is a strictly
henselian trait

o ¢ 4 o 0. (7.1.2)
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If we pullback the first diagram along the morphism S — Ag given by an uni-
formizer, we recover the second one. It is not surprising that in this way we are only
able to recover the so called tame vanishing cycles. Indeed, the wild inertia group is
of arithmetic nature. One can define nearby cycles for schemes over Ag in the usual
way: for f : X — AL consider the diagram

Joo
Xo i X Jn Xy, On Xu,
) 7l 1 f=
S N A]g - Gm,S[x]/(xn -1 =U, ~—— Uso = l<i£1n€0>§ Un.
io Q Jon Po.n
Jo.co
(7.1.3)
Definition 7.1.1 Let J € Shvg, (X).
e The ¢-adic sheaf of nearby cycles of F is defined as
U (F) i= 0" joor Jao F ll_r)n s & (7.1.4)

X
neOg

Notice that, since p, s := Os[x]/(x" — 1) naturally acts on Xy, , then i* j, jiF
has a natural induced action. Then W ¢ (F) has a natural action of LiLnne ox Mn.s =
s

Moo,S-
e There is a natural morphism i*F — W (&), that we can see as a (oo, s-equivariant

morphism if we endow i *F with the trivial action. The sheaf of vanishing cycles
® ¢ (F) of F is then defined as the cofiber of this morphism, with the induced
Moo, s-action.

7.2 Tame vanishing cycles over A} /Gp,s

We can reproduce the situation described above for schemes over Aé /G, s. In this
case, the role of the zero section is played by BG,, s — Ag /G s, and that of the
open complementary by S ~ G, s/G,,.s — AIS /G, s. We can consider elevation to
the n'" power in this case too:

On i AY/Gps — AL/Gs (7.2.1)
which can be described as the functor

(P:X — S, Lx,sx) > (p: X — S, L%, s§. (7.2.2)

See [13] and [2].
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Remark 7.2.1 Notice that the ®,, are compatible, i.e.
®,00, ~0,, >~ 0,00, (7.2.3)

for any n, m € N.

We can therefore consider the diagrams (for each n € O;)

iO,n

1o, Jo,
BGm’S ———————}1———>- BGm,S XA};/Gm.S Ang/(GTm,S — A}S/Gm“g <——L S

Co— le Ji

BGms—>A /Gp, 5 <— 8.
10 Jo

(7.2.4)

Notice thatevenift , : BG,,.s — BGy, s X AL /Gy Aé/@m,s is not an equivalence, it
shows BG,, s x AL/Gos Ag /G s as anilpotent thickening of BG,, s. More explicitly,
objects of BG,, s arepairs (p : X — S, Lx), whilethose of BG,;, s XAIS/Gm,SAfs/Gm,S
are triplets (p : X — S, Ly, sx), where sx is a n-torsion global section of L.
What is important for us is that pullback along fp , induces an equivalence in étale
cohomology. Moreover, ®,, is a finite morphism of stacks. In particular, the base
change theorem should be valid for the cartesian squares above. However, even if the
6-functors formalism for the étale cohomology of stacks has been developed [37-
39], the proper base change theorem has been proved in the case of representable
morphisms. The morphisms ®,, are not representable For example, the pullback of
©, along the canonical atlas A} — AL/G,, s is AL/u,.

For any X-point (p : X — S, Ly, sx) ofAS/Gm,S (e.g. for any twisted LG model
over S), we can consider the following diagram, cartesian over (7.2.4)

in
N in
Xo n Xo xx X, X, Xu
\ l |2 lid
X - Xu.
J
(7.2.5)

The same observations we made for the base diagram remain valid in this case too.

Notation 7.2.2 Forastack Y, and a torsion abelian group A (we will only be interested
in the case A = Z/0"Z, L € O?) let Shv(Y, A) the oco-category of Mod 4 -valued
étale sheaves on Y.

We can then propose the following definition.
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Definition 7.2.3 Let F € Shv(X, A). Then
Wi (F) i= gy Jusc T 2 iy s Jiy 2, F € ShV(Xo s A). (7.2.6)
Moreover, let
Spn 0T = W, (F) (7.2.7)

be the morphism induced by the unit of (j,, ji«)-

We can then consider the images of these morphisms in Shv(Xo, A)
Qo.ps(spn 030 F — WU, (F)). (7.2.8)
Consider the diagram

lnm

Y

XO,nm ——> X0 Xx Xum Xum Xu

0,m n m i
\( Qum
€20,nm Xon — > Xo xx X, Xn ; Xu
n
Qn ld
io
Xo X ; Xu.
Jo
(7.2.9)
Then we have
Dn 0T [ I 9 5o
J(l Soan o ~ (7210
0 m*(sp”m) QO m anZmS'~ Qg mx nm]nm*]nmgz* F
QN QIEQET X Ay 2T
We can then consider
li_r)n Q(),n*i::Q:fF — i{)kj()*]'(})kg‘~ € Shv(Xg, A). (7.2.11)

neN*

For A = 7Z/¢%Z one can then consider the induced morphism on ¢-adic sheaves
obtained by taking the limit over d and then tensor with Q. It is expected that in this
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way one is able to recover monodromy-invariant vanishing cycles. In order to explain
way the first Chern class of the line bundle appears in the computation, it might be
useful to look at the base diagram. The ¢-adic cohomology of BG,, s is Q¢[c1], where
c1 is the universal first Chern class and lies in degree 2. We expect that

Qe ®z, (Li;_n lim @iy O} Z/LZ(B)) = cof ib(Qe(B) > Qu(B) (7.2.12)
neNx*

(Lxq)
and one recovers cofib(Qg, x,(B) CI—°> Qe¢,x,(B)) by a formula of the kind

Qelc1] = H* (BGyp,5, Q) — H* (X0, Q)
c1 = c1(Lxy), (7.2.13)

where Ly, is the line bundle which determines the morphism Xo — BG,, 5.

8 Some remarks on the regularity hypothesis

In the theorems about the ¢-adic realizaiton of the dg category of a (twisted, n-
dimensional) LG model the regularity assumption on the ambient scheme is crucial.
Indeed, we are not able to compute the motivic realization (and hence, the £-adic one)
of Coh? (Xo)perf(x).- However, this dg category sits in the following pullback diagram

1
Coh” (Xo)pert(x) ——— Perf(X)x,

L

i
Coh’ (Xg) —————> Coh®(X)x,.
It is well known after Quillen’s dévissage for G-theory that
MY (Coh® (X)) ~ MY (Coh? (X)yx,). (8.0.2)

Therefore, to say that MY (i, : Coh” (X o)perf(x) — Perf(X)x,) is an equivalence or
to say that the image of square (8.0.1) via M is still a pullback square are equivalent
statements. We believe that this is the case, even though this matter will be investigated
elsewhere. Notice that to know that such an equivalence holds true would allow to
compute the motivic realization of Coh? (Xo)perf(x) (under the additional hypothesis
Xo =~ mp(Xp)). Indeed, the localization sequence for K-theory would allow us to
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compute it as the fiber

% (Coh® (Xo)pert(x)) = My (Perf(X)x,)

!

My (Perf(X)) (8.0.3)

!

My (Perf(X — Xp)).
In other words,
My (Coh® (Xo)pert(x)) = ixi'BUx. (8.0.4)

In this case, the proof of Theorem 5.2.2 would work without any changes.
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