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Abstract
Let π : R

n → R
d be any linear projection, let A be the image of the standard basis.

Motivated by Postnikov’s study of postitive Grassmannians via plabic graphs and
Galashin’s connection of plabic graphs to slices of zonotopal tilings of 3-dimensional
cyclic zonotopes, we study the poset of subdivisions induced by the restriction of π

to the k-th hypersimplex, for k = 1, . . . , n − 1. We show that: For arbitrary A and for
k ≤ d + 1, the corresponding fiber polytope F (k)(A) is normally isomorphic to the
Minkowski sum of the secondary polytopes of all subsets of A of size max{d +2, n−
k + 1}. When A = Pn is the vertex set of an n-gon, we answer the Baues question in
the positive: the inclusion of the poset of π -coherent subdivisions into the poset of all
π -induced subdivisions is a homotopy equivalence. When A = C(d, n) is the vertex
set of a cyclic d-polytope with d odd and any n ≥ d + 3, there are non-lifting (and
even more so, non-separated) π -induced subdivisions for k = 2.
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1 Introduction

The main object of study in this paper are hypersimplicial subdivisions, defined as
follows. Let A be a set of n points affinely spanning R

d . Let �n be the standard
(n − 1)-dimensional simplex in R

n . Consider the linear projection π : R
n → R

d

sending the vertices of �n to the points in A. (We implicitly consider the points in A
labelled by [n], so thatπ sends ei to the point labelled by i). Let�

(k)
n :=k�n∩[0, 1]n be

the standard hypersimplex and A(k) the image of the vertices of �
(k)
n under π (so that

points in A(k) are labelled by k-subsets of [n]). A hypersimplicial subdivision of A(k)

is a polyhedral subdivision of conv(A(k)) such that every face of the subdivision is the
image of a face of �

(k)
n under π . Put differently, we call hypersimplicial subdivisions

the π -induced subdivisions of the projection π : �
(k)
n → conv(A(k)), as introduced

in [3,5] (see also [8,18]). See more details in Sect. 2.
One reason to study such subdivisions comes from the case where A ⊂ R

2 are the
vertices of a convex polygon. Galashin [10] shows that in this case fine hypersimpli-
cial subdivisions, which we call hypertriangulations, are in bijection with maximal
collections of chord-separated k-sets. These, in turn, correspond to reduced plabic
graphs, [15] which are a fundamental tool in the study of the positive Grassmannian
[16,17].

More generally, it is of interest the case where A are the vertices of a cyclic polytope
C(n, d) ⊂ R

d . (The n-gon is the case d = 2). In [17, Problem 10.3] Postnikov asks
the generalized Baues problem for this scenario; that is, he asks whether the poset of
hypersimplicial subdivisions of C(n, d)(k) has the homotopy type of a (n − d − 2)-
sphere. For k = 1 this was shown to have a positive answer by Rambau and Santos
[19]. For d = 2, Balitskiy and Wellman show the poset to be simply connected and
again ask the Baues question for it ( [6, Theorem 6.4 and Question 6.1]). We here give
the answer to this:

Theorem 1.1 (Theorem 6.17) Let Pn be the vertices of any convex n-gon. The poset
of hypersimplicial subdivisions B(�

(k)
n → P(k)

n ) deformation retracts onto the poset
of coherent hypersimplicial subdivisions. In particular, it has the homotopy type of an
(n − 4)-sphere.

Postnikov [17, Problem 10.3] also asks for which values of the parameters can all
hypersimplicial subdivisions of C(n, d)(k) be lifted to zonotopal tilings of the cyclic
zonotope. This was already known to be false for d = 1 [17, Example 10.4] and we
generalize the counterexamples to every odd dimension:
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Theorem 1.2 (Corollary 5.4) Consider the cyclic polytope C(n, d) ⊂ R
d for odd d

and n ≥ d + 3. Then, for every k ∈ [2, n − 2] there exist hypersimplicial subdivisions
ofC(n, d)(k) that do not extend to zonotopal tilings of the cyclic zonotope Z(C(n, d)).

Galashin [10] showed that the answer to Postnikov’s question is positive for hyper-
triangulations of Pn , a result that was generalized to all hypersimplicial subdivisions
of Pn by Balitskiy and Wellman [6, Lemma 6.3]. In Example 5.1 we show that the
same does not hold for other two-dimensional configurations.

The poset of coherent hypersimplicial subdivisions of any A is isomorphic to the
face poset of a polytope, a particular case of a fiber polytope. When k = 1 this is just
the secondary polytope of A, so for k > 1 we call it the k-th hypersecondary polytope
of A. A related, but different, polytope is studied in [12] (see Remark 2.7).

We study hypersecondary polytopes for any A ⊂ R
d and k ≤ d + 1. Specifically,

we show that these polytopes are normally equivalent to theMinkowski sum of certain
faces of the secondary polytope of A. By symmetry, an analogue statement holds for
n − d − 1 ≤ k < n.

Theorem 1.3 (Theorem 3.11) Let A ⊆ R
d be a configuration of size n and k ∈ [d+1].

Let s = max(n − k + 1, d + 2). The hypersecondary polytope F (k)(A) is normally
equivalent to the Minkowski sum of the secondary polytopes of all subsets of A of size
s.

The paper is organized as follows: Sect. 2 introduces notation and basic background
on induced subdivisions in general, and hypersimplicial subdivisions in particular. In
Sect. 3we look at coherent hypersimplicial subdivisions andhypersecondarypolytopes
as Minkowski sums and prove Theorem 1.3, among other results. In Sect. 4 we study
the connection of hypersimplicial subdivisions with zonotopal tilings. In particular, we
extend to tiles of positive dimension the concept of A-separated sets introduced in [11].
With this machinery we show that if all hypertriangulations of A are separated then
all hypersubdivisions are separated too (Corollary 4.12). In Sects. 5 and 6 we prove
Theorem 1.2 and Theorem 1.1 respectively. We also briefly discuss the enumeration
of hypersimplicial subdivisions of P(2)

n in Sect. 6.2.

2 Preliminaries and notation

2.1 Fiber polytopes

We here briefly recall the main concepts and results on fiber polytopes. See [5] or [18]
for more details.

Let π : R
n → R

d be a linear projection map. Let Q ⊂ R
n be a polytope and let

A = π(vertices(Q)). A π -induced subdivision of A is a polyhedral subdivision S (in
the sense of, for example, [8]), such that every face of S is the image under π of a face
F of Q.

Given a vector w ∈ (Rn)∗ the face Qw of Q selected by w is the convex hull of all
vertices of Q which minimizew. A π -coherent subdivison is a π -induced subdivision
in which the faces of Q are chosen “coherently” via a vector w ∈ (Rn)∗. More
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precisely, we define the π -coherent subdivision of A given by w to be

S(Q
π→ A, w):=

{
π(F) : ∃w̃ ∈ (Rn)∗ s.t . w̃|ker(π) = w|ker(π), Qw̃ = F

}
.

The fiber fan of the projection Q
π→ A is the stratification of (Rn)∗ according to

what π -coherent subdivision is produced. It is a polyhedral fan with lineality space
equal to

{w ∈ (Rn)∗ : ker(π) ⊂ ker(w)} + {w ∈ (Rn)∗ : w|Q = constant}.

As we will see below, it is the normal fan of a certain polytope F(Q
π→ A) of

dimension dim(Q) − dim(A).
To defineF(Q

π→ A), we look at fine π -induced subdivisions. A π -induced subdi-
vision S is fine if dim(F) = dim(π(F)) for each of the faces F ≤ Q whose images are
cells in S. Put differently, a fine π -induced subdivision is the image of a subcomplex
of Q that is a section of π : Q → conv(A). To each fine π -induced subdivision S we
associate the following point:

GKZ(S):=
∑
F≤Q

π(F)∈S

vol(π(F))

vol(A)
c(F) ∈ R

n,

where c(F) denotes the centroid of F .

Definition 2.1 The fiber polytope of the projection π : Q → conv(A) is the convex
hull of the vectors GKZ(S) for all fine π -induced subdivisions. We denote it F(Q →
A).

The main property of the fiber polytope is the following result of Billera and Sturm-
fels. In fact, for the purposes of this paper this theorem can be taken as a definition
of the fiber polytope, since our results are mostly not about the polytope but about its
normal fan (see, eg Sect. 3).

Theorem 2.2 (Billera and Sturmfels [5]) F(Q → A) is a polytope of dimension
dim(Q) − dim(A) whose normal fan equals the fiber fan.

In particular, the face lattice ofF(Q → A) is isomorphic to the poset ofπ -coherent
subdivisions ordered by refinement. For example, vertices of F(Q → A) correspond
bijectively to fine π -coherent subdivisions.

The following two cases of this construction are of particular importance. Let
A = {a1, . . . , an} ⊂ R

d be a configuration of n points. Then:

(1) If we let π : �n → conv(A) be the affine map ei �→ ai bijecting vertices of �n to
A, then all the polyhedral subdivisions of A are π -induced, and the coherent ones
are usually called regular subdivisions of A. The corresponding fiber polytope is
the secondary polytope of A and we denote it F (1)(A) (in the next sections we
define F (k)(A) for other values of k).
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(2) Let

Z(A) =
∑
i

conv (0, (ai , 1)) ⊂ R
d+1

be the zonotope generated by the vector configuration A × {1} ⊂ R
d+1. The π

in the previous case extends to a linear map π : [0, 1]n → Z(A) still sending
ei �→ ai . Then the π -induced subdivisions are precisely the zonotopal tilings of
Z(A). The corresponding fiber polytope is the fiber zonotope of Z(A) (or of A)

and we denote it F Z (A).

2.2 The Baues problem

The poset of allπ -induced subdivisions (excluding the trivial subdivision for technical
reasons) is called the Baues poset of the projection and we denote it B(Q → A). The
subposet of π -coherent subdivisions is denoted Bcoh(Q → A). The Baues problem
is, loosely speaking, the question of how similar are B(Q → A) and Bcoh(Q → A),
formalized as follows:

To every poset P one can associate a simplicial complex called the order complex
of P by using the elements of P as elements and chains in the poset as simplices. In
particular, one can speak of the homotopy type ofP meaning that of its order complex.
Similarly, an order preserving map of posets

f : P1 → P2

induces a simplicial map between the corresponding order complexes, and one can
speak of the homotopy type of f .

The prototypical example is the following: if P is the face poset of a polyhedral
complex C, then the order complex ofP is (isomorphic to) the barycentric subdivision
of C. In particular, since Bcoh(Q → A) is the face poset of the polytope F(Q → A),
it is homotopy equivalent (in fact, homeomorphic) to a sphere of dimension dim(Q)−
dim(A) − 1.

Question 2.3 (Baues Problem) Under what conditions is the inclusion Bcoh(Q →
A) ↪→ B(Q → A) a homotopy equivalence?

See [18] for a (not so recent) survey about this question, and [13,22] for examples
where the answer is no and having Q a simplex and a cube, respectively. See Theorem
2.5 for examples, onvolving cyclic polytopes, where the answer to the Baues Problen
is known to be positive. Another important case for us is when A is 2-dimensional.
The following is known:

Theorem 2.4 Consider the Baues problem for a projection with dim(A) = 2.

(1) If Q is a simplex then Bcoh(Q → A) ↪→ B(Q → A) is a homotopy equivalence
[9].
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(2) There is a 5-polytope Q with ten vertices and a projection Q → R
2 for which

B(Q → A) is not homotopy equivalent to a sphere (hence not homotopy equivalent
to Bcoh(Q → A)) [20].

2.3 Cyclic polytopes

Cyclic polytopes are a family of polytopes of particular interest for this manuscript
and are defined as follows. The trigonometric moment curve (also known as the
Carathéodory curve), is parametrized by

φd : t → (sin(t), cos(t), sin(2t), cos(2t), . . . ) ∈ R
d .

Let t1, . . . , tn be n cyclically equidistant numbers in [0, 2π), for example, ti = 2π(i−1)
n .

The cyclic polytope C(n, d) is the convex hull of φ(t1), . . . , φ(tn).
The combinatorics of the cyclic polytope can be nicely described in terms of the

circuits of the corresponding oriented matroid. Namely, all circuits are of the form
({a1, a3, . . . }, {a2, a4, . . . }) such that a1 < a2 < · · · < ad+2 and their opposites
(giving the label i to the vertex φ(ti )).

Cyclic polytopes are more commonly defined using the polynomial moment curve
t → (t, t2, . . . , td) instead of the trigonometric moment curve. Their combinatorial
type (that is, their face lattice) is the same for both models, and for all choices of
the parameters t1, . . . , tn . However, the coherence of subdivisions, and hence the
combinatorial type of the corresponding fiber polytopes, depends on the embedding,
as we mention in Example 3.12. Using the trigonometric moment curve with equally
spaced parameters has the advantage that it makes even dimensional cyclic polytopes
have additional symmetry, namely the cyclic group action on the vertices. (For points
in the polynomial curve or non-equally spaced parameters in the trigonometric curve,
this cyclic symmetry is only combinatorial). When d = 2 the cyclic polytope C(n, 2)
is a regular polygon and we abbreviate it by Pn .

The Baues problem is known to have positive answer for cyclic polytopes in the
following two cases:

Theorem 2.5 ([19,23]) Let n > d ∈ N. Then, the following two cases of the Baues
question have a positive answer:

• When Q = �n and A = C(n, d) is the cyclic polytope of dimension d with n
vertices [19].

• When Q = [0, 1]n and A = Z(C(n, d)) is the cyclic zonotope of dimension d + 1
with n generators [23].

2.4 Hypersecondary polytopes

Let A = {a1, . . . , an} ∈ R
d be a point configuration. For each k = 1, . . . , n − 1

we consider the following k-th deleted (Minkowski) sum of A with itself, which we
denote A(k):
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A(k):=
{
ai1 + · · · + aik ∈ R

d : {i1, . . . , ik} ∈
([n]

k

)}
.

The k-th deleted sum of the standard (n−1)-simplex�n := conv(e1, . . . , en) equals
the k-th hypersimplex of dimension n − 1:

�(k)
n := conv

({∑
i∈B

ei : B ∈
([n]

k

)})
= [0, 1]n ∩

{
x :

n∑
i=1

xi = k

}
.

(Observe that the notation �
(k)
n is an abbreviation of conv(vertices(�n)

(k))).
As mentioned above, the projectionR

n → R
d ×{1} that sends the vertices of�n to

A extends to a linear map R
n → R

d+1 that sends the unit cube [0, 1]n to the zonotope
Z(A). In turn, this linear map restricts to an affine map sending each �

(k)
n ⊂ R

n to
A(k) ⊂ R

d × {k}. We use the same letter π for all these projections.

Definition 2.6 The π -induced subdivisions of the projection π : �
(k)
n → A(k) are

called hypersimplicial subdivisions of level k of A, or just hypersimplicial subdivisions
of A(k). Fine hypersimplicial subdivisions are called hypertriangulations. We denote
B(k)(A) and F (k)(A) the corresponding Baues poset and fiber polytope, and call the
latter the k-th hypersecondary polytope of A. We denote B(k)

coh(A) for the coherent
subdivisions in B(k)(A).

Remark 2.7 In parallel to our work, Galashin, Postnikov and Williams have studied a
similar polytope which they call higher secondary polytope [12]. We want to empha-
size that these are not the same as the hypersecondary polytopes of Definition 2.6.
However, they are related. In particular, hypersecondary polytopes can be constructed
asMinkowski sums of higher secondary polytopes (see [12, Theorem2.2]).Weprovide
a different decomposition of the hypersecondary polytope into Minkowski summands
in Theorem 3.11. Higher secondary polytopes as well as hypersecondary polytopes
are further studied in [2] for the case d = 1 (in our notation).

2.5 Lifting subdivisions

By construction, the intersection of any zonotopal tiling of Z(A) with the hyperplane∑
xi = k is a hypersimplicial subdivision of A(k). But the converse is in general not

true. Not every hypersimplicial subdivision of A(k) “extends” to a zonotopal tiling of
Z(A). Following [17] the ones that extend are called lifting hypersimplicial subdivi-
sions. (In the case k = 1 the name “lifting” for these subdivisionss established in [4],
and used because, via the Bohne-Dress Theorem, they are exactly the ones that can
be “lifted” in the oriented matroid sense. See also [21].) The following are examples
of them:

• Anyπ -coherent subdivision of A(k) is lifting. Indeed, the subdivision of A(k) given
by the vectorw ∈ (R∗) is equal to the restriction to A(k) of the subdivsion of Z(A)

given by w. However, the converse is not true (see Example 2.9).
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• For a cyclic polytope C(n, d), all triangulations in the standard sense (that is,
all hypertriangulations of C(n, d)(1)) are lifting [19]. The same is not known for
non-simplicial subdivisions.

• For arbitrary k and a convex n-gon Pn , all hypertriangulations of P
(k)
n are lifting

[10]. The same result for all hypersimplicial subdivisions has recently been proved
in [6].

The fact that all hypertriangulations of P(k)
n are lifting does not inmediatly imply a

positive answer to the Baues problem for this case, as there are non-coherent lifting
triangulations (see Example 2.9). So the posets B(k)(Pn) and B(k)(Pn) do not coincide
in general. Non-lifting triangulations of A(1) are not known in dimension two but easy
to construct in dimension three or higher. For example, if a subdivision S of A has the
property that its restriction to some subset B of A cannot be extended to a subdivision
of B, then S is non-lifting. Such subdivisions (and triangulations) exist when A is
the vertex set of a triangular prism together with any point in the interior of it, the
vertex set of a 4-cube, or the vertex set of �4 × �4, among other cases (see, e.g., [21,
Chapter 5], or [8, Proof (10) in Sect. 7.1.2]).

To better understand lifting subdivisions, let us look at zonotopal tilings of Z(A).
We denote BZ (A), BZ

coh(A) andF Z (A) for the poset of zonotopal tilings, its subposet
of coherent tilings and the secondary zonotope of Z(A) respectively.We call any subset
of [n] a point, since it represents an element of the point configuration

∑
i∈[n]{0, ai }.

A tile is a poset interval [X ,Y ] of the boolean poset 2[n], where X ⊆ Y . To be precise,
[X ,Y ]:={I ⊆ [n] : X ⊆ I ⊆ Y }. Geometrically, we think of [X ,Y ] as the zonotope
X + Z(Y \ X), but we prefer the combinatorial notation where the tile is described as
the set of vertices of [0, 1]n of which it is the projection.

Every tile [X ,Y ] is a cell in a coherent zonotopal tiling of Z(A), specifically in the
one given by the vector w ∈ (R∗)n where

w(e j ) =

⎧
⎪⎨
⎪⎩

−1, for j ∈ X

0, for j ∈ Y\X
1, for j ∈ [n]\Y .

Indeed, this w gives value at least −|X | to every point in Z(A), with equality if and
only if the point belongs to [X ,Y ].

Every face of the hypersimplex �
(k)
n is the intersection of a face of [0, 1]n with

the hyperplane
{
x : ∑n

i=1 xi = k
}
. Therefore we can denote the projection under π

of any face of �
(k)
n by

[X ,Y ](k):=[X ,Y ] ∩
(
R
d × {k}

)
= {B : X ⊆ B ⊆ Y |B| = k}.

Similarly, for a collection S of tiles we denote

S(k) := {[X ,Y ](k) : [X ,Y ] ∈ S}.
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By definition, a subdivision of A(k) is hypersimiplicial if and only if all of its
cells are of the form [X ,Y ](k). A hypersimplicial subdivision is fine if for every cell
[X ,Y ]k we have that Y\X is an affine basis in A. We say that a tile [X ,Y ] covers level
k, if |X | < k < |Y |. In other words, [X ,Y ] covers level k if [X ,Y ](k) is of positive
dimension.

This spells out the following relation with zonotopal tilings:

Proposition 2.8 For every configuration A of n points and every k ∈ [n − 1]:
(1) Intersection of zonotopal tilings with the hyperplane at level k induces an order-

preserving map

r (k) : BZ (A) →B(k)(A).

S �→ S(k)

(2) The normal fan of F Z (A) refines the normal fan of F (k)(A).

Proof For the first claim, notice that S(k) equals the intersection of the zonotopal tiling
S with the hyperplane R

d × {k} containing A(k), which clearly is hypersimplicial.
The second claim follows from the fact that S(Z(A), w)(k) = S(A(k), w) for every
w ∈ (Rn)∗. �

Example 2.9 Consider the regular hexagon P6. Figure 1 shows a hypersimplicial sub-
division ofP(2)

6 whose set of facets are the triangles [∅, 123](2), [∅, 135](2), [∅, 156](2),
[∅, 345](2), [1, 1236](2), [1, 1356](2), [3, 1235](2), [3, 2345](2), [5, 1345](2) and
[5, 1456](2). The colour of the triangle [X ,Y ](2) is dark gray if X = ∅ and white
if |X | = 1, which agrees with the colouring of vertices of the corresponding plabic
graph (see [10]).

This subdivision is not coherent. To see this, suppose there is a lifting vector w ∈
(R∗)6 whose regular subdivision is this. Then notice that the presence of the edge
[1, 136](2) implies w3 + w6 < w2 + w5, the presence of the edge [3, 235](2) implies
w2+w5 < w1+w4 and thepresenceof the edge [5, 145](2) impliesw1+w4 < w3+w6,
together forming a contradiction. This contrasts the fact that every subdivision of a
convex polygon is regular. This example is an adaptation of a classical construction
from which many non-coherent subdivisions are derived [8, Example 5.1.4].

2.6 Lifting subdivisions via Gale transforms. The Bohne-Dress Theorem

As a general reference for the contents of this section we recommend the book [8],
more specifically Chapters 4, 5 and 9.

A Gale transform of a point configuration A = {a1, . . . , an} is a vector configu-
ration GA = {a∗

1 , . . . , a
∗
n } with the property that a vector (λ1, . . . , λn) ∈ R

n is the
coefficient vector of an affine dependence in A if and only if it is the vector of values
of a linear functional onGA. The definition implicitly assumes a bijection between A
and GA given by the labels 1, . . . , n.
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Fig. 1 A non-coherent
hypersimplicial subdivision of

P(2)
6

Gale duality is an involution: the Gale duals of a Gale dual of A are linearly iso-
morphic to A when considering A as a vector configuration via homogenization, by
which we mean looking at affine geometry on the points a1, . . . , an as linear algebra
on the vectors (a1, 1), . . . , (an, 1). In fact, if A and B are Gale duals to one another
then their oriented matroids are dual, which implies that their ranks add up to n. In
our setting where A has affine dimension d and hence rank d + 1, its Gale duals have
rank n − d − 1.

The normal fan of the secondary polytope F (1)(A) of A lives naturally in the
ambient space of GA: it equals the common refinement of all the complete fans with
rays taken from GA. Put differently, vectors w ∈ span(GA) are in natural bijection to
lifting functions A → R (where the latter, which forms a linear space isomorphic to
R
n , is consideredmodulo the linear subspace of affine functions restricted to A). Under

this identification, w1 and w2 define the same coherent subdivision of A if and only if
they lie in exactly the same family of cones among the finitely many cones spanned
by subsets of B. The precise combinatorial rule to construct the coherent subdivision
S = S(�n

π→ A, w) of A induced by a w ∈ span(GA) is: a subset Y ⊂ [n] is a cell
in S if and only if w lies in the relative interior of [n]\Y .

This rule can be made purely combinatorial as follows. Instead of starting with a
vector w ∈ span(GA), let M∗(A) be the oriented matroid of GA and let M′ be a
single-element extension of M∗(A). That is, M′ is an oriented matroid of the same
rank as M on the ground set [n] ∪ {w} and such that M′ restricted to [n] equals
M∗(A). Any vector w ∈ span(GA) induces such an extension, but the definition is
more general sinceM′ needs not be realizable, or it may be realizable but not extend
the given realization GA of M∗(A). Yet, any such extension w allows to define a
subdivision S(w) of A as follows.

Proposition 2.10 With the notation above, the following rules define, respectively, a
polyhedral subdivision S(1)(A, w) of A and a zonotopal tiling S(Z)(A, w) of Z(A):
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(1) A subset Y ⊂ [n] is a cell in S(1)(A, w) if and only if ([n] \ Y , {w}) is a vector in
the oriented matroid M′.

(2) An interval [X , Y ] is a tile in S(Z)(A, w) if and only if ([n] \ Y , X ∪ {w}) is a
vector in the oriented matroid M′.

By construction, S(1)(A, w) is the slice at height 1 of S(Z)(A, w). In fact:

Theorem 2.11 (Bohne-Dress Theorem) The construction of Proposition 2.10(2) is
a bijection (and a poset isomorphism, with the weak map order on extensions of
M∗(A)) between one-element extensions of M∗(A) and zonotopal tilings of Z(A).
In particular, lifting subdivisions of A(1) are precisely the ones that can be obtained
by the construction in Proposition 2.10(1).

3 Normal fans of hypersecondary polytopes

Thegoal of this section is to study hypersecondary polytopes, and the relations between
them and the secondary zonotope. Most of such relations say that the normal fan of
one of the polytopes refines that of another one. We introduce the following definition
to this effect:

Definition 3.1 Let P, Q ∈ R
d be two polytopes. We say that Q is a Minkowski sum-

mand of P , and write Q ≤ P , if any of the following equivalent conditions holds:

(1) The normal fan of P refines that of Q.
(2) P + Q is combinatorially isomorphic to P .

If P and Q areMinkowski summands of one another then they are normally equivalent
and we write P ∼= Q.

Remark 3.2 The equivalence of these two conditions follows from the fact that the
normal fan of P + Q is the common refinement of the normal fans of P and Q. It can
be shown Q ≤ P is also equivalent to the existence of a polytope Q′ and an ε > 0
such that P = Q′ + εQ, hence the name “Minkowski summand”.

Throughout this section we will assume that A ⊆ R
d is a point configuration that

spans affinely R
d . As a first example, it follows from Proposition 2.8 that:

Proposition 3.3 For every configuration A ⊂ R
d of size n:

(1) F (k)(A) ≤ F Z (A).
(2) Let k0 = 0 < k1 < · · · < kp = n be a sequence of integers with ki+1−ki ≤ d+1

for all i . Then,

F Z (A) ∼=
p∑

i=0

F (ki )(A).

Proof (1) Let w ∈ (R∗)n . The coherent zonotopal tiling of Z(A) given by w restricts
to A(k) to the coherent hypersimplicial subdivision of A(k) given by w. So the
cones of the normal fan of F Z (A) are always completely contained in a cone of
the normal fan of F (k)(A), hence F (k)(A) ≤ F Z (A).
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(2) Every full dimensional zonotope [X ,Y ] in a zonotopal tiling S(Z(A), w) sat-
isfies that |Y\X | ≥ d + 1 so there are at least d integers k between |X | + 1
and |Y | − 1 where [X ,Y ](k) is a facet of the S(A(k), w). So if we know all
the facets of S(A(ki )) for 1 ≤ i ≤ p, we know all full dimensional zonotopes
[X ,Y ] ∈ S(Z(A), w), as each of them appears as [X ,Y ](ki ) ∈ S(A(ki ), w)

for some i . Then the subdivision S(Z(A), w) is determined by the subdivisions
S(A(ki ), w), so F Z (A) ≤ ∑p

i=0 F (ki )(A). The other direction follows from the
first part of the proposition.

�

In particular:

Corollary 3.4 For every configuration A ⊂ R
d of size n,

(1) If n ≤ 2d + 2 then

F Z (A) ∼= F (k)(A), ∀k ∈ [n − d − 1, d + 1].

(2) If n ≥ 2d + 2 then

n−d−1∑
k=d+1

F (k)(A) ∼= F Z (A).

Proof Just apply Proposition 3.3 to the sequence 0, k, n for case (1), and 0, d +1, d +
2, . . . , n − d − 1, n for case (2). �

Lemma 3.5 Let S be coherent zonotopal subdivision of A and let B ⊆ A be a spanning
subset. Then there is at most one X ⊆ A\B, such that [X , X ∪ B] ∈ S.

Proof Let w ∈ (R∗)n such that S = S(Z(A), w). Since B is of maximal dimension,
there is at most one w̃ such that w̃|ker(π) = w|ker(π) and w · b = 0 for every b ∈ B.
If such w̃ exists then the only tile of the form [X , X ∪ B] that is in S is the one where
X = {x ∈ A : w̃ · x < 0}. If no such w̃ exists then there is no tile of that form in the
subdivision. �


In the following result and in the rest of this section we denote by AJ the subset of
A labelled by J , for any J ⊂ [n].
Lemma 3.6 Fix k ≥ 1 and a lifting vector w ∈ (Rn)∗, for a point configuration A
of size n. For each tile [X ,Y ] ⊂ 2[n] such that Y\X a basis of A, the following are
equivalent:

(1) [X ,Y ](k+1) is a cell in S(k+1)(A, w).
(2) There is an x ∈ X such that [X\x,Y\x](k) is a cell in S(k)(A[n]\x , w) but not in

S(k)(A, w).
(3) For every x ∈ X, [X\x,Y\x](k) is a cell in S(k)(A[n]\x , w) but not in S(k)(A, w).

If, moreover, k > 1, then they are also equivalent to:
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(4) There are x1, x2 ∈ X such that [X\xi ,Y\xi ](k) is a cell in S(k)(A[n]\xi , w) for
i = 1, 2.

(5) For every x ∈ X, [X\x,Y\x](k) is a cell in S(k)(A[n]\x , w).

Proof The implication (3)⇒(2) is obvious.
To show (2)⇒(1), consider an x such that the cell [X\x,Y\x](k) is a cell in

S((A[n]\x )(k), w). Then by Proposition 2.8, [X\x,Y\x] is a cell of S(Z(A[n]\x ), w).
Therefore either [X\x,Y\x] ∈ S(Z(A), w) or [X ,Y ] ∈ S(Z(A), w) but not both
by Lemma 3.5. In other words, either [X\x,Y\x](k) ∈ S(A(k), w) or [X ,Y ](k+1) ∈
S(A(k+1), w) but not both. Since we assumed [X\x,Y\x](k) /∈ S(A(k), w), we are
done.

To see (1)⇒(3), notice that if [X ,Y ](k+1) ∈ S(A(k+1), w) then [X ,Y ] ∈
S(Z(A), w). So, for all x ∈ X we have that the tile [X\x,Y\x] is a cell of
S(Z(A[n]\x ), w). In particular, [X\x,Y\x](k) ∈ S((A[n]\h)(k), w). But, as [X ,Y ] ∈
S(Z(A), w), by Lemma 3.5 [X\x,Y\x] can not be a cell of S(Z(A), w). We conclude
that [X\x,Y\x](k) can not be a cell of S(A(k), w).

Now assume that k > 1. It is clear that (3)⇒(5)⇒(4). To see that (4)⇒(2) notice
that it if [X\xi ,Y\xi ](k) ∈ S(A(k), w) holds for i = 1, 2, then the two zonotopes
[X\x1,Y\x1] and [X\x2,Y\x2] are in S(Z(A), w), which can not happen by Lemma
3.5. �

Proposition 3.7 For every configuration A of size n and every k ∈ [n − 1] we have
that F (k+1)(A) is a Minkowski summand of

F (k)(A) +
∑
i∈[n]

F (k)(A[n]\i ).

Proof That F (k+1)(A) is a Minkowski summand of F (k)(A) + ∑
i∈[n] F (k)(A[n]\i ) is

equivalent to: “for every w, if we know the subdivisions that w induces in A(k) and
in A\x (k) for every x , then we also know the subdivision induced in A(k+1). For a
cell [X ,Y ](k+1) with |X | = k, Lemma 3.6 says that its presence in S(A(k+1), w) is
determined by its presence in S(A(k), w) and S(A\x (k), w). Cells [X ,Y ](k+1) with
|X | < k are in S(A(k+1), w) if and only if [X ,Y ](k) ∈ S(A(k), w). �


The converse is only true for small k:

Proposition 3.8 For every configuration A ⊆ R
d of size n and every k ∈ [d] we have

that

F (k+1)(A) ∼= F (k)(A) +
∑
i∈[n]

F (k)(A[n]\i ).

Proof One direction is Proposition 3.7. For the other direction we have that by Lemma
3.6 then S(A(k+1), w) determines S(A(k+1)

[n]\i , w) for all i ∈ [n]. Any maximal cell in

[X ,Y ](k) ∈ S(A(k), w) must satisfy |Y\X | ≥ d + 1, in particular |Y | ≥ d + 1 > k, so
[X ,Y ](k+1) is also a cell in S(A(k+1), w). This implies that S(A(k+1), w) determines
S(A(k), w). �
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Proposition 3.9 For every configuration A ⊆ R
d of size n > d + 2 and every k ∈ [d]

we have that

F (k)(A) ≤
n∑

i=1

F (k)(A[n]\i )

Proof We need to prove that for every w ∈ R
d , knowing S(A(k)

[n]\i , w) for every i

determines S(A(k), w). It is enough to prove it for a generic w, so we can assume the
subdivisions are fine. Let [X ,Y ] be a tile such that Y\X is an affine basis. We claim
that [X ,Y ](k) ∈ S(A(k)

[n]\i , w) if and only if [X\i,Y\i](k) ∈ S(A(k)
[n]\i , w) for every

i ∈ [n]\(Y\X).
There is exactly one w̃ that agrees withw in ker(π) and such that w̃ ·x = 0 for every

x ∈ Y\X . We have that [X ,Y ](k) ∈ S(A(k)
[n]\i , w) if and only if w̃ · x < 0 for every

x ∈ X and w̃ · x > 0 for every x ∈ [n]\Y . Notice that as n > d +2, |[n]\(Y\X)| > 2.
Let i ∈ [n]\(Y\X). As k ≤ d and |Y\X | = d + 1, then for Y\i > k so [X\i,Y\i](k)
is a full dimensional cell in the level k. So it is in S(A(k)

[n]\i , w) if and only if w̃ · x < 0
for every x ∈ X\i for all x ∈ X\i and w̃ · x > 0 for every x ∈ [n]\(Y ∪ i). As
|[n]\(Y\X)| > 2, we can do this for two different elements in [n]\(Y\X) so we can
verify the sign of w̃ · i for every i ∈ [n]\(Y\X). �


A consequence of this is that Proposition 3.8 can be strengthened as follows:

Proposition 3.10 For every configuration A ⊆ R
d of size n > d+2 and every k ∈ [d]

we have that

F (k+1)(A) ∼=
∑
i∈[n]

F (k)(A[n]\i ).

Notice that if n = d + 1 then the fiber polytopes are just points and if n = d + 2 they
are just segments and in particular F (k+1)(A) ∼= F (k)(A). Now we are ready to prove
the main result of this section:

Theorem 3.11 Let A ⊆ R
d be a configuration of size n and k ∈ [d + 1]. Let s =

max(n − k + 1, d + 2). Then

F (k)(A) ∼=
∑

J∈([n]
s )

F(AJ )

Proof We prove this by iterating Proposition 3.10 several times. At each iteration, for
1 < i ≤ k, we replace each F (i+1)(AJ ) by

∑
j∈[n]

F (i)(AJ\ j ) if |J | > d + 2 or by

F (i)(AJ ) if |J | = d + 2. The iteration stops at level 1 with the desired result (notice
that Minkowski sum is idempotent with respect to normal equivalence). �

Example 3.12 The secondary polytope F (1)(P6) of the regular hexagon P6 is the 3-
dimensional associahedron, as seen in Fig. 2. Its boundary consists of 6 pentagons
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Fig. 2 The associahedron
F (1)(P6)

Fig. 3 The hyperassociahedron
F (2)(P6)

and 3 squares. By Theorem 3.11, the hypersecondary polytope F (2)(P6) is normally
equivalent to the Minkowski sum of those 6 pentagons, see Fig. 3. It has 66 vertices
and the facets consist of 27 quadrilaterals (18 rectangles, 6 rhombi and 3 squares), 6
pentagons, 2 hexagons and 6 decagons. The short edges correspond to flips which do
not change the set of vertices of the triangulation and the long edges correspond to
those flips that do change the set of vertices.

The GKZ vector corresponding to the triangulation from Example 2.9 is in the
center of one of the hexagons. There are 4 non-coherent hypertriangulations of P(2)

6 ,
which come in pairs with the same GKZ-vector, each in the center of one of the two
hexagons. If instead of a regular hexagon we had a hexagon where the three long
diagonals do not intersect in the same point, two of those subdivisions would become
coherent and the hypersecondary polytope would have instead of each hexagon a triple
of rhombi around the new vertex.
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The order complex of the Baues poset B(2)(P6) is the (barycentric subdivision
of the border of the) hyperassociahedron F (2)(P6) where the hexagons are replaced
by cubes. In particular it satisfies the Baues problem, that is, B(2)(P6) retracts onto
F (2)(P6). We will generalize this in Sect. 6.

4 Separation and lifting subdivisions

Throughout this section let A ⊂ R
d be a point configuration labelled by [n], and

let Z(A) ⊂ R
d+1 be the zonotope generated by the vector configuration A × {1} ⊂

R
d × {1}. Recall that a point in Z(A) is a subset X ⊂ [n] and a tile is an interval

[X ,Y ] ⊂ 2[n], where X ⊂ Y ⊂ [n].
Following [11], we say that two points X1, X2 ⊂ [n] are separated with respect to

A or A-separated for short if there is an affine functional positive on (the elements
of A labeled by) X1\X2 and negative on X2\X1. Equivalently, if there is no oriented
circuit (C+,C−) in A with C+ ⊂ X1\X2 and C− ⊂ X2\X1. Their motivation is that
the notions of strongly separated and chord separated that were introduced in [14] and
[10,15] are equivalent to “C(n, 1)-separated” and “C(n, 2)-separated” respectively (
[11, Lemmas 3.7 and 3.10]). 1 One of their main results is as follows (their statement is
a bit more general, since it is stated for arbitrary oriented matroids, rather then “point
configurations”):

Theorem 4.1 ([11, Theorems 2.7 and 7.2]) Let A be a point configuration and let m
be the number of affinely independent subsets of A. Then:

(1) No family of A-separated points in A has size larger than m.
(2) The map sending each zonotopal tiling to the set of (labelled) points used as

vertices gives a bijection

{fine zonotopal tilings of Z(A)} ↔ {S ⊂ 2[n] : S is A-separated and |S| = m}.

We here extend their definition to separation of tiles. In the rest of the paper we
omit A and write “separated” instead of A-separated:

Definition 4.2 Let [X1,Y1] and [X2,Y2] be two tiles. We say they are separated if
there is no circuit (C+,C−) such that C+ ⊂ Y1 \ X2, C− ⊂ Y2 \ X1 and C+ ∪C−

�

(Y1 ∩ Y2) \ (X1 ∪ X2).

The following diagram illustrates the circuits forbidden by the first two conditions
in this definition. The third condition forbids circuits with support fully contained in
the middle cell:

By the orthogonality between circuits and covectors in an oriented matroid [4,
Proposition 3.7.12], and the fact that covectors of a realized oriented matroid are the
sign vectors of affine functionals this definition is equivalent to:

1 Observe that [15] uses the expression “weakly separated” for “chord separated”, but “weakly separated”
had a different meaning in [14].
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X2 Y2 \ X2 [n] \ Y2
X1 0 ≥ 0 ≥ 0
Y1 \ X1 ≤ 0 * ≥ 0
[n] \ Y1 ≤ 0 ≤ 0 0

Proposition 4.3 Two tiles [X1,Y1] and [X2,Y2] are separated if there is a covector
(that is, an affine functional) that is positive on (X1 \ X2) ∪ (Y1 \ Y2), negative on
(X2 \ X1) ∪ (Y2 \ Y1), and zero on (Y1 ∩ Y2) \ {X1 ∪ X2}.

The following diagram illustrates the sign-patterns of covectors witnessing that two
tiles are separated:

X2 Y2 \ X2 [n] \ Y2
X1 * + +
Y1 \ X1 − 0 +
[n] \ Y1 − − *

Proof Consider the subset I = (Y1∪Y2)\ (X1∩ X2) of A, and let A′ be the restriction
of A to I . Remember that the circuits of A′ are the circuits of Awith support contained
in A′, while the covectors of A′ are the covectors of A (all of them) restricted to A′.
In particular, the characterization of covectors of A′ as the sign vectors orthogonal to
all circuits says that

((X1 \ X2) ∪ (Y1 \ Y2) , (X2 \ X1) ∪ (Y2 \ Y1))

is a covector in A′ if and only if a circuit as in the definition of separation does not
exist. �

Example 4.4 Two “singleton tiles” (that is, X1 = Y1 and X2 = Y2) are separated as
tiles if and only if they are separated as points in the sense of Galashin and Postnikov.
Two tiles containing the origin, that is with X1 = X2 = ∅, are separated if and
only if Y1 and Y2 intersect properly in the usual sense, as cells in A (that is to say,
conv(Y1) ∩ conv(Y2) is a common face of conv(Y1) and conv(Y2)). Finally, the whole
zonotope 2[n] = [∅, [n]] is separated from a tile [X ,Y ] if and only if the cells Y and
[n] \ X intersect properly; this is equivalent to [X ,Y ] being a face of the zonotope
Z(A).

See Example 5.1 for a illustrated example of non-separated tiles. Their restriction to
level 2 may be extended to a hypersimplicial subdivision, but the entire tiles intersect
each other in the interior.

The following result clarifies the relation between separation of points and tiles. In
it, we say that a tile [X ,Y ] is fine if Y\X is an independent set. Fine tiles are the ones
that can be used in fine zonotopal tilings of Z(A).
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Proposition 4.5 Let [X1,Y1] and [X2,Y2] be two tiles. If every point B1 ∈ [X1,Y1] is
separated from every point B2 ∈ [X2,Y2], then [X1,Y1] and [X2,Y2] are separated.
The converse holds if the tiles are fine.

Proof Weproceed by induction on |Y1\X1|+|Y2\X2| to prove the first direction. In the
base case,when X1 = Y1 and X2 = Y2, the statement holds trivially true since [X1,Y1]
and [X2,Y2] are both single points. So we can assume one of [X1,Y1] and [X2,Y2],
say [X1,Y1], is not a singleton. Moreover, by induction hypothesis, we can assume
that every tile properly contained in [X1,Y1] is separated from [X2,Y2]. In particular,
taking any element i ∈ Y1\X1 we have that both [X1 ∪ i,Y1] and [X1,Y1\i] are
separated from [X2, Y2]. By Proposition 4.3, that implies the following two covectors:

X2 Y2\X2 [n]\Y2
X1 * + +
i * + +
Y1\X1\i − 0 +
[n] \ Y1 − − *

X2 Y2\X2 [n]\Y2
X1 * + +
Y1\X1\i − 0 +
i − − *
[n] \ Y1 − − *

If i ∈ X2 or i ∈ [n]\Y2 then the first or the second covector, respectively, show that
[X1,Y1] and [X2,Y2] are separated. If i ∈ Y2\X2 then elimination of i in these two
covectors gives a covector with values

X2 Y2\X2 [n]\Y2
X1 * + +
i 0
Y1\X1\i − 0 +
[n] \ Y1 − − *

which again shows that [X1,Y1] and [X2,Y2] are separated.
For the converse, suppose that [X1,Y1] and [X2,Y2] are fine and separated. Let V

be the covector showing it. Let B1 and B2 be points in them. Since the set C :=(Y1 \
X1) ∩ (Y2 \ X1) is independent and is contained in the zero-set of V , no matter what
signs we prescribe for its elements there is a covector V ′ that agrees with V where V
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is not zero and has the prescribed signs on C . This implies the points B1 and B2 are
separated. �

Theorem 4.6 Let [X1,Y1] and [X2,Y2] be two tiles. Then, the following conditions
are equivalent:

(1) The tiles are separated.
(2) There is a zonotopal tiling of Z(A) using both.
(3) There is a coherent zonotopal tiling of Z(A) using both.
(4) There is a polyhedral subdivision of A using Y1\X2 and Y2\X1 as cells.
(5) There is a coherent polyhedral subdivision of A using Y1\X2 and Y2\X1 as cells.

Remark 4.7 For the case of general subdivisions of a point configuration A implication
2 ⇒ 3 is well known (see [8, Exercise 2.5]. An alternative proof for zonotopes is to
transfer that case via the Cayley Trick ([8, Corollary 9.2.19]).

Proof Throughout the proof, let A = {a1, . . . , an} and denote ãi = (ai , 1) the corre-
sponding generator of Z(A).

• 1 ⇒ 3. Suppose the tiles are separated. By Proposition 4.3 this implies there is a
linear functional v ∈ (Rd+1)∗ such that v · ãi takes the following values on the
generators of Z(A):

X2 Y2 \ X2 [n] \ Y2
X1 * > 0 > 0
Y1 \ X1 < 0 0 > 0
[n] \ Y1 < 0 < 0 *

Let w ∈ (Rn)∗ be defined as follows on each i ∈ [n]:

X2 Y2 \ X2 [n] \ Y2
X1 −N −2 v · ãi −v · ãi
Y1 \ X1 0 0 0
[n] \ Y1 −v · ãi −2 v · ãi +N

where N is a very large positive number. Since w is negative in X1, positive in
[n]\Y1, and zero in Y1\X1, the tile selected by w in the subdivision S(Z(A), w) is
[X1,Y1]. Similarly, the vector w′ ∈ (Rn)∗ defined by w′

i = wi + 2v · ãi has the
following values

which shows that [X2,Y2] is also in S(Z(A), w), since the difference between w

and w′ is a linear function.
• 2 ⇒ 1. By the Bohne-Dress Theorem, zonotopal tilings of Z(A) correspond to
lifts of the oriented matroid of Z(A). Here, a lift is an oriented matroidM of rank
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X2 Y2 \ X2 [n] \ Y2
X1 < 0 0 v · ãi
Y1 \ X1 2 v · ãi 0 2 v · ãi
[n] \ Y1 v · ãi 0 > 0

d + 2 on the ground set [n + 1] and such that M/(n + 1) = M(A). The tiles of
the subdivision defined by the liftM are the intervals [X ,Y ] ⊂ 2[n] such thatM
has a covector that is negative on X , zero on Y \ X , and positive on [n + 1]\Y .
That is, our hypothesis is that there is a liftM of A that contains the covectors

([n + 1] \ Y1 , X1) and (X2 , [n + 1] \ Y2).

Elimination of the element n + 1 among these covectors gives us a covector of
Proposition 4.3.

• 1 ⇒ 5. Let v as in the proof of 1 ⇒ 3, and define w ∈ (Rn)∗ as follows:

X2 Y2 \ X2 [n] \ Y2
X1 N 0 0
Y1 \ X1 −v · ãi 0 0
[n] \ Y1 −v · ãi −v · ãi N

Then w and the w′ defined by w′
i = wi + v · ãi show that Y1\X2 and Y2\X1 are

cells in S(A, w).

• 4 ⇒ 1 For C1:=Y1\X2 and C2:=Y2\X1 to be cells in a subdivision it is necessary
that their convex hulls intersect in a common face. That is, there must be a covector
in A that is zero in C1 ∩ C2, negative on C1 \ C2, and positive on C2 \ C1. These
are precisely the same conditions as required in Proposition 4.3.

• 3 ⇒ 2 and 5 ⇒ 4 are obvious.

�

Remark 4.8 With this theorem, it is now easy to see that Lemma 3.5 also holds for
non coherent subdivisions. If Y1\X1 = Y2\X2 is a spanning set then there can not be
a linear functional vanishing on it, so [X1,Y1] and [X2,Y2] are not separated (unless
X1 = X2, in which case they are the same cell).

Remark 4.9 The definition of separated points and tiles makes sense for an arbitrary
oriented matroidM, since it uses only the notion of circuits, and Proposition 4.3 still
holds in this more general setting.

The notions of zonotopal tiling and of subdivision also make sense for arbitrary
orientedmatroids: the former is interpreted as “extension of the dual orientedmatroid”
via Theorem 2.11 and the latter is studied in detail in [21]. In this setting the implica-
tions (2) ⇒ (4) ⇒ (1) of Theorem 4.6 still hold, the first one as a consequence of the
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oriented matroid analogue of Proposition 2.10 and the second one because our proof
above works at the level of oriented matroids. Yet:

(1) The converse implications do not hold in the nonrealizable case. The implication
(4) ⇒ (2) fails in the example of [21, Section 5.2] (see Proposition 5.6(i) in that
section), and the implication (1) ⇒ (4) fails in the Lawrence polytope that one
can construct from that example.

(2) The notion of coherent subdivisions does notmake sense for nonrealizable oriented
matroids. Moreover, for realizable ones, different realizations of the same oriented
matroid may have different sets of coherent subdivisions, and non-isomorphic
secondary polytopes/zonotopes.

Corollary 4.10 Let [X1,Y1] and [X2,Y2] be two separated tiles. Then any pair of
subtiles [X̃1, Ỹ1] ⊆ [X1,Y1] and [X̃2, Ỹ2] ⊆ [X2,Y2] are separated.
Proof By Theorem 4.6, there is a zonotopal tiling using [X1,Y1] and [X2,Y2] and
such tiling uses [X̃1, Ỹ1] and [X̃2, Ỹ2]. �

Proposition 4.11 Let A be a configuration of n pairwise independent points. Let k ∈
[n − 1]. Let [X1,Y1] and [X2,Y2] be two tiles that cover level k (that is, |Xi | < k <

|Yi |). Suppose that [X1,Y1] and [X2,Y2] are not-separated and that one of them is
not fine.

Then, there are fine tiles [X ′
1,Y

′
1] and [X ′

2,Y
′
2] contained in [X1,Y1] and [X2,Y2],

still covering level k and still not separated.

Proof By induction on the dependence rank (that is, |Y\X | − dim(span(Y\X))) of
the tiles we only need to show that if [X1,Y1] is dependent then there is a tile [X ′

1,Y
′
1]

properly contained in [X1,Y1], covering level k, and non-separated from [X2,Y2].
Let (C+,C−) be a circuit showing that [X1,Y1] and [X2,Y2] are not-separated. Let

C = C+ ∪ C− be its support.
If there is an element a ∈ (Y1\X1)\C then both [X1 ∪ a,Y1] and [X1,Y1\a] are

not separated from [X2,Y2], and one of them still covers level k, since dependent sets
are of size at least 3.

If there is no such an a, then Y1\X1 ⊂ C . Since C is a circuit we conclude that
Y1\X1 = C . By definition, we have that C− ⊂ Y2 and C+ ⊂ [n]\X2. Again, we take
as new tile [X1∪a,Y1] or [X1,Y1\b], depending on which of the two still covers level
k, where a ∈ C+ and b ∈ C−. �

Corollary 4.12 Let A be a point configuration in general position (“uniform”) and let
k ∈ [n − 1]. If no hypertriangulation of A(k) contains two non-separated tiles, then
no hypersimplicial subdivision of A(k) contains them either.

Proof Suppose that a subdivision S contains two non-separated tiles [X1,Y1] and
[X2,Y2]. Let [X ′

1,Y
′
1] and [X ′

2,Y
′
2] be the tiles guaranteed by Proposition 4.11. Then,

we can refine [X1,Y1] and [X2,Y2] to fine subdivisions using [X ′
1,Y

′
1] and [X ′

2,Y
′
2].

By general position this extends to a hypertriangulation refining S and with two non-
separated tiles. �
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Fig. 4 A not separated hypertriangulation in the plane

5 Non-separated subdivisions

We call a subdivision S of A(k) non-separated if it contains two non-separated cells.
Non-separated subdivisions are certainly non-lifting, by the implication (2) ⇒ (1) in
Theorem 4.6.

Example 5.1 We here construct a non-separated subdivision in dimension two, which
contrasts the fact that for Pn such things do not exist [6]. Let A be the configuration of
the following 5 points in the plane: p1 = (1, 2), p2 = (0, 4), p3 = (4, 4), p4 = (4, 0)
and p5 = (0, 0). Figure 4 on the right shows a hypertriangulation of A(2) consisting
of the triangles:

[∅, 234](2), [∅, 245](2),
[2, 1235](2), [2, 2345](2), [4, 1234](2), [4, 1245](2), [4, 1345](2), [5, 1245](2).

The circuit (14, 35) shows that the cell [2, 2345](2) is not separated from the cells
[4, 1234](2) and [4, 1245](2).

The following non-separated subdivision of C(4, 1)(2) appears as Example 10.4 in
[17]:

S = {[1, 123](2), [1, 134](2), [4, 124](2), [4, 234](2)}.

Here we generalize it to

Lemma 5.2 For every odd d and every k ∈ [2, d − 2] there is a non-separated hyper-
triangulation of C(d + 3, d)(k).
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Fig. 5 The Gale transform of
C(6, 3), with the regions
corresponding to the zonotopal
tilings S0, S1 and S2 marked in
it
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Proof A hypertriangulation of a configuration A with n = d + 3 has all its full-
dimensional cells of one of the following forms, where a < b ∈ [n] and we omit the
superscript (k), which will be clear from the context:

[ ∅, [n]\ab ], [ a, [n]\b ], [ b, [n]\a ], [ ab, [n] ].

To simplify notation, we denote these four cells simply as ab, ab, ab and ab, respec-
tively (observe that we always write the indices a and b in increasing order). For
example, in this notation the subdivision S of C(4, 1)(2) mentioned above becomes

S = {14, 12, 34, 14}(2).

One reason for this notation is that via the correspondence in Proposition 2.10 the tile
[X ,Y ] corresponds in GA to the cone spanned by X ∪ [n] \ Y , where we use B to
denote the set of vectors opposite to B, for B ⊂ [n].

With this notation, Proposition 2.10(2) gives us that the following is a (coherent)
zonotopal tiling of Z(C(d + 3, d)) (Fig. 5 shows the case of C(6, 3)):

S0:={ab : a odd, b odd} ∪ {ab : a odd, b even}
∪ {ab : a even, b odd} ∪ {ab : a even, b even}.

Recall that a cubical flip in a zonotopal tiling consists in replacing a collection
of tiles that cover the projection of a (d + 1)-dimensional face F of [0, 1]n by the
projection of all other facets of F (in analogy with flips of triangulations that do the
same with a face of the simplex instead of the cube). S0 admits the following cubical
flips:

• Flip 1: negate the other symbol in every cell containing 1. That is, remove

{1b : b > 1 odd} ∪ {1b : b even}

and insert

{1b : b > 1 odd} ∪ {1b : b even}.
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• Flip 2: negate the other element in every cell containing n. That is, remove

{an : a < n even} ∪ {an : a odd}

and insert

{an : a < n even} ∪ {an : a odd}.

These flips transform S0 into two new coherent tilings S1 and S2, also shown in Fig.
5. The two flips are not compatible, since both want to remove the tile 1n from S0, and
we can only remove it once. But 1n only affects level 1 of the tiling, which means that
in any S(k)

0 with k ≥ 2 we can do these two flips one after the other. After performing
them we get a subdivision that contains (for k ∈ [2, d − 2]) the non-separated cells

12 and n − 1n.

�

To further generalize this construction we need the following easy lemma:

Lemma 5.3 Let A be a d-dimensional configuration of size n in general position. If
A(k)

[n]\i has a non-separated subdivision S for some i ∈ [n] then A(k) and A(k+1) have
non-separated subdivisions too.

Proof For A(k) do the following: Extend S to a subdivision S′ of A by adding all the
cells of the form [X ,Y ∪ i](k) with [X ,Y ] ⊂ 2[n] such that [X ,Y ∪ i] is separated
from [∅, [n]\i]. (The latter is equivalent to saying that [X ,Y ] is contained in a facet of
Z(A[n]\i )whose normal vector has positive scalar product with i). S′ is non-separated
since it contains S.

For A(k+1) apply the same construction upside-down. That is, consider the non-
separated subdivision S of A(n−k−1)

[n]\i obtained from S via the map [X ,Y ] →
[[n]\Y , [n]\X ]. From S construct a non-separated subdivision S′ of A(n−k−1) as above,
then turn S′ upside-down to get a non-separated subdivision of A(k+1). �

Corollary 5.4 For every odd d, every n ≥ d + 3, and every k ∈ [2, n − 2], there is a
non-separated hypertriangulation of C(n, d)(k). �

Question 5.5 Are there non separated hypertriangulations of C(n, d)(k) for d ≥ 4
even? The case of C(n, 2) suggests that the answer is no.

6 Baues posets of Pn

6.1 Preliminaries and notation

In this section we are interested in the case when A is a convex polygon Pn , and we
make use of the fact that all hypersimplicial subdivisions are lifting. We first introduce
the following notation, for general A:
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Definition 6.1 Let A be a configuration and let S be a zonotopal tiling of Z(A). We

define S(k+ 1
2 ) as the set of tiles that cover levels k and k + 1. That is:

S(k+ 1
2 ):={[X ,Y ] ∈ S : |X | < k, |Y | > k + 1}.

Observe that a lifting subdivision of A(k) may have several extensions to a zonotopal
tiling of Z(A). However, the following holds:

Proposition 6.2 Let S and S′ be zonotopal tilings of Z(A) with the same restriction

S(k) = S′(k). Then, S(k+ 1
2 ) = S′(k+ 1

2 ) and S(k− 1
2 ) = S′(k− 1

2 ).

Proof Both S(k+ 1
2 ) and S(k− 1

2 ) contain only tiles of S that cover level k, and those
appear as full-dimensional cells in S(k) = S′(k). �


The proposition suggests we define the following poset and maps:

Definition 6.3 Let

B(k+ 1
2 )(Pn):={S(k+ 1

2 ) : S ∈ BZ (Pn)},

partially ordered by refinement: S1 < S2 if and only if ∀σ ∈ S1 ∃τ ∈ S2 : σ ⊆ τ .
By Proposition 6.2 and the fact that all hypersimplicial subdivisions of Pn are lifting,
[6] we have two order-preserving maps

U : B(k)(Pn) → B(k+ 1
2 )(Pn),

D : B(k+1)(Pn) → B(k+ 1
2 )(Pn)

defined as

U(S(k)) = D(S(k+1)):={[X ,Y ] : [X ,Y ] ∈ S, |X | < k and |Y | > k + 1}.

By construction, we have the following commutative diagram, in which r (k) and
r (k+1) are the maps of Proposition 2.8:

B(k+1)(Pn)

BZ (Pn) B(k+ 1
2 )(Pn)

B(k)(Pn)

Dr (k+1)

r (k) U

Notice that the four maps are surjective: r (k) and r (k+1) are surjective because all
hypersubdivisions of Pn are lifting. On the other hand, D ◦ r (k+1) = U ◦ r (k) is
surjective (and hence D and U are surjective too) by definition.
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Fig. 6 The subdivision T ∈ B(2)(P6) of Example 6.5 (left) and the first level of D(T ) (right)

Remark 6.4 For a non-lifting hypersimplicial subdivision S of a general configuration
A(k) (resp., of A(k+1)) it still makes sense to defineU(S) (resp.,D(S)) as the collection
of cells in S whose corresponding tiles in Z(A) cover both the levels k and k + 1. One

can then define B(k+ 1
2 )(A) as the union U(B(k)(A)) ∪ D(B(k+1)(A)) (or any natural

poset containing this union) and get the same diagram as above, but none of the maps
is guaranteed to be surjective anymore. Surjectivity is crucial for what we want to do,
since it is needed in our main technical tool Lemma 6.10.

Example 6.5 Consider the subdivision T ∈ B(2)(P6) in Fig. 6 whose maximal cells
are

{
[∅, 124](2), [∅, 234](2), [∅, 1456](2), [1, 1246](2), [2, 1234](2), [4, 1345](2), [4, 2345](2)

}

The gray cells of T in the figure give D(T ); that is:

D(T ) = {[∅, 124], [∅, 234], [∅, 1456]}.

As seen in the right part of the figure, the cells in D(T ) are precisely the ones that
have a full-dimensional intersection with the first level.

Proposition 6.6 Let S ∈ B(k+ 1
2 )(Pn). Consider a point X ∈ vertices(S(k)). Define

uhS(X):=X ∪ {i ∈ [n] : X ∪ i ∈ vertices(S(k+1))}.

(Here “uh” stands for “upper hole”). Then [X , uhS(X)] is separated from every cell
in S.
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Proof Observe that uhS(X) equals

{i ∈ [n] : ∃ j ∈ X [X \ j, X ∪ i] is a face of a cell in S}.

Suppose there exist X ∈ vertices(S(k)) and [I , J ] ∈ S such that [X ,∪ uhS(X)]
and [I , J ] are not separated. Since d = 2 we may assume that |J \ I | ≤ 2 and there
is Y ∈ [X , uhS(X)](k+2) such that [X ,Y ] is not separated from [I , J ]. So we have a

circuit (C+,C−) such thatC+ ∈ Y \ I andC− ∈ J \X Further, since S ∈ B(k+ 1
2 )(Pn)

we can also assume |I | ≤ k − 1. Let y ∈ Y \ X . Since y ∈ uhS(X) \ X we have that
there is x ∈ X such that [X \ x, X ∪ y] is a face of a cell in S. Then by Proposition 4.10
and the fact that S is pairwise separated we have that [X \ x, X ∪ y] is separated from
[I , J ]. So C+ can not be contained in X ∪ y. This means that C+ = Y \ X . Notice
that for every i ∈ [n] \ C there is y ∈ C+ such that (C+ \ y ∪ i,C−) is a circuit.
So if there is an i ∈ X \ I , this circuit would imply that [X ,Y \ y] is not separated
from [I , J ], which can not be as [X ,Y \ y] is a face of some cell in S. But this means
X \ I = ∅ which is a contradiction since |X | = k > k − 1 = |I |. �


6.2 Hypercatalan numbers

Although this is not needed for the main result on Baues posets, let us see how the
upper holes uhS(X) defined in Proposition 6.6 allow us to count hypertriangulations
of a polygon at level two.

Let C (k)
n be the number of hypertriangulations of P(k)

n+2. E.g., C
(1)
n is the Catalan

number Cn . For a triangulation T of Pn+2 and a vertex i ∈ [n + 2] we write degT (i)
for the number of diagonals (edges excluding the sides of Pn+2) in T incident to i . We
call it the degree of i in T .

Lemma 6.7

C (2)
n =

∑
T

∏
i∈[n+2]

CdegT (i),

where the sum runs over all trinangulations T of Pn+2.

Proof Let T be a triangulation ofPn+2. To get a hypertriangulation ofP
(2)
n+2 that agrees

with T we need to triangulate [i, uhT (i)](2) for every i . As [i, uhT (i)](2) is a polygon
with degT (i)+2 vertices, the number of ways to triangulate it is CdegT (i). So, for each

triangulation T there are
∏

i∈[n+2]
CdegT (i) hypertriangulations of P

(2)
n+2. Summing over

all triangulations gives the desired result. �

Thus, in order to compute or bound C (2)

n we need to understand how degrees are
distributed in triangulations. The following result summarizes what we need:

Lemma 6.8 Let T be a triangulation of Pn+2 and let ni denote the number of vertices
of degree i in T . Then:
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(1)
∑

i∈[n+2] degT (i) = 2n − 2.

(2) If n ≥ 2 then 2 ≤ n0 ≤ n+2
2 .

(3) If n ≥ 4 then 3n0 + n1 ≤ 3
2 (n + 2).

Proof For part (1) just observe that
∑

i∈[n+2] degT (i) equals twice the number of
interior diagonals in T , which is n − 1. Part (2) is well-known, since n0 is the number
of ears in T .

For part (3), let T be a triangulation maximizing 3n0 + n1 and, among those,
maximizing n0. If some vertex i of degree 1 is not adjacent to an ear, flipping this
edge would increase n0 by one and decrease n1 by at most three (at vertices i − 1, i
and i + 1; the fourth vertex of the flipped quadrilateral must have degree at least two
before the flip and it increases its degree by the flip).

So, in T every vertex of degree 1 is next to an ear. Moreover, such a vertex cannot
be next to two ears (for then our polygon would be a quadrilateral, n = 2) and it
cannot be next to another vertex of degree one (for then our polygon would be a
pentagon, n = 3). That is to say, all vertices of degree one belong to a pair (ear,degree
1) separated from the rest of the polygon by a diagonal. Let n′

0 be the number of extra
ears, not adjacent to any vertex of degree 1. Then n0 − n′

0 = n1 is the number of pairs
(ear, degree 1) and we have:

n1 + 3n0 ≤ 3

2
(n1 + 2n0) = 3

2
(3n1 + 2n′

0) ≤ 3

2
(n + 2).

�

Corollary 6.9 Let n ≥ 4. For every triangulation T of the (n + 2)-gon we have

2n−2 ≤
∏

i∈[n+2]
CdegT (i) ≤ 2

5
2 n−7.

Hence,

2n−2 ≤ C (2)
n

Cn
≤ 2

5
2 n−7.

�

Proof Since C0 = C1 = 1, we have

∏
i∈[n+2]

CdegT (i) =
∏

degT (i)≥1

CdegT (i) =
∏

degT (i)≥2

CdegT (i).

Then, using that Ck ≥ 2k−1 for k ≥ 1 and parts (1) and (2) of Lemma 6.8 we get:

∏
degT (i)≥1

CdegT (i) ≥
∏

degT (i)≥1

2degT (i)−1
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=2n0
∏

i∈[n+2]
2degT (i)−1 = 2n02n−4 ≥ 2n−2.

Similarly, using Ck ≤ 22k−3 for k ≥ 2 and parts (1) and (3) of the lemma:

∏
degT (i)≥2

CdegT (i) ≤
∏

degT (i)≥2

22 degT (i)−3

=2n1+3n0
∏

i∈[n+2]
22 degT (i)−3 = 2n1+3n0 2n−10 ≤ 2

5
2 n−7.

�

We have evaluated the formula of Lemma 6.7 for n ≤ 8. On the other hand, since

all hypertriangulations of a polygon are lifting, every C (k)
n is bounded from above

by the number of fine zonotopal tilings of Z(Pn+2), which is known for n + 2 ≤ 7
(sequence A060595 in the Online Encyclopedia of Integer Sequences). The following
table compares all these numbers.

n + 2 3 4 5 6 7 8 9 10

Cn 1 2 5 14 42 132 429 1430

C(2)
n 1 2 10 70 574 5176 49656 497640

C(2)
n /Cn 1 1 2 5 13.67 39.21 115.75 348

A060595 1 2 10 148 7686

6.3 Proof of themain result

In this section we prove that the maps U and D of Definition 6.3 induce homotopy
equivalences of the corresponding order complexes (Corollary 6.16). From thiswewill
derive that the inclusion B(k)

coh(Pn) → B(k)(Pn) and the restriction r (k) : BZ (Pn) →
B(k)(Pn) are also homotopy equivalences (Theorem 6.17 and Corollary 6.18).

To prove this we use the following criterion, whichwas originally proved byBabson
[1]. Another proof can be found in [23] and some generalizations appear in [7]. Recall
that we call a poset contractible if its order complex is contractible.

Lemma 6.10 (Babson’s Lemma) Let f : P → Q be an order preserving map between
two posets. Suppose that for every q ∈ Q we have that

(1) f −1(q) is contractible, and
(2) f −1(q) ∩ P≤p is contractible, for every p ∈ f −1(Q≥q).

Then f is a homotopy equivalence.

Observe that part (1) needs the map f to be surjective, since the empty poset is
not contractible. In our case surjectivity comes from the fact that all hypersimplicial
subdivisions of Pn are lifting ( [6, Lemma 6.3], see Remark 6.4).
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For a collection S of tiles of Z(A), let vertices(S(k)) be the set of vertices of
cardinality k of all zonotopes in S, that is, the vertices of all the cells in S(k). Recall
that we only consider a point B in [X ,Y ] to be a vertex if it is a face; that is, if [X ,Y ]
is separated from {B}.

Proposition 6.11 Let S ∈ B(k+ 1
2 )(Pn). Then

S(k+1) ∪ {[X , uhS(X)](k+1) : X ∈ vertices(S(k))},

together with all their faces, form the unique coarsest subdivision in the fibreD−1(S).

Proof Every cell in a subdivision of P(k+1)
n containing S that is not already in S

is of type 1. Hence it is of the form [X ,Y ](k+1) for a vertex X ∈ vertices(S(k)).
By Proposition 6.6, the tiles [X , uhS(X)] are separated from each other, so we only
need to prove that for X1, X2 ∈ vertices(S(k)), [X1, uhS(X1)] and [X2, uhS(X2)] are
separated. To show this, suppose they were not. Then, we can again assume there are
subsets Y1 ⊆ uhS(X1) and Y2 ⊆ uhS(X2) of cardinality k + 2 such that [X1,Y1]
and [X2,Y2] are separated. As all subtiles of them are faces of S, we have that there
is a circuit C+ = Y1 \ X1 and C− = Y2 \ X2. As in the proof of Proposition 6.6,
this implies that X1 = X2. The corollary follows from the fact that every cell in a
subdivision inD−1(S) not coming from S is contained in [X , uhS(X)] for some X . �

Example 6.12 Consider the subdivision S ∈ B(1)(P6) in Fig. 7 whose maximal cells
are

{
[∅, 124](1), [∅, 234](1), [∅, 145](1), [∅, 156](1)

}
.

We have that

uh(1) = 12456, uh(2) = 1234, uh(3) = 234,
uh(4) = 12345, uh(5) = 156, uh(6) = 156,

so that the coarsest subdivision Ŝ of D−1(S) has maximal cells

{
[∅, 124](2), [∅, 234](2), [∅, 145](2), [∅, 156](2),
[1, 12456](2), [2, 1234](2), [4, 12345](2), [5, 1456](2)

}
.

The two cells

[3, uh(3)](2) = [3, 234](2) ⊂ [∅, 234](2), and

[6, uh(6)](2) = [6, 156](2) ⊂ [∅, 1456](2)

are also in Ŝ, but they are not maximal: they are edges.
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Fig. 7 The subdivision S ∈ B(1)(P6) of Example 6.12 (left) and Ŝ ∈ B(2)(P6) (right)

Lemma 6.13 Let S ∈ B(k+ 1
2 )(Pn) and let T ∈ B(k+1)(Pn) be such that S ≤ D(T ).

Then, the poset D−1(S) ∩ B(k+1)(Pn)≤T has a unique maximal element.

Proof Let Ŝ be the maximal element of D−1(S), as described in Corollary 6.11.
Let T ′ ∈ D−1(S), which is a refinement of Ŝ. If a cell [X ,Y ](k+1) ∈ T ′ is such

that |X | < k, then [X ,Y ] ∈ S which implies that it is contained in a cell of D(T ).
Then, [X ,Y ](k+1) is contained in a cell of T . Thus, for T ′ to be a refinement of T , it
is enough that [X ,Y ](k+1) ∈ T ′ is contained in a cell of T for every [X ,Y ] ∈ T ′ with
|X | = k.

For every such X , the cells [X ,Y ′](k+1) ∈ T are a subdivision of the polygon
[X , uhD(T )(X)](k+1). Let [X ,Y1](k+1), . . . , [X ,Yl ](k+1) be such subdivision. For each
Y there are two possibilities:

• If Y ⊆ uhD(T )(X), then [X ,Y ](k+1) is contained in a cell of T if and only if there
is some i ∈ [l] such that Y ⊆ Yi .

• If Y � uhD(T )(X), then [X ,Y ](k+1) is contained in a cell of T if and only if
[X ,Y ](k+1) does not intersect the interior of [X , uhD(T )(X)](k+1). To see this,
notice that if [X ,Y ](k+1) does not intersect the interior of [X , uhD(T )(X)](k+1),
then all vertices of [X ,Y ](k+1) correspond to edges of S(k) contained in the same
cell of D(T ). If this cell is [X ′,Y ′], then [X ′,Y ′](k+1) ∈ T contains [X ,Y ].

The discussion above implies that: a T ′ ∈ D−1(S) is a refinement of T if and only if
all edges of T are also edges in T ′. This follows from the fact that the only edges in
T ′ not in Ŝ are of the form [X ,Y ] with |X | = k and Y ⊆ uhS(X). For each X , there is
a unique coarsest subdivision of the polygon [X , uhS(X)](k+1) that uses those edges.
The subdivision that does that for each X is the unique coarsest refinement of T in
D−1(S). �

Example 6.14 Consider the subdivisions T from Example 6.5 and S from Example
6.12. We have that S refines D(T ). The unique maximal, (actually, the only) subdivi-
sion in D−1(S) ∩ B(k+1)(Pn)≤T is T ′ as depicted in Fig. 8.
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Fig. 8 The only subdivision T ′
in D−1(S) ∩ B(k+1)(P6)≤T

Remark 6.15 Onecould expect the uniquemaximal element ofLemma6.13 to coincide
with the maximal element D̂(T ) in D−1(D(T )). But this is not the case in Example
6.14. In fact, in that example D̂(T ) (whose picture would be as the picture of T in Fig.
6 without the edge {45, 24}) does not refine Ŝ.
Corollary 6.16 The maps D : B(k+1)(Pn) → B(k+ 1

2 )(Pn) and U : B(k)(Pn) →
B(k+ 1

2 )(Pn) are homotopy equivalences.

Proof For D, conditions (1) and (2) in Babson’s Lemma follow from Corollary 6.11
and Lemma 6.13, respectively, since a poset with a unique maximal element is clearly
contractible. For U the proof is completely symmetric. �

Theorem 6.17 The inclusion B(k)

coh(Pn) → B(k)(Pn) is a homotopy equivalence, for
k = 1, . . . , n − 1.

Proof The proof is by induction on k. The base case, k = 1, is the main result of Ram-
bau and Santos in [19]. Now let us suppose that B(k)

coh(Pn) → B(k)(Pn) is a homotopy
equivalence and consider the following diagram, which commutes by Proposition 6.2:

B(k+1)
coh (Pn) B(k+1)(Pn)

BZ
coh(Pn) B(k+ 1

2 )(Pn)

B(k)
coh(Pn) B(k)(Pn)

i (k+1)

Dr (k+1)

r (k)

i (k)

U

The maps i (k) and i (k+1) are the inclusions of coherent subdivisions into all subdi-
visions. The maps r (k) and r (k+1) are the restriction of each zonotopal tiling to its k
and k + 1 levels; that is, S �→ S(k) and S �→ S(k+1) respectively. They are homotopy
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equivalences since they can be geometrically realized as the identity maps among the
normal fans of F Z (Pn), F (k)(Pn) and F (k+1)(Pn). D and U are homotopy equiva-
lences by Corollary 6.16, and i (k) is a homotopy equivalence by inductive hypothesis,
the dotted arrow i (k+1) must also be a homotopy equivalence. �

Corollary 6.18 The restriction map r (k) : BZ (Pn) → B(k)(Pn) is a homotopy equiva-
lence, for k = 1, . . . , n − 1.

Proof We now use the following commutative diagram:

BZ
coh(Pn) BZ (Pn)

B(k)
coh(Pn) B(k)(Pn)

i Z

r (k) r (k)

i (k)

The top arrow is a homotopy equivalence by [23] and the bottom arrow by Theorem
6.17. The left arrow is also a homotopy equivalence, as mentioned in the proof of
Theorem 6.17, so the right arrow is a homotopy equivalence too. �
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