Skip to main content
Log in

Nonequilibrium in Thermodynamic Formalism: The Second Law, Gases and Information Geometry

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In nonequilibrium thermodynamics and information theory, the relative entropy (or, KL divergence) plays a very important role. Consider a Hölder Jacobian J and the Ruelle (transfer) operator \({\mathcal {L}}_{\log J}.\) Two equilibrium probabilities \(\mu _1\) and \(\mu _2\), can interact via a discrete-time Thermodynamic Operation given by the action of the dual of the Ruelle operator \( {\mathcal {L}}_{\log J}^*\). We argue that the law \(\mu \rightarrow {\mathcal {L}}_{\log J}^*(\mu )\), producing nonequilibrium, can be seen as a Thermodynamic Operation after showing that it’s a manifestation of the Second Law of Thermodynamics. We also show that the change of relative entropy satisfies

$$\begin{aligned} D_{K L} (\mu _1,\mu _2) - D_{K L} ({\mathcal {L}}_{\log J}^*(\mu _1),{\mathcal {L}}_{\log J}^*(\mu _2))= 0. \end{aligned}$$

Furthermore, we describe sufficient conditions on \(J,\mu _1\) for getting \(h({\mathcal {L}}_{\log J}^*(\mu _1))\ge h(\mu _1)\), where h is entropy. Recalling a natural Riemannian metric in the Banach manifold of Hölder equilibrium probabilities we exhibit the second-order Taylor formula for an infinitesimal tangent change of KL divergence; a crucial estimate in Information Geometry. We introduce concepts like heat, work, volume, pressure, and internal energy, which play here the role of the analogous ones in Thermodynamics of gases. We briefly describe the MaxEnt method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The authors declare that data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Aguiar, D., Cioletti, L., Ruviaro, R.: A variational principle for the specific information for symbolic systems with uncountable alphabets. Math. Nachr. 291(17–18), 2506–2525 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  2. Altaner, B., Vollmer, J.: A microscopic perspective on stochastic thermodynamics, arXiv (2012)

  3. Altaner, B.: Foundations of Stochastic Thermodynamics, PhD thesis (2014)

  4. Altaner, B.: Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics. J. Phys. A Math. Theorem 50, 454001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Amari, S.: Information Geometry and Its Applications. Springer, New York (2016)

    Book  MATH  Google Scholar 

  6. Arovas, D.: Lecture Notes on Thermodynamics and Statistical Mechanics, preprint University of California, San Diego (2020)

  7. Attard, P.: Non-equilibrium Thermodynamics and Statistical Mechanics: Foundations and Applications. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  8. Balian, R., Valentin, P.: Hamiltonian structure of thermodynamics with gauge. Eur. J. Phys. B 21, 269–282 (2001)

    Article  MathSciNet  Google Scholar 

  9. Baraviera, A., Leplaideur, R., Lopes, A.O.: Ergodic Optimization, zero temperature and the Max-Plus algebra, \(23^{{\rm o}}\) Coloquio Brasileiro de Matematica. IMPA, Rio de Janeiro (2013)

  10. Baraviera, A., Lopes, A.O., Thieullen, P.: A large deviation principle for Gibbs states of Hölder potentials: the zero temperature case. Stoch. Dyn. 6, 77–96 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bennett, C.H., Gacs, P., Li, M., Vitanyi, P.M.B., Zurek, W.H.: Information distance. IEEE Trans. Inf. Theory 44(4), 1407–1423 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benoist, T., Jaksic, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements I. Gen. Theory. Commun. Math. Phys. 357(1), 77–123 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ben-Tal, A., Teboulle, M., Charnes, A.: The role of duality in optimization problems involving entropy functionals with applications to information theory. J. Optim. Theory Appl. 58(2), 209–223 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bomfim, T., Castro, A., Varandas, P.: Differentiability of thermodynamical quantities in non-uniformly expanding dynamics. Adv. Math. 292, 478–528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Callen, H.: An Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)

    MATH  Google Scholar 

  16. Caticha, A.: Entropic Physics: Lectures on Probability, Entropy and Statistical Physics, version (2021)

  17. Chattopadhyay, P., Paul, G.: Revisiting thermodynamics in computation and information theory, arXiv (2021)

  18. Chazottes, J.-R., Olivier, E.: Relative entropy, dimensions and large deviations for g-measures. J. Phys. A 33(4), 675–689 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chu, D., Spinney, R.E.: A thermodynamically consistent model of finite-state machines. Interface Focus 8(6), 20180037 (2018). (The Royal Society Pub. (2018))

    Article  Google Scholar 

  20. Cioletti, L., Lopes, A.O.: Correlation inequalities and monotonicity properties of the Ruelle operator. Stoch. Dyn. 19(6), 1950048 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Craizer, M., Lopes, A.O.: The capacity costfunction of a hard constrained channel. Int. J. Appl. Math. 2(10), 1165–1180 (2000)

    MathSciNet  MATH  Google Scholar 

  22. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover Publications, New York (1962)

    MATH  Google Scholar 

  23. Denker, M., Woyczynski, W.: Introductory Statistics and Random Phenomena. Birkhauser, Boston (1998)

    Book  MATH  Google Scholar 

  24. Esposito, M., Van den Broeck, C.: Second law and Landauer principle far from equilibrium. EPL (Europhys. Lett.) 95(4), 4004–p1-6 (2011)

  25. Frieden, B.R.: Physics from Fisher information. University Press, Cambridge (1999)

    MATH  Google Scholar 

  26. Galanger, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    Google Scholar 

  27. Georgii, H.-O.: Gibbs Measures and Phase Transitions, 2nd edn. Walter de Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  28. Giulietti, P., Lopes, A.O., Pit, V.: Duality between Eigenfunctions and Eigendistributions of Ruelle and Koopman operators via an integral kernel. Stoch. Dyn. 16, 1660011 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gray, R.: Entropy and Information Theory, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  30. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ji, C.: Estimating functionals of one-dimensional Gibbs states. Probab. Theorem Rel. Fields 82, 155–175 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kloeckner, B., Lopes, A.O., Stadlbauert, M.: Contraction in the Wasserstein metric for some Markov chains, and applications to the dynamics of expanding maps. Nonlinearity 28(11), 4117–4137 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kloeckner, B., Giulietti, P., Lopes, A.O., Marcon, D.: The calculus of thermodynamical formalism. J. Eur. Math. Soc. 20(10), 2357–2412 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lalley, S.: Distribution of periodic orbits of symbolic and axiom a flows. Adv. Appl. Math 8, 154–193 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liggett, T.: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  36. Lindenstrauss, E., Meiri, D., Peres, Y.: Entropy of Convolutions on the Circle. Ann. Math. 149(3), 871–904 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lopes, A.O., Mengue, J.K.: On information gain, Kullback–Leibler divergence, entropy production and the involution kernel. Disc. Cont. Dyn. Syst. Ser. A (2022) (to appear)

  38. Lopes, A.O., Ruggiero, R.: The sectional curvature of the infinite dimensional manifold of Hölder equilibrium probabilities, arXiv (2020)

  39. Lopes, A.O.: Thermodynamic Formalism, Maximizing Probabilities and Large Deviations, preprint UFRGS. http://mat.ufrgs.br/alopes/pub3/notesformteherm.pdf

  40. Lopes, A.O.: A formula for the Entropy of the Convolution of Gibbs probabilities on the circle. Nonlinearity 31, 3441–3459 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lopes, A.O., Mengue, J.K., Mohr, J., Souza, R.R.: Entropy and variational principle for one-dimensional lattice systems with a general a priori probability: positive and zero temperature. Ergodic Theory Dyn. Syst. 35, 1925–1961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maes, C., Netocny, K., Shergelashvili, B.: A selection of nonequilibrium issues. Methods Contemp. Math. Stat. Phys. 1970, 247–306 (2009)

    MathSciNet  MATH  Google Scholar 

  43. Maes, C., Netocny, K.: Time-reversal and entropy. J. Stat. Phys. 110(1/2), 269–310 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Maes, C., Verbitskiy, E.: Large deviations and a fluctuation symmetry for chaotic homeomorphisms. Commun. Math. Phys. 233, 137–151 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990)

  46. Penrose, O.: Foundations of Statistical Mechanics. Dover, New York (2014)

    MATH  Google Scholar 

  47. Posner, E.: Random coding strategies for minimum entropy. IEEE Trans. Inf. Theory 21(4), 388–391 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rached, Z., Aklajaji, F., Campbell, L.L.: The Kullback–Leibler divergence rate between Markov sources. IEEE Trans. Inf. Theory 50(5), 917–921 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ruppeiner, G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20(4), 1608–1613 (1979)

    Article  Google Scholar 

  50. Sagawa, T.: Entropy, divergence and majorization in classical and quantum theory, arXiv (2020)

  51. Sagawa, T.: Thermodynamics of Information Processing in Small Systems. Springer, New York (2013)

    Book  MATH  Google Scholar 

  52. Schlogl, F.: Probability and Heat. Springer Fachmedien Wiesbaden GmbH, New York (1989)

    Book  Google Scholar 

  53. Shore, J., Johnson, R.: Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inform. Theory 26(1), 26–37 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  54. Thompson, L.F., Qian, H.: Nonlinear stochastic dynamics of complex systems, II: Potential of entropic force in Markov systems with nonequilibrium steady state. Gen. Gibbs Funct. Crit. 18(8), 309 (2016)

    Google Scholar 

  55. Trivedi, K.S., Vaidyanathan, K., Selvamuth, D.: Markov Chain Models and applications, chapter 13. In: Obaidat, M.S., Zarai, F., Nicopolitidis, P. (eds.) Modeling and Simulation of Computer Networks and Systems: Methodologies and Applications, pp. 393–423

  56. van der Schaft, A.: Liouville geometry of classical thermodynamics, arXiv (2021)

  57. Viana, M., Oliveira, K.: Foundations of Ergodic Theory. Cambridge Press, Cambridge (2016)

    MATH  Google Scholar 

  58. Walters, P.: An introduction to Ergodic theory. Springer, New York (1982)

    Book  MATH  Google Scholar 

  59. Wang, H.S., Moayeri, N.: Finite-state Markov channel–a useful model for radio communication channels. IEEE Trans. Vehic. Technol. 44(1), 163–171 (1995)

    Article  Google Scholar 

  60. Wang, Y., Qian, H.: Mathematical Representation of Clausius’ and Kelvin’s Statements of the Second Law and Irreversibility. J. Stat. Phys. 179, 808–837 (2020)

  61. Wolpert, D.H.: Stochastic thermodynamics of computation. J. Phys. A Math. Theor. 52(19), 193001 (2019)

    Article  MathSciNet  Google Scholar 

  62. Ziegler, H.: An Introduction to Thermomechanics. North Holland (1983)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.O., Ruggiero, R. Nonequilibrium in Thermodynamic Formalism: The Second Law, Gases and Information Geometry. Qual. Theory Dyn. Syst. 21, 21 (2022). https://doi.org/10.1007/s12346-021-00551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00551-0

Keywords

Navigation