Skip to main content
Log in

Spatial Relative Equilibria and Periodic Solutions of the Coulomb \((n+1)\)-Body Problem

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study a classical model for the atom that considers the movement of n charged particles of charge \(-1\) (electrons) interacting with a fixed nucleus of charge \(\mu >0\). We show that two global branches of spatial relative equilibria bifurcate from the n-polygonal relative equilibrium for each critical value \(\mu =s_{k}\) for \(k\in [2,\ldots ,n/2]\). In these solutions, the n charges form n/h-groups of regular h-polygons in space, where h is the greatest common divisor of k and n. Furthermore, each spatial relative equilibrium has a global branch of relative periodic solutions for each normal frequency satisfying some nonresonant condition. We obtain computer-assisted proofs of existence of several spatial relative equilibria on global branches away from the n-polygonal relative equilibrium. Moreover, the nonresonant condition of the normal frequencies for some spatial relative equilibria is verified rigorously using computer-assisted proofs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alfaro Aguilar, F., Pérez-Chavela, E.: Relative equilibria in the charged n-body problem. Can. Appl. Math. Q. 10(01), 1–13 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Balázs, I., van den Berg, J.B., Courtois, J., Dudás, J., Lessard, J.-P., Vörös-Kiss, A., Williams, J.F., Yuan, Y.X.: Computer-assisted proofs for radially symmetric solutions of PDEs. J. Comput. Dyn. 5(1–2), 61–80 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Castelli, R., Lessard, J.-P.: A method to rigorously enclose eigenpairs of complex interval matrices. In Applications of mathematics 2013. Acad. Sci. Czech Repub. Inst. Math. Prague, pp. 21–31. (2013)

  4. Davies, I., Truman, A., Williams, D.: Classical periodic solution of the equal-mass \(2n\)-body problem, \(2n\)-ion problem and the \(n\)-electron atom problem. Phys. Lett. A 99(1), 15–18 (1983)

    Article  MathSciNet  Google Scholar 

  5. Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs. SIAM J. Numer. Anal. 45(4), 1398–1424 (2007)

    Article  MathSciNet  Google Scholar 

  6. Fenucci, M., Jorba, À.: Braids with the symmetries of Platonic polyhedra in the Coulomb \((N+1)\)-body problem. Commun. Nonlinear Sci. Numer. Simul. 83, 105105 (2020)

    Article  MathSciNet  Google Scholar 

  7. García-Azpeitia, C., Ize, J.: Global bifurcation of polygonal relative equilibria for masses, vortices and dNLS oscillators. J. Differ. Equ. 251(11), 3202–3227 (2011)

    Article  MathSciNet  Google Scholar 

  8. García-Azpeitia, C., Ize, J.: Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the \(n\)-body problem. J. Differ. Equ. 254(5), 2033–2075 (2013)

    Article  MathSciNet  Google Scholar 

  9. Hungria, A., Lessard, J.-P., James, J.D.M.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comp. 85(299), 1427–1459 (2016)

    Article  MathSciNet  Google Scholar 

  10. Ize, J., Vignoli, A.: Equivariant Degree Theory. De Gruyter Series in Nonlinear Analysis and Applications, vol. 8. Walter de Gruyter & Co, Berlin (2003)

    MATH  Google Scholar 

  11. Keller, H.B.: Lectures on numerical methods in bifurcation problems, volume 79 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Published for the Tata Institute of Fundamental Research, Bombay, (1987). With notes by A. K. Nandakumaran and Mythily Ramaswamy

  12. Krawczyk, R.: Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehlerschranken. Comput. (Arch. Elektron. Rechnen) 4, 187–201 (1969)

    MathSciNet  MATH  Google Scholar 

  13. LaFave, Tim: Correspondences between the classical electrostatic thomson problem and atomic electronic structure. J. Electrostat. 71(6), 1029–1035 (2013)

    Article  Google Scholar 

  14. Meyer, K.R., Hall, G.R.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem. Applied Mathematical Sciences, vol. 90. Springer, New York (1992)

    Book  Google Scholar 

  15. Moeckel, R.: On central configurations. Mathematische Zeitschrift 205(1), 499–517 (1990)

    Article  MathSciNet  Google Scholar 

  16. Moeckel, R., Simó, C.: Bifurcation of spatial central configurations from planar ones. SIAM J. Math. Anal. 26(4), 978–998 (1995)

    Article  MathSciNet  Google Scholar 

  17. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14(4), 611–615 (1977)

    Article  MathSciNet  Google Scholar 

  18. Moore, R.E.: Interval Analysis. Prentice-Hall Inc, Englewood Cliffs (1966)

    MATH  Google Scholar 

  19. Muñoz Almaraz, F.J., Freire, E., Galán, J., Doedel, E., Vanderbauwhede, A.: Continuation of periodic orbits in conservative and Hamiltonian systems. Phys. D 181(1–2), 1–38 (2003)

    Article  MathSciNet  Google Scholar 

  20. Rump, S.M.: INTLAB - INTerval LABoratory. In: Tibor C (ed), Developments in Reliable Computing, pp. 77–104. Kluwer Academic Publishers, Dordrecht, (1999). http://www.ti3.tu-harburg.de/rump/

Download references

Acknowledgements

JP.L. was partially supported by NSERC Discovery Grant. K.C. was partially supported by an ISM-CRM Undergraduate Summer Scholarship. C.G.A was partially supported by UNAM-PAPIIT project IA100121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos García-Azpeitia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Constantineau, K., García-Azpeitia, C. & Lessard, JP. Spatial Relative Equilibria and Periodic Solutions of the Coulomb \((n+1)\)-Body Problem. Qual. Theory Dyn. Syst. 21, 3 (2022). https://doi.org/10.1007/s12346-021-00532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00532-3

Keywords

Mathematics Subject Classification

Navigation