Skip to main content
Log in

Isochronous Attainable Manifolds for Piecewise Smooth Dynamical Systems

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Considering the concept of attainable sets for differential inclusions, we introduce the isochronous manifolds relative to a piecewise smooth dynamical systems in \(\mathbb {R}^{2}\) and \(\mathbb {R}^{3}\), and study how analytical and topological properties of such manifolds are related to sliding motion and to partially nodal attractivity conditions on the discontinuity manifolds. We also investigate what happens to isochronous manifolds at tangential exit points, where attractivity conditions cease to hold. In particular, we find that isochronous curves in \(\mathbb {R}^{2}\), which are closed simple curves under attractivity regime, become open curves at such points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. Acary, V., Brogliato, B.: Numerical Methods for Nonsmooth Dynamical Systems. Appl. Mech. Eletron. (2008)

  2. Antali, M., Stépán, G.: Sliding and crossing dynamics in extended Filippov systems. SIAM J. Appl. Dyn. Syst. 17, 823–858, 01 (2018)

  3. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory. Springer-Verlag, Berlin, Heidelberg (1984)

    Book  Google Scholar 

  4. Berardi, M., D’Abbicco, M.: A critical case for the spiral stability for \(2\times 2\) discontinuous systems and an application to recursive neural networks. Mediterr. J. Math. 13(6), 4829–4844 (2016)

  5. Biák, M., Hanus, T., Janovská, D.: Some applications of Filippov’s dynamical systems. J. Comput. Appl. Math. 254, 132–143 (2013)

  6. Chicone, C.: Ordinary Differential Equations with Applications. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Chieregato Vicentin, D., Mancera, P.F.A., Carvalho, T., Gonçalves, L.F.: Mathematical model of an antiretroviral therapy to HIV via Filippov theory. Appl. Math. Comput. (2020)

  8. Colombo, A., Del Buono, N., Lopez, L., Pugliese, A.: Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Disc. Contin. Dyn. Syst. B 23(1531–3492), 2911 (2018)

    MathSciNet  MATH  Google Scholar 

  9. D’Abbicco, M., Del Buono, N., Gena, P., Berardi, M., Calamita, G., Lopez, L.: A model for the hepatic glucose metabolism based on Hill and step functions. J. Comput. Appl. Math. 292, 746–759 (2016)

  10. Davy, J.L.: Properties of the solution set of a generalized differential equation. Bull. Austr. Math. Soc. 6, 379–398 (1972)

    Article  MathSciNet  Google Scholar 

  11. di Bernardo, M., Budd, C.J., Champneys, A.R., Kowalczyk, P.: Piecewise-smooth Dynamical Systems. Theory and Applications. Appl. Math. Sci. 163 (2008)

  12. Dieci, L.: Sliding motion on the intersection of two manifolds: spirally attractive case. Commun. Nonlinear Sci. Numer. Simul. 26(1), 65–74 (2015)

    Article  MathSciNet  Google Scholar 

  13. Dieci, L., Difonzo, F.: A comparison of Filippov sliding vector fields in codimension 2. J. Comput. Appl. Math. 262, 161–179 (2014)

    Article  MathSciNet  Google Scholar 

  14. Dieci, L., Difonzo, F.: The Moments sliding vector field on the intersection of two manifolds. J. Dyn. Differ. Equ. (2015)

  15. Dieci, L., Difonzo, F.: Minimum variation solutions for sliding vector fields on the intersection of two surfaces in \(\mathbb{R}^{3}\). J. Comput. Appl. Math. 292, 732–745 (2016)

    Article  MathSciNet  Google Scholar 

  16. Dieci, L., Difonzo, F.: On the inverse of some sign matrices and on the moments sliding vector field on the intersection of several manifolds: Nodally attractive case. J. Dyn. Differ. Equ. 29(4), 1355–1381 (2017)

    Article  MathSciNet  Google Scholar 

  17. Dieci, L., Elia, C., Lopez, L.: A Filippov sliding vector field on an attracting co-dimension \(2\) discontinuity surface, and a limited bifurcation analysis. J. Differ. Equ. (2012)

  18. Dieci, L., Elia, C., Lopez, L.: On Filippov solutions of discontinuous DAEs of index 1. Commun. Nonlinear Sci. Numer. Simul. 95, 105656 (2021)

    Article  MathSciNet  Google Scholar 

  19. Difonzo, F.V.: A note on attractivity for the intersection of two discontinuity manifolds. Opuscula Math. 40(6), 685–702 (2020)

    Article  MathSciNet  Google Scholar 

  20. Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht, The Netherlands (1988)

    Book  Google Scholar 

  21. Galvanetto, U.: Some discontinuous bifurcations in a two-block stick-slip system. J. Sound Vib. 248(4), 653–669 (2001)

    Article  MathSciNet  Google Scholar 

  22. Hosham, H.: Nonlinear behavior of a novel switching jerk system. Int. J. Bifurc. Chaos 30, 2050202, 11 (2020)

  23. Jeffrey, M., Colombo, A.: The two-fold singularity of discontinuous vector fields. SIAM J. Appl. Dyn. Syst. 8, 624–640, 01 (2009)

  24. Lopez, L., Del Buono, N., Elia, C.: On the equivalence between the sigmoidal approach and Utkin’s approach for piecewise-linear models of gene regulatory networks. SIAM J. Appl. Dyn. Syst. 13, 09 (2014)

  25. Lopez, L., Maset, S.: Time-transformations for the event location in discontinuous ODEs. Math. Comput. 87, 2321–2341 (2018)

    Article  MathSciNet  Google Scholar 

  26. Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems. J. Math. Anal. Appl. 323(2), 1430–1443 (2006)

  27. Novaes, D.D., Varão, R.: A note on invariant measures for Filippov systems. Bull. Sci. Mathématiques 167, 102954 (2021)

  28. Novaes, D.D., Teixeira, M.A.: Shilnikov problem in Filippov dynamical systems. Chaos Interdisc. J. Nonlinear Sci. 29(6), 063110 (2019)

  29. Piiroinen, P.T., Kuznetsov, Y.A.: An event-driven method to simulate Filippov systems with accurate computing of sliding motions. ACM Trans. Math. Softw. 34(3), (2008)

  30. Smirnov, G.V.: Introduction to the Theory of Differential Inclusions. American Mathematical Society, Providence, R.I. (2002)

  31. Thomassen, C.: The coverse of the Jordan Curve Theorem and a characterization of planar maps. Geometriae Dedicata 32(1), 53–57 (1989)

    Article  MathSciNet  Google Scholar 

  32. Utkin, V.I.: Sliding Mode in Control and Optimization. Springer, Berlin (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio V. Difonzo.

Additional information

This work has been supported by REFIN Project, grant number 812E4967. The author also author gratefully acknowledges 2019 MIUR/PRIN Project: Discontinuous dynamical systems: theory, numerics and applications coordinated by Nicola Guglielmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Difonzo, F.V. Isochronous Attainable Manifolds for Piecewise Smooth Dynamical Systems. Qual. Theory Dyn. Syst. 21, 6 (2022). https://doi.org/10.1007/s12346-021-00536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00536-z

Keywords

Mathematics Subject Classification

Navigation