Skip to main content
Log in

Bifurcation and Dynamic Analyses of Non-monotonic Predator–Prey System with Constant Releasing Rate of Predators

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we systematical study the rich dynamics and complex bifurcations of a non-monotonic predator–prey system with a constant releasing rate for the predator. We prove that the system can have at most three positive equilibria, and can undergo a sequence of bifurcations, including transcritical, saddle-node, Hopf, degenerate Hopf, double limit cycle, saddle-node homoclinic bifurcation (or homoclinic loop with a saddle-node), cusp bifurcation of codimension 2, and Bogdanov–Takens bifurcation of codimension 2 and 3. And the system can generate very rich dynamics, such as the existence of a semi-stable limit cycle, multiple coexistent periodic orbits, homoclinic loops, etc. Moreover, our results show that the dynamical behaviors highly rely on the constant releasing rate of predators and the initial conditions. That is, there exists a critical value of the constant releasing rate of predators such that (i) when the constant releasing rate is greater than the critical value, the prey goes to extinction for all admissible initial populations of both species; (ii) when the constant releasing rate is less than the critical value, the prey can always coexist with the predator. Numerical simulations are presented to verify the main results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no data-sets were generated or analysed during the current study.

References

  1. Huang, J., Ruan, S., Song, J.: Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response. J. Differ. Equ. 257(6), 1721–1752 (2014)

    Article  MathSciNet  Google Scholar 

  2. Li, C., Zhu, H.: Canard cycles for predator-prey systems with Holling types of functional response. J. Differ. Equ. 254, 879–910 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ruan, S., Xiao, D.: Global analysis in a predator-prey system with nonmonotonic funcational response. SIAM J. Appl. Math. 61(4), 1445–1472 (2001)

    Article  Google Scholar 

  4. Xiao, D., Zhu, H.: Multiple focus and Hopf bifurcations in a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 66(3), 802–819 (2006)

    Article  MathSciNet  Google Scholar 

  5. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator-prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63(2), 636–682 (2002)

    Article  MathSciNet  Google Scholar 

  6. Freedman, H.I., Wolkowicz, G.S.: Predator-prey systems with group defence: the paradox of enrichment revisited. Bull. Math. Biol. 48(5–6), 493 (1986)

    Article  MathSciNet  Google Scholar 

  7. Watson, A., Tener, J.S.: Muskoxen in Canada: a biological and taxonomic review. J. Appl. Ecol. 4(1), 257 (1965)

    Article  Google Scholar 

  8. Holmes, J.C., Bethel, W.M.: Modification of intermediate host behaviour by parasites. Zool. J. Linn. Soc. 51(Supplement 1), 123–149 (1972)

    Google Scholar 

  9. Lenteren, V.J.C.: Integrated pest management in protected crops. Integr. Pest. Manag. D 17(3), 270–275 (1987)

    Google Scholar 

  10. Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50, 257–292 (2005)

    Article  MathSciNet  Google Scholar 

  11. Zhu, H., Ding, Q., Wang, F., Wang, H.: Dynamics on tumor immunotherapy model with periodic impulsive infusion. Int. J. Biomath. 9(5), 261 (2016)

    Article  MathSciNet  Google Scholar 

  12. Qin, W., Tan, X., Tosato, M., Liu, X.: Threshold control strategy for a non-smooth Filippov ecosystem with group defense. Appl. Math. Comput. 362, 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  13. Wang, A., Xiao, Y., Zhu, H.: Dynamics of a Filippov epidemic model with limited hospital beds. Math. Biosci. Eng. 15(3), 739–764 (2018)

    Article  MathSciNet  Google Scholar 

  14. Zhou, H., Wang, X., Tang, S.: Global dynamics of non-smooth Filippov pest-natural enemy system with constant releasing rate. Math. Biosci. Eng. 16(6), 7327–7361 (2019)

    Article  MathSciNet  Google Scholar 

  15. Kuznetsov, Y.A., Rinalai, S., Gragnani, A.: One-parameter bifurcations in planar Filippov systems. Int. J. Bifurc. Chaos. 13(8), 2157–2188 (2003)

    Article  MathSciNet  Google Scholar 

  16. Tang, S., Pang, W., Cheke, R.A., Wu, J.: Global dynamics of a state-dependent feedback control system. Adv. Differ. Equ. N. Y. 322, 1–70 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Kirschner, D., Panetta, J.C.: Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998)

    Article  Google Scholar 

  18. Eftimie, R., Bramson, J.L., Earn, D.J.D.: Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73(1), 2–32 (2011)

    Article  MathSciNet  Google Scholar 

  19. Li, C., Li, J., Ma, Z.: Codimension 3 B-T bifurcation in an epidemic model with nonlinear incidence. Discrete Contin. Dyn. Syst. Ser. B 20(4), 1107–1116 (2015)

    Article  MathSciNet  Google Scholar 

  20. Shan, C., Zhu, H.: Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds. J. Differ. Equ. 257(5), 1662–1688 (2014)

    Article  MathSciNet  Google Scholar 

  21. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  22. Chow, S.N., Li, C., Wang, D.: Normal Forms and Bifurcation of Planar Vector Fields. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  23. Chen, L., Jing, Z.: The existence and uniqueness of the limit cycle of the differential equations in the predator-prey system. Chin. Sci. Bull. 9, 521–523 (1982)

    Google Scholar 

  24. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer, New York (2001)

    Book  Google Scholar 

  25. Zhang, Z., Ding, T., Huang, W., Dong, Z.: Qualitative Theory of Differential Equations. Science Press, Beijing (1992)

    Google Scholar 

  26. Lamontagne, Y., Coutu, C., Rousseau, C.: Bifurcation analysis of a predator-prey system with generalised Holling type III functional response. J. Dyn. Differ. Equ. 20(3), 535–571 (2008)

    Article  MathSciNet  Google Scholar 

  27. Xiang, C., Huang, J., Ruan, S., Xiao, D.: Bifurcation analysis in a host-generalist parasitoid model with Holling II functional response. J. Differ. Equ. 268(8), 4618–4662 (2019)

    Article  MathSciNet  Google Scholar 

  28. Mei, Z.: Liapunov-Schmidt Method. Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, Berlin (2000)

    Book  Google Scholar 

  29. Huang, J., Liu, S., Ruan, S., Zhang, X.: Bogdanov-Takens bifurcation of codimension 3 in a predator-prey model with constant-yield predator harvesting. Commun. Pure Appl. Anal. 15(2), 1053–1067 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Dumortier, F., Roussarie, R., Sotomayor, J.: Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3. Ergod. Theory Dyn. Syst. 7(3), 375–413 (1987)

  31. Cai, L., Chen, G., Xiao, D.: Multiparametric bifurcations of an epidemiological model with strong Allee effect. J. Math. Biol. 67(2), 185–215 (2013)

    Article  MathSciNet  Google Scholar 

  32. Dumortier, F., Roussarie, R., Sotomayor, S., Zoladek, H.: Bifurcations of Planar Vector Fields Nilpotent Singularities and Abelian Integrals. Lecture Notes in Mathematics. Springer, Berlin (1991)

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12031010 and No. 61772017), the Fundamental Research Funds for the Central Universities (Grant No. 2021CBLY002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.1

Proof

Considering the function

$$\begin{aligned} H(x)=3ax^{3}-(2a-ac)x^{2}-(b-1)x+c. \end{aligned}$$

It follows from \(H(x_{1})=0\) that \(x_{1}\) is a positive real root of the cubic equation \(H(x)=0\). Moreover, since H(x) passes the point (0, c), and \(H(+\infty )=+\infty \) and \(H(-\infty )=-\infty \), the cubic equation \(H(x)=0\) always has a negative real root. Hence, the cubic equation \(H(x)=0\) has three real roots (a negative real root and two positive real roots), as shown in Fig. 10. Denote the roots of the cubic equation \(H(x)=0\) as follows:

$$\begin{aligned} x_{01}<0, \ \ x_{02}>0 \ \ \mathrm {and} \ \ x_{03}>0, \end{aligned}$$

where \(x_{1}\) is equal to one of \(x_{02}\) and \(x_{03}\). Especially, when \(H'(x)|_{x=x_{1}}=0\), we have

$$\begin{aligned} x_{1}=x_{02}=x_{03}=\frac{(2a-ac)+\sqrt{\Delta _{*}}}{9a}, \end{aligned}$$

where \(\Delta _{*}=(2a-ac)^{2}+9a(b-1)>0\). Thus, we have \(H'(x_{1})= 0\) if and only if \(x_{1}=\frac{(2a-ac)+\sqrt{\Delta _{*}}}{9a}\). The proof is completed. \(\square \)

Fig. 10
figure 10

The existence of the positive real roots of the cubic equation \(H(x)=0\). The Hopf bifurcation occurs when \(x_{1}=x_{02}\), \(x_{1}=x_{03}\) or \(x_{1}=x^{2}_{*}\)

Appendix B: Coefficients in the proof of Theorem 3.4

Here we provide the expressions of some coefficients that were used in the proof of Theorem 3.4.

  • \(m_{11}= \frac{(1-x^{*}_{1})(x^{*}_{1})^{2}}{1+a_{0}(x^{*}_{1})^{2}}\), \(m_{12}=(x^{*}_{1}-1)x^{*}_{1}\), \(m_{13}=\frac{x^{*}_{1}}{1+a_{0}(x^{*}_{1})^{2}}\),

  • \(m_{21}=\frac{[12(x^{*}_{1})^{2}-15x^{*}_{1}+4][7(x^{*}_{1})^{2}-8x^{*}_{1}+2][-24(x^{*}_{1})^{3}+33(x^{*}_{1})^{2}-15x^{*}_{1}+2]}{2(x^{*}-1)(5x^{*}_{1}-2)[6(x^{*}_{1})^{2}-6x^{*}_{1}+1](3x^{*}_{1}-1)^{2}}\),

  • \(m_{22}=\frac{[7(x^{*}_{1})^{2}-8x^{*}_{1}+2][24(x^{*}_{1})^{3}-33(x^{*}_{1})^{2}+15x^{*}_{1}-2]}{x^{*}_{1}[6(x^{*}_{1})^{2}-6x^{*}_{1}+1](3x^{*}_{1}-1)^{2}}\),

  • \(m_{23}=\frac{(2x^{*}_{1}-1)[12(x^{*}_{1})^{2}-15x^{*}_{1}+4][57(x^{*}_{1})^{3}-81 (x^{*}_{1})^{2}+33x^{*}_{1}-4]}{x^{*}_{1}(x^{*}_{1}-1)(5x^{*}_{1}-2)[6(x^{*}_{1})^{2}-6x^{*}_{1}+1](3x^{*}_{1}-1)^{2}}\),

  • \(m_{31}=\frac{[12 (x^{*}_{1})^{2}-15 x^{*}_{1}+4] [-15060(x^{*}_{1})^{10}+72837(x^{*}_{1})^{9}-154485(x^{*}_{1})^{8}+189370 (x^{*}_{1})^{7}-148793(x^{*}_{1})^{6}+78459(x^{*}_{1})^{5}-28182(x^{*}_{1})^{4}+6825(x^{*}_{1})^{3} -1069(x^{*}_{1})^{2}+98x^{*}_{1} -4]}{2(3x^{*}_{1}-1)^{3}(5x^{*}_{1}-2)^{2}(x^{*}_{1}-1)^{2}[6(x^{*}_{1})^{2}-6x^{*}_{1}+1]^{2}x^{*}_{1}}\),

  • \(m_{32}=\frac{-6108(x^{*}_{1})^{10}+32877(x^{*}_{1})^{9}-78921 (x^{*}_{1})^{8}+110363 (x^{*}_{1})^{7}-98839(x^{*}_{1})^{6}+58890(x^{*}_{1})^{5}-23540(x^{*}_{1})^{4}+6215(x^{*}_{1})^{3} -1035(x^{*}_{1})^{2}+98x^{*}_{1} -4}{(3x^{*}_{1}-1)^{3}(5x^{*}_{1}-2)(x^{*}_{1}-1)[6(x^{*}_{1})^{2}-6x^{*}_{1}+1]^{2}(x^{*}_{1})^{2}}\),

  • \(m_{33}= \frac{(1-2x^{*}_{2})[57(x^{*}_{1})^{3}-81(x^{*}_{1})^{2}+33 x^{*}_{1}-4][12 (x^{*}_{1})^{2}-15 x^{*}_{1}+4][73(x^{*}_{1})^{5}-180(x^{*}_{1})^{4}+166(x^{*}_{1})^{3}-71(x^{*}_{1})^{2}+14x^{*}_{1}-1]}{2(3x^{*}_{1}-1)^{3}(5x^{*}_{1}-2)^{2}(x^{*}_{1}-1)^{2}[6(x^{*}_{1})^{2}-6x^{*}_{1}+1]^{2}(x^{*}_{1})^{2}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Tang, B., Zhu, H. et al. Bifurcation and Dynamic Analyses of Non-monotonic Predator–Prey System with Constant Releasing Rate of Predators. Qual. Theory Dyn. Syst. 21, 10 (2022). https://doi.org/10.1007/s12346-021-00539-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00539-w

Keywords

Mathematics Subject Classification

Navigation