Skip to main content
Log in

Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We study convexity and symmetry of central configurations in the five body problem when three of the masses ara located at the vertices of an equilateral triangle, that we call Lagrange plus two central configurations. First, we prove that the two bodies out of the vertices of the triangle cannot be placed on certain lines. Next, we give a geometrical characterization of such configurations in the sense as that of Dziobek, and we describe the admissible regions where the two remaining bodies can be placed. Furthermore, we prove that any Lagrange plus two central configuration is concave. Finally, we show numerically the existence of non-symmetric central configurations of the five body problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Albouy, A., Cabral, H.E., Santos, A.A.: Some problems on the classical \(n\)-body problem. Celest. Mech. Dyn. Astron. 113, 369–375 (2012)

    Article  MathSciNet  Google Scholar 

  2. Albouy, A., Kaloshin, V.: Finiteness of central configurations of five bodies in the plane. Ann. Math. 176(1), 535–588 (2012)

    Article  MathSciNet  Google Scholar 

  3. Andoyer, M.H.: Sur les solutiones périodiques voisines des position d’équilibre relatif dans le probleme des \(n\) corps. Bull. Astron. 23, 129–146 (1906)

    Google Scholar 

  4. Chazy, J.: Sur certaines trajectoires du problème des \(n\) corps. Bull. Astron. 35, 321–389 (1918)

    Google Scholar 

  5. Chen, K.C., Hsiao, J.S.: Convex central configurations of the n-body problem which are not strictly convex. J. Dyn. Diff. Equat. 24, 119–28 (2012)

    Article  MathSciNet  Google Scholar 

  6. Chen, K.C., Hsiao, J.S.: Strictly convex central configurations of the planar five-body problem. Trans. Am. Math. Soc. 310, 1907–1924 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Corbera, M., Cors, J.M., Roberts, G.: Classifying four-body convex central configurations. Celest. Mech. Dyn. Astron. 131(34), 1–27 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Lino Cornelio, J., Álvarez-Ramírez, M., Cors, Josep M.: A family of stacked central configurations in the planar five-body problem. Celestial Mechanics and Dynamical Astronomy, 129(2):321–328, (Jun 2017)

  9. Lino Cornelio, J., Álvarez-Ramírez, M., Cors, Josep M.: A special family of stacked central configurations: Lagrange plus euler in one. Journal of Dynamics and Differential Equations, 31(2):711–718, (Jun 2019)

  10. Cors, J.M., Roberts, G.: Four-body co-circular central configurations. Nonlinearity 25, 343–370 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fernandes, A.C., Mello, L.F.: On stacked central configurations with n bodies when one body is removed. J. Math. Anal. Appl. 405(1), 320–325 (2013)

    Article  MathSciNet  Google Scholar 

  12. Fernandes, A.C., Mello, L.F.: On stacked planar central configurations with five bodies when one body is removed. Qualitative Theory of Dynamical Systems 12(2), 293–303 (2013)

    Article  MathSciNet  Google Scholar 

  13. Gidea, M., Llibre, J.: Symmetric planar central configurations of five bodies: Euler plus two. Celest. Mech. Dyn. Astron. 106, 89–107 (2010)

    Article  MathSciNet  Google Scholar 

  14. Hagihara, Y.: Celestial Mechanics: Dynamical principles and transformation theory. MIT Press, Cambridge (1970)

    MATH  Google Scholar 

  15. Hampton, M.: Stacked central configurations: new examples in the planar five-body problem. Nonlinearity 18, 2299–2304 (2005)

    Article  MathSciNet  Google Scholar 

  16. Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-body problem. Invent. Math. 163, 289–312 (2006)

    Article  MathSciNet  Google Scholar 

  17. Llibre, J., Mello, L., Pérez, E.: Newstacked central configurations for the planar 5-body problem. Celest. Mech. Dyn. Astron. 110, 43–52 (2011)

    Article  Google Scholar 

  18. Llibre, J., Mello, L.F.: New central configurations for the planar 5-body problem. Celest. Mech. Dyn. Astron. 100(2), 141–149 (2008)

    Article  MathSciNet  Google Scholar 

  19. Llibre, J., Moeckel, R., Simó, C.: Central Configurations, Periodic Orbits, and Hamiltonian Systems. Advanced Courses in Mathematics, Birkhäuser (2015)

    Book  Google Scholar 

  20. MacMillan, W.D., Bartky, W.: Permanent configurations in the problem of four bodies. Trans. Am. Math. Soci. 34, 838–875 (1932)

    Article  MathSciNet  Google Scholar 

  21. Mello, F., Fernandes, A.: Configuraçoes centrais planares encaixantes. Rev. Brasileira de Ensino de Física 29(3), 385–388 (2007)

    Article  Google Scholar 

  22. Moeckel, R.: On central configurations. Math. Z. 205, 499–517 (1990)

    Article  MathSciNet  Google Scholar 

  23. Oliveira, A., Cabral, H.: On stacked central configurations of the planar coorbital satellites problem. Discrete and Continuous Dynamical Systems 32(10), 3715–3732 (2012)

    Article  MathSciNet  Google Scholar 

  24. Saari, D.: Collisions, Rings, and Other Newtonian \(N\)-Body Problems. American Mathematical Society, Providence (2005)

    Book  Google Scholar 

  25. Smale, S.: The mathematical problems for the next century. Math. Intell. 20, 7–15 (1998)

    Article  MathSciNet  Google Scholar 

  26. Williams, W.L.: Permanent configurations in the problem of five bodies. Transactions of the American Mathematical Society 44, 563–579 (1938)

    Article  MathSciNet  Google Scholar 

  27. Wintner, A.: The Analytical Foundations of Celestial Mechanics. Princeton University Press, Princeton (1941)

    MATH  Google Scholar 

Download references

Acknowledgements

First and second authors are supported by MINECO grants MTM2016-80117-P and MTM2016-77278-P (FEDER) and Catalan (AGAUR) grants 2017 SGR 1374 and SGR 1617. The third author is partially supported Convenio Marco UBB1755/2016-2020 \(N^o\) 84, FAPEMIG APQ-03149-18 and CNPq 433285/2018-4. The fourth author is partially supported by Math Amsud-Conicyt 17-Math-07 and Fondecyt 1180288.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. C. Fernandes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The expressions \(N_i\), \(i=1,2,3\) in Eq. (12) are the following:

$$\begin{aligned} N_1= & {} \Delta _{235}\Delta _{123} \Delta _{145} \Big ( (R_{35}-R_{45}) (R_{25}R_{34}+R_{12}R_{24}) \Big . \\&\Big . + (R_{45}-R_{34}) (R_{24}R_{35}+R_{12}R_{25}) +(R_{34}-R_{35}) (R_{24}R_{25}+R_{12}R_{45})\Big ) \\ N_2= & {} \Delta _{125} \Delta _{134}^2 (\Delta _{123}-\Delta _{125}) R_{34} (R_{25}-R_{35}) (R_{34}-R_{45}) \\&+ \Delta _{124} \Delta _{135}^2 (\Delta _{123}-\Delta _{124}) R_{35} (R_{24}-R_{34}) (R_{35}-R_{45}) \\&+ \Delta _{124} \Delta _{135}^2 \Delta _{134} \Big (R_{24} R_{35} \left( R_{34}-R_{45}\right) - R_{24} R_{25} \left( R_{34}-R_{35}\right) \\&- R_{25} R_{34} \left( R_{35}-R_{45}\right) \Big ) +\Delta _{123} \Delta _{145} \Delta _{134}(\Delta _{123}-\Delta _{125}) R_{12} (R_{25}-R_{35}) (R_{34}-R_{45}) \\&- \Delta _{123} \Delta _{145} \Delta _{135}(\Delta _{123}-\Delta _{124}) R_{12} (R_{24}-R_{34}) (R_{35}-R_{45}) \\&- \Delta _{123} \Delta _{145}\Delta _{134} \Delta _{135} R_{12} \Big ( R_{24}(R_{35}-R_{45})-R_{25}(R_{34}-R_{45})\\&+R_{45}(R_{34}-R_{35}) \Big ) + \Delta _{134} \Delta _{135}R_{34}R_{35} \Big ( \Delta _{123} \Delta _{124} \left( R_{35}-R_{45}\right) \\&+\Delta _{125} \left( \Delta _{123} \left( R_{34}-R_{45}\right) +\Delta _{124}\left( R_{34}+R_{35}-2 R_{45}\right) \right) \Big ) \\&+ \Delta _{134} \Delta _{135}R_{34}R_{25} \Big ( \Delta _{125}\left( \Delta _{124}-\Delta _{123}\right) R_{34}\\&+ \left( \Delta _{123} \left( \Delta _{125}-\Delta _{124}\right) +\Delta _{125} \Delta _{134}\right) R_{35} \Big .\\&\Big . +\left( \Delta _{123} \Delta _{124}-\Delta _{125} \left( \Delta _{124}+\Delta _{134}\right) \right) R_{45}\Big ) \\&- \Delta _{134} \Delta _{135}R_{24}R_{25} \left( \Delta _{123} \left( \Delta _{124}-\Delta _{125}\right) -\Delta _{125} \Delta _{134}\right) \left( R_{34}-R_{35}\right) \\&- \Delta _{134} \Delta _{135}R_{24}R_{35} \Big (\Delta _{124} \left( \Delta _{125}-\Delta _{123}\right) R_{35}+\left( \Delta _{123} \left( \Delta _{124}-\Delta _{125}\right) \right. \\&\left. -\Delta _{125} \Delta _{134}\right) R_{34}+\Delta _{125} \Delta _{234} R_{45}\Big ) \\ N_3= & {} \Delta _{123}\Delta _{124} \Delta _{125} \Delta _{345} R_{24} ( R_{23}R_{34}-R_{25}R_{35}-R_{35}^2) \\&+ \Delta _{123}\Delta _{124} \Delta _{145} \Delta _{235} R_{24} R_{35}R_{45}\\&- \Delta _{123} \Delta _{124} \Delta _{135} \Delta _{245} R_{24}^2 \left( R_{25}-R_{35}\right) \\&+ \Delta _{123} \Delta _{125} R_{25} R_{34} \left( \Delta _{124} \Delta _{345} R_{35} -\Delta _{134} \Delta _{245} R_{25}+\Delta _{145} \Delta _{234} R_{45}\right) \\&- \Delta _{123} \Delta _{145} R_{12} R_{45} \left( \Delta _{125} \Delta _{234} R_{34}-\Delta _{124} \Delta _{235} R_{35}\right) \\&-\Delta _{123} \Delta _{145} R_{12} R_{24} \left( -\Delta _{123}\Delta _{245} R_{25}-\Delta _{125} \Delta _{234} R_{45}+\Delta _{124} \Delta _{235} R_{35}\right) \\&- \Delta _{123} \Delta _{145} R_{12} R_{25} \left( \Delta _{124} \Delta _{235} R_{45}-\Delta _{125} \Delta _{234} R_{34}\right) \\&+ \Delta _{123} \Delta _{245} R_{24} R_{25} \left( \Delta _{125} \Delta _{134} R_{25}+ \Delta _{123} \Delta _{145} R_{45} \right) \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrabés, E., Cors, J.M., Fernandes, A.C. et al. Convexity and symmetry of central configurations in the five-body problem: Lagrange plus two. Qual. Theory Dyn. Syst. 20, 63 (2021). https://doi.org/10.1007/s12346-021-00504-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00504-7

Navigation