Skip to main content
Log in

A Quasilinear Predator-Prey Model with Indirect Prey-Taxis

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper deals with a quasilinear predator-prey model with indirect prey-taxis

$$\begin{aligned} \left\{ \begin{aligned}{}&u_t=\nabla \cdot (D(u)\nabla u)-\nabla \cdot (S(u)\nabla w)+rug(v)-uh(u),&(x,t)\in \Omega \times (0,\infty ), \\&w_t=d_{w}\Delta w- \mu w+\alpha v,&(x,t)\in \Omega \times (0,\infty ),\\&v_t=d_{v}\Delta v+f(v)-ug(v),&(x,t)\in \Omega \times (0,\infty ), \end{aligned} \right. \end{aligned}$$

under homogeneous Neumann boundary conditions in a smooth bounded domain \(\Omega \subset \mathbb {R}^{n}\), \(n\ge 1\), where \(d_{w},d_{v},\alpha ,\mu ,r>0\) and the functions \(g,h,f \in C^{2}([0,\infty ))\). The nonlinear diffusivity D and chemosensitivity S are supposed to satisfy

$$\begin{aligned} D(s)\ge a(s+1)^{-\gamma } \;\;\;and \;\;\;0\le S(s)\le bs(s+1)^{\beta -1} \;\;\text {for all}\;\; s\ge 0, \end{aligned}$$

with \(a,b>0\) and \(\gamma ,\beta \in \mathbb {R}\). Suppose that \(\gamma +\beta <1+\frac{1}{n}\) and \(\gamma <\frac{2}{n}\), it is proved that the problem has a unique global classical solution, which is uniformly bounded in time. In addition, we derive the asymptotic behavior of globally bounded solution in this system according to the different predation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, I., Yoon, C.: Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis. J. Differ. Equ. 268, 4222–4255 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arditi, R., Ginzburg, L.R.: Coupling in predator-prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)

    Article  Google Scholar 

  3. Bai, X., Winkler, M.: Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics. Indiana Univ. Math. J. 65, 553–583 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chakraborty, A., Singh, M., Lucy, D., Ridland, P.: Predator-prey model with prey-taxis and diffusion. Math. Comput. Model 46, 482–498 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cieślak, T.: Quasilinear nonuniformly parabolic system modelling chemotaxis. J. Math. Anal. Appl. 326, 1410–1426 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ding, M., Wang, W.: Global boundedness in a quasilinear fully parabolic chemotaxis system with indirect signal production. Discrete Contin. Dyn. Syst. Ser. B 24, 4665–4684 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Ding, M., Wang, W., Zhou, S., Zheng, S.: Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production. J. Differ. Equ. 268, 6729–6777 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feireisl, E., Laurencot, P., Petzeltová, H.: On convergence to equilibria for the Keller–Segel chemotaxis model. J. Differ. Equ. 236, 551–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ferrari, M.C., Wisenden, B.D., Chivers, D.P.: Chemical ecology of predator-prey interactions in aquatic ecosystems: a review and prospectus. Can. J. Zool. 33, 698–724 (2010)

    Article  Google Scholar 

  10. Fuest, M.: Analysis of a chemotaxis model with indirect signal absorption. J. Differ. Equ. 267, 4778–4806 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gajewski, H., Zacharias, K.: Global behavior of a reaction-diffusion system modelling chemotaxis. Math. Nach. 195, 77–144 (1998)

    Article  MATH  Google Scholar 

  12. He, X., Zheng, S.: Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis. Appl. Math. Lett. 49, 73–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hillen, T., Painter, K.J., Winkler, M.: Convergence of a cancer invasion model to a logistic chemotaxis model. Math. Models Methods Appl. Sci. 1, 165–198 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hoefler, C.D., Taylor, M., Jakob, E.M.: Chemosensory response to prey in phidippus audax (araneae, salticidae) and pardosa milvina (araneae, lycosidae). J. Archnol 30, 155–158 (2002)

    Article  Google Scholar 

  15. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hu, B., Tao, Y.: To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production. Math. Models Methods Appl. Sci. 26, 2111–2128 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, H.Y., Wang, Z.A.: Global stability of prey-taxis systems. J. Differ. Equ. 262, 1257–1290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kareiva, P., Odell, G.: Swarms of predators exhibit “prey-taxis” if individual predators use area-restricted search. Am. Nat. 130, 233–270 (1987)

  19. Keller, E.F., Segel, L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theo. Biol. 26, 399–415 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kuang, Y., Beretta, E.: Global qualitative analysis of a ratio-dependent predator-prey system. J. Math. Biol. 36, 389–406 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladyz̆enskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. AMS, Providence (1968)

  22. Lee, J.M., Hillen, T., Lewis, M.A.: Pattern formation in prey-taxis systems. J. Biol. Dyn. 3, 551–573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, H., Tao, Y.: Boundedness in a chemotaxis system with indirect signal production and generalized logistic source. Appl. Math. Lett. 77, 108–113 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mishra, P., Wrzosek, D.: The role of indirect prey-taxis and interference among predators in pattern formation. Math. Meth. Appl. Sci., pp. 10441–10461 (2020)

  25. Murdoch, W., Chesson, J., Chesson, P.: Biological control in theory and practice. Am. Nat. 125, 344–366 (1985)

    Article  Google Scholar 

  26. Murray, J.D.: Mathematical Biology. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  27. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funk. Ekva. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Nirenberg, L.: An extended interpolation inequality. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 20, 733–737 (1966)

    MathSciNet  MATH  Google Scholar 

  29. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funk. Ekva. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  30. Pang, P.Y., Wang, M.: Qualitative analysis of a ratio-dependent predator-prey system with diffusion. Proc. R. Soc. Edinb. Sect. A. Math. 133, 919–942 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Qiu, S., Mu, C., Wang, L.: Boundedness in the higher-dimensional quasilinear chemotaxis-growth system with indirect attractant production. Comp. Math. Appl. 75, 3213–3223 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rosenzweig, M.L., MacArthur, R.H.: Graphical representation and stability conditions of predator-prey interaction. Amer. Nat. 97, 209–223 (1963)

    Article  Google Scholar 

  33. Strohm, S., Tyson, R.C., Powell, J.A.: Pattern formation in a model for mountain pine beetle dispersal: linking model predictions to data. Bull. Math. Biol. 75, 1778–1797 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tao, Y.: Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis. Nonl. Anal. Real World Appl. 11, 2056–2064 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tao, Y., Winkler, M.: Critical mass for infinite-time aggregation in a chemotaxis model with indirect signal production. J. Eur. Math. Soc. 19, 3641–3678 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tello, J.I., Wrzosek, D.: Predator-prey model with diffusion and indirect prey-taxis. Math. Models Methods Appl. Sci. 26, 2129–2162 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, L., Mu, C., Hu, X., Zheng, P.: Boundedness in a quasilinear chemotaxis model with consumption of chemoattractant and logistic source. Appl. Anal. 97, 756–774 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wang, J.P., Wang, M.X.: The dynamics of a predator-prey model with diffusion and indirect prey-taxis. J. Dyn. Differ. Equ. 32, 1291–1310 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X.L., Wang, W.D., Zhang, G.H.: Global bifurcation of solutions for a predator-prey model with prey-taxis. Math. Meth. Appl. Sci. 38, 431–443 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, J.F., Wei, J.J., Shi, J.P.: Global bifurcation analysis and pattern formation inhomogeneous diffusive predator-prey systems. J. Differ. Equ. 260, 3495–3523 (2016)

    Article  MATH  Google Scholar 

  41. Wu, S., Shi, J., Wu, B.: Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis. J. Differ. Equ. 260, 5847–5874 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Winkler, M.: Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model. J. Differ. Equ. 248, 2889–2905 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Winkler, M.: A critical exponent in a degenerate parabolic equation. Math. Meth. Appl. Sci. 25, 911–925 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Wyatt, T.D.: Pheromones and Animal Behaviour: Communication by Smell and Taste. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  45. Xiang, T.: Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka–Volterra kinetics. Nonl. Anal. Real World Appl. 39, 278–299 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xing, J., Zheng, P., Xiang, Y.T., Wang, H.: On a fully parabolic singular chemotaxis-(growth) system with indirect signal production or consumption. Z. Angew. Math. Phys. 72, 105 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, W., Niu, P., Liu, S.: Large time behavior in chemotaixs model with logistic growth and indirecct signal production. Nonl. Anal. Real World Appl. 50, 484–497 (2019)

    Article  Google Scholar 

  48. Zhao, J.: Large time behavior of solution to quasilinear chemotaxis system with logistic source. Discrete Contin. Dyn. Syst. 40, 1737–1755 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, P., Xing, J.: Boundedness and large-time behavior for a two-dimensional quasilinear chemotaxis-growth system with indirect signal consumption. Z. Angew. Math. Phys. 71, 98 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zuk, M., Kolluru, G.R.: Exploitation of sexual signals by predators and parasitoids. Q. Rev. Biol. 73, 415–438 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to deeply thank the editors and reviewers for their insightful and constructive comments. This work is partially supported by National Natural Science Foundation of China (Grant Nos: 11601053, 11526042) and Natural Science Foundation of Chongqing (Grant No. cstc2019jcyj-msxmX0082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, J., Zheng, P. & Pan, X. A Quasilinear Predator-Prey Model with Indirect Prey-Taxis. Qual. Theory Dyn. Syst. 20, 70 (2021). https://doi.org/10.1007/s12346-021-00508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00508-3

Keywords

Mathematics Subject Classification

Navigation