Skip to main content
Log in

On the Existence of Solitary Wave Solutions for Perturbed Degasperis-Procesi Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

The Degasperis–Procesi (DP) equation is a significant model of shallow-water waves, which has been well investigated in the current study. Notably, the existence of solitary wave solutions without perturbation has been first proved. However, the persistence of solitary wave solutions of the perturbed DP equation by employing the geometric singular perturbation theory and the Melnikov method has been analyzed. Therefore, the perturbed DP equation possesses a solitary wave solution from the demonstration of having a homoclinic orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Degasperis, A., Procesi, M.: Asymptotic integrability, in Symmetry and Perturbation Theory. World Sci. Publ., River Edge, NJ (1999)

    MATH  Google Scholar 

  2. Yin, Z.: Global weak equation for a new periodic integrable equation with peakon solutions. J. Funct. Anal. 212, 182–194 (2004)

    Article  MathSciNet  Google Scholar 

  3. Coclite, G., Karlsen, K.: Periodic solutions of the Degasperis–Procesi equation: Well-posedness and asymptotics. J. Funct. Anal. 268, 1053–1077 (2015)

    Article  MathSciNet  Google Scholar 

  4. Li, J., Zhang, Y.: Exact loop solutions, cusp solutions, solitary wave solutions and periodic wave solutions for the special CH-DP equation. Nonlinear Anal. RWA 10, 2502–2507 (2009)

    Article  MathSciNet  Google Scholar 

  5. Lenells, J.: Traveling wave solutions of the Degasperis–Procesi equation. J. Math. Anal. Appl. 306, 72–82 (2005)

    Article  MathSciNet  Google Scholar 

  6. Zhang, Y., Yang, J., Chow, K., et al.: Solitons, breathers and rogue waves for the coupled Fokas-Lenells system via Darboux transformation. Nonlinear Anal. RWA 33, 237–252 (2017)

    Article  MathSciNet  Google Scholar 

  7. Liang, J., Li, J., Zhang, Y.: Bifurcations and exact solutions of generalized two-component peakon type dual systems. Int. J. Bifurc. Chaos 9, 1–27 (2019)

    MATH  Google Scholar 

  8. Yu, L., Tian, L.: Loop solutions, breaking kink (or anti-kink) wave solutions, solitary wave solutions and periodic wave solutions for the two-component Degasperis-Procesi equation. Nonlinear Anal. RWA 15, 140–148 (2014)

    Article  MathSciNet  Google Scholar 

  9. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Diff. Equ. 31, 53–98 (1979)

    Article  MathSciNet  Google Scholar 

  10. Jones, C.K.R.T.: Geometrical singular perturbation theory. In: Johnson, R. (ed.) Lecture Notes in Mathematics: Dynamical systems, vol. 1609, pp. 44–118. Springer, Berlin (1995)

    Google Scholar 

  11. Wiggins, S., Mazel, D.S.: Introduction to applied nonlinear dynamical systems and chaos. Springer, Berlin (1990)

    Book  Google Scholar 

  12. Han, M.: Bifurcation theory and periodical solution of dynamic system. Science Press, Beijing (2002)

    Google Scholar 

  13. Ogawa, T.: Traveling wave solutions to a perturbed Korteweg–de Vries equation. Hiroshima Math. J. 24, 401–422 (1994)

    Article  MathSciNet  Google Scholar 

  14. Zhang, L., Han, M., Zhang, M., Khalique, C.: A new type of wave solitarysolution of the mKdV equation under singular perturbations. Int. J. Bifurc. Chaos 30, 1–14 (2020)

    Google Scholar 

  15. Chen, A., Guo, L., Deng, X.: Existence of solitary waves and periodic waves for a perturbed generalized BBM equation. J. Diff. Equ. 261, 5324–5349 (2016)

    Article  MathSciNet  Google Scholar 

  16. Zhu, K., Wu, Y., Yu, Z., Shen, J.: New solitary wave solutions in a perturbed generalized BBM equation. Nonlinear Dyn. 97, 2413–2423 (2019)

    Article  Google Scholar 

  17. Du, Z., Li, J., Li, X.: The existence of solitary wave solutions of delayed Camassa–Holm equation via a geometric approach. J. Funct. Anal. 275, 988–1007 (2018)

    Article  MathSciNet  Google Scholar 

  18. Cheng, F., Li, J.: Geometric singular perturbation analysis of Degasperis–Procesi equation with distributed delay. Disc. Contin. Dyn. Syst. Ser. A. 41, 967–985 (2021)

    Article  MathSciNet  Google Scholar 

  19. Ge, J., Du, Z.: The solitary wave solutions of the nonlinear perturbed shallow water wave model. Appl. Math. Lett. 103, 106202 (2020)

    Article  MathSciNet  Google Scholar 

  20. Deng, S., Guo, B., Wang, T.: Travelling wave solutions of a generalized Camassa–Holm–Degasperis–Procesi equation. Sci. China Math. 54, 555–572 (2011)

    Article  MathSciNet  Google Scholar 

  21. Shen, J., Xu, W.: Smooth and non-smooth travelling wave solutions of generalized Degasperis–Procesi equation. Appl. Math. Comput. 182, 1418–1429 (2006)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their sincere appreciation to all those who made suggestions for improvements to this paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 11371326,11975145 and 11901215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Zhang, Y. On the Existence of Solitary Wave Solutions for Perturbed Degasperis-Procesi Equation. Qual. Theory Dyn. Syst. 20, 80 (2021). https://doi.org/10.1007/s12346-021-00519-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00519-0

Keywords

Navigation