Skip to main content
Log in

Dynamics of a Diffusive Avian Influenza Model with Spatial Heterogeneity and General Incidence Rate

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we investigate a diffusive avian influenza model with general incidence rate, the threshold dynamics for the model is completely characterized by the basic reproduction number \({\mathcal {R}}_{0}\). It is shown that if \({\mathcal {R}}_{0}<1\) the disease-free steady state is globally asymptotically stable and the disease dies out; if \({\mathcal {R}}_{0}>1\) then the disease persists. Finally, a numerical example is provided to support the theoretical analysis. Our model extended the previous known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The Matlab program that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Vaidya, N., Wahl, L.: Avian influenza dynamics under periodic environmental conditions. SIAM J. Appl. Math. 75(2), 443–467 (2015)

    Article  MathSciNet  Google Scholar 

  2. Vaidya, N., Wang, F., Zou, X.: Avian influenza dynamics in wild birds with bird mobility and spatial heterogeneous environment. Discrete Contin. Dyn. Syst. Ser. B 17, 2829–2848 (2012)

    Article  MathSciNet  Google Scholar 

  3. Hethcote, H., Van, W.: Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs. Math. Biosci. 84(1), 85–118 (1987)

    Article  MathSciNet  Google Scholar 

  4. Cai, Y., Lian, X., Peng, Z., Wang, W.: Spatiotemporal transmission dynamics for influenza disease in a heterogenous environment. Nonlinear Anal. Real World Appl. 46, 178–194 (2019)

    Article  MathSciNet  Google Scholar 

  5. Allen, L., Bolker, B., Lou, Y., Nevai, A.: Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete Contin. Dyn. Syst. Ser. B 21, 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  6. Deng, K., Wu, Y.: Dynamics of a susceptible-infected-susceptible epidemic reaction-diffusion model. Proc. Roy. Soc. Edinburgh Sect. A 146(5), 929–946 (2016)

    Article  MathSciNet  Google Scholar 

  7. Cui, R., Lam, K., Lou, Y.: Dynamics and asymptotic profiles of steady states of an epidemic model in advective environments. J. Differ. Equ. 263(4), 2343–2373 (2017)

    Article  MathSciNet  Google Scholar 

  8. Yang, Y., Zhou, J., Hsu, C.H.: Threshold dynamics of a diffusive SIRI model withnonlinear incidence rate. J. Math. Anal. Appl. 478, 874–896 (2019)

    Article  MathSciNet  Google Scholar 

  9. Huang, C., Zhang, H., Cao, J., Hu, H.: Stability and Hopf bifurcation of a delayed prey-Cpredator model with disease in the predator. Internat. J. Bifur. Chaos 29, 1950091 (2019)

    Article  Google Scholar 

  10. Duan, L., Xu, Z.: Global stability in a diffusive cholera epidemic model with nonlinear incidence. Appl. Math. Lett. 111, 106596 (2021)

    Article  MathSciNet  Google Scholar 

  11. Duan, L., Huang, L., Huang, C.: Spatial dynamics of a diffusive SIRI model with distinct dispersal rates and heterogeneous environment. Commun. Pure Appl. Anal. (2021). https://doi.org/10.3934/cpaa.2021120

    Article  Google Scholar 

  12. Wu, Y., Zou, X.: Dynamics and profiles of a diffusive host-pathogen system with distinct dispersal rates. J. Differ. Equ. 264, 4989–5024 (2018)

    Article  MathSciNet  Google Scholar 

  13. Liu, W., Levin, S.A., Iwasa, Y.: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models. J. Math. Biol. 23, 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  14. Crowley, P., Martin, E.: Functional responses and interference within and between year classes of a dragonfly population. J. N. Am. Benthol. Soc. 8, 211–221 (1989)

    Article  Google Scholar 

  15. Xiao, D., Ruan, S.: Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208, 419–429 (2007)

    Article  MathSciNet  Google Scholar 

  16. Chen, X., Cui, R.: Global stability in a diffusive cholera epidemic model with nonlinear incidence, Appl. Math. Lett. 111 (2021) Article 106596

  17. Iwami, S., Takeuchi, Y., Liu, X.: Avian-human influenza epidemic model. Math. Biosci. 207(1), 1–25 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jung, E., Iwami, S., Takeuchi, Y., Jo, T.: Optimal control strategy for prevention of avian influenza pandemic. J. Thero. Biol. 260(2), 220–229 (2009)

    Article  MathSciNet  Google Scholar 

  19. Kim, K., Lin, Z., Zhang, L.: Avian-human influenza epidemic model with diffusion. Nonlinear Anal. Real World Appl. 11(1), 313–322 (2010)

    Article  MathSciNet  Google Scholar 

  20. Agusto, F., Gumel, A.: Theoretical assessment of avian influenza vaccine. Discrete Contin. Dyn. Syst. Ser. B 13, 1–25 (2010)

    MathSciNet  MATH  Google Scholar 

  21. Smith, H.L.: Monotone dynamic systems: an introduction to the theory of competitive and cooperative systems. In: Math Surveys Monogr, vol. 41, American Mathematical Society, Providence RI (1995)

  22. Martin, R.H., Smith, H.L.: Abstract functional differential equations and reaction-diffusion systems. Trans. Am. Math. Soc. 321, 1–44 (1990)

    MathSciNet  MATH  Google Scholar 

  23. Guo, Z., Wang, F., Zou, X.: Threshold dynamics of an infective disease model with a fixed latent period and non-local infections. J. Math. Biol. 65, 1387–1410 (2012)

    Article  MathSciNet  Google Scholar 

  24. Wu, J.: Theory and Applications of Partial Functional-Differential Equations. Springer, New York (1996)

    Book  Google Scholar 

  25. Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  26. Thieme, H.R.: Spectral bound and reproduction number for intinite-dimensional population structure and time heterogeneity. SIAM J. Appl. Math. 70, 188–211 (2009)

    Article  MathSciNet  Google Scholar 

  27. Wang, W., Zhao, X.Q.: Basic reproduction number for reaction-diffusion epidemic models. SIAM J. Appl. Dyn. Syst. 11, 1652–1673 (2012)

    Article  MathSciNet  Google Scholar 

  28. Magal, P., Webb, G.F., Wu, Y.: On the basic reproduction number of reaction-diffusion epidemic models. SIAM J. Appl. Math. 79, 284–304 (2019)

    Article  MathSciNet  Google Scholar 

  29. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1984)

    Book  Google Scholar 

  30. Thieme, H.R.: Convergence results and Poincaré-Bendixson tichotomy for asymptotically autonomous differential equations. J. Math. Biol. 30, 755–763 (1992)

    Article  MathSciNet  Google Scholar 

  31. Smith, H.L., Zhao, X.Q.: Robust persistence for semidynamical systems. Nonlinear Anal. 47, 6169–6179 (2001)

    Article  MathSciNet  Google Scholar 

  32. Magal, P., Zhao, X.Q.: Global attractors and steady states for uniformly persistent dynamical systems. SIAM J. Math. Anal. 37, 251–275 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was jointly supported by the Major Program of University Natural Science Research Fund of Anhui Province(KJ2020ZD32), National Natural Science Foundation of China (11701007, 11771059,11971076), Natural Science Foundation of Anhui Province (1808085QA01), China Postdoctoral Science Foundation (2018M640579), Postdoctoral Science Foundation of Anhui Province (2019B329).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, L., Huang, L. & Huang, C. Dynamics of a Diffusive Avian Influenza Model with Spatial Heterogeneity and General Incidence Rate. Qual. Theory Dyn. Syst. 20, 81 (2021). https://doi.org/10.1007/s12346-021-00507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00507-4

Keywords

Navigation