Skip to main content
Log in

A Lipschitz Version of the \(\lambda \)-Lemma and a Characterization of Homoclinic and Heteroclinic Orbits

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper we consider finite dimensional dynamical systems generated by a Lipschitz function. We prove a version of the Whitney’s Extension Theorem on compact manifolds to obtain a version of the well-known \(\lambda \)-lemma for Lipschitz functions. The notions of Lipschitz transversality and hyperbolicity are investigated in the finite dimensional framework with a norm between \(C^1\)-norm and \(C^0\)-norm. As an application, we study homoclinic and heteroclinic orbits obtaining, as a consequence, a stability result for Lipschitz Morse–Smale functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alberti, G., Csornyei, M., Preiss, D.: Differentibility of Lipschitz functions, structure of null sets, and other problems. In: Proceedings to the International Congress of Matemathicians, Hyderabad, India (2010)

  2. Beer, G., Hoffman, M.J.: The Lipschitz metric for real-valued continuous functions. J. Math. Anal. Appl. 406, 229–236 (2013)

    Article  MathSciNet  Google Scholar 

  3. Bortolan, M.C., Cardoso, C., Carvalho, A.N., Pires, L.: Lipschitz perturbations of Morse–Smale semigroups. J. Differ. Equ. 269(15), 1904–1943 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Calcaterra, C., Boldt, A.: Lipschitz flow-box theorem. J. Math. Anal. Appl. 338, 1108–1115 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cobzaş, Ş, Miculescu, R., Nicolae, A.: Lipschitz Functions. Lecture Notes in Mathematics, 2241, Springer, Cham (2019)

    Book  Google Scholar 

  6. Evans, L.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  7. Garrido, M., Jaramillo, J.A., Rangel, Y.C.: Smooth aproximation of Lipschitz functions on Finsler manifold. J. Funct. Spaces Appl. 2013, 1–10 (2013)

    Article  Google Scholar 

  8. Heinonen, J.: Lectures on Lipschitz analysis. In: 14thJyvaskyla Summer Scholl (2004)

  9. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lectures Note in Math, vol. 583. Springer, New York (1977)

    Book  Google Scholar 

  10. Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Smooth Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  11. Movahedi-Lankarani, H., Wells, R.: \({C}^1\)-Weierstrass for compact sets in Hilbert space. J. Math. Anal. Appl. 285, 299–320 (2003)

    Article  MathSciNet  Google Scholar 

  12. Palis, J.: On Morse–Smale dynamical systems. Topology 8, 395–404 (1968)

    MathSciNet  MATH  Google Scholar 

  13. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. An Introduction. Springer, New York (1982)

    Book  Google Scholar 

  14. Palis, J., Smale, S.: Structural stability theorems. Proc. Symp. Pure Math. Am. Math. Soc. 14, 223–232 (1970)

    Article  MathSciNet  Google Scholar 

  15. Peixoto, M.: Structural stability on two dimensional manifolds. Topology I, 101–120 (1962)

    Article  MathSciNet  Google Scholar 

  16. Pilyugin, S.Y.: The Space of Dynamical Systems with the \(C^0\)-Topology. Springer, Berlin (1994)

    Book  Google Scholar 

  17. Robinson, C.: Dynamical Systems, Stability, Symbolic Dynamics and Chaos. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  18. Schub, M.: Global Stability of Dynamical Systems. Springer, New York (1987)

    Book  Google Scholar 

  19. Sherbert, D.: Banach algebras of Lipschitz functions. Pac. J. Math. 13, 1387–399 (1963)

    Article  MathSciNet  Google Scholar 

  20. Smale, S.: Diffeomorphisms with Many Periodic Points. Differential and Combinatorial Topology. Princeton University Press, New Jersey (1965)

    MATH  Google Scholar 

  21. Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  22. Takaki, K.: Lipeomorphisms close to an Anosov diffeomorphism. Nagoya Math. J. 53, 71–82 (1974)

    Article  MathSciNet  Google Scholar 

  23. Wen, L.: Differentiable Dynamical Systems: An Introduction to Structural Stability and Hyperbolicity. Peking University, Beijing (2016)

    Book  Google Scholar 

Download references

Acknowledgements

We express our thanks to the referees for their helpful and interesting comments and suggestions which allowed us to improve the presentation of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Pires.

Ethics declarations

Declarations

This research has been partially supported by the Brazilian Agencies CAPES and CNPq. The authors declare that there is not conflict of interests in the publication of this paper. The authors declare the data availability.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pires, L., La Guardia, G.G. A Lipschitz Version of the \(\lambda \)-Lemma and a Characterization of Homoclinic and Heteroclinic Orbits. Qual. Theory Dyn. Syst. 20, 82 (2021). https://doi.org/10.1007/s12346-021-00521-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00521-6

Keywords

Mathematics Subject Classification

Navigation