Skip to main content
Log in

Hetero-Bäcklund Transformation, Bilinear Forms and N Solitons for a Generalized Three-Coupled Korteweg-de Vries System

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

Korteweg-de Vries-type models attract people’s attention during the studies on the cosmic plasmas, planetary oceans and atmospheres. In this paper, on a generalized three-coupled Korteweg-de Vries system, symbolic computation comes to a hetero-Bäcklund transformation, while the Hirota method and symbolic computation bring about some bilinear forms and multi-solutions. Our results are dependent on the coefficients in that system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Chentouf, B.: Qualitative analysis of the dynamic for the nonlinear Korteweg-de Vries equation with a boundary memory. Qual. Theory Dyn. Syst. 20, 36 (2021)

  2. Dhama, S., Abbas, S.: Existence and stability of weighted pseudo almost automorphic solution of dynamic equation on time scales with weighted stepanov-like (\(S^p\)) pseudo almost automorphic coefficients. Qual. Theory Dyn. Syst. 19, 46 (2020)

    Article  Google Scholar 

  3. Aziz, W.: Integrability and Linearizability Problems of Three Dimensional Lotka-Volterra equations of rank-2. Qual. Theory Dyn. Syst. 18, 1113–1134 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bihun, O., Calogero, F.: Time-dependent polynomials with one double root, and related new solvable systems of nonlinear evolution equations. Qual. Theory Dyn. Syst. 18, 153–181 (2019)

    Article  MathSciNet  Google Scholar 

  5. Li, L.Q., Gao, Y.T., Hu, L., Jia, T.T., Ding, C.C., Feng, Y.J.: Bilinear form, soliton, breather, lump and hybrid solutions for a (2+1)-dimensional Sawada-Kotera equation. Nonlinear Dyn. 100, 2729–2738 (2020)

    Article  Google Scholar 

  6. Velasco-Juan, M., Fujioka, J.: Integral complex modified Korteweg-de Vries (Icm-KdV) equations. Chaos Solitons Fract. 134, 109687 (2020)

  7. Akinyemi, L., Iyiola, O.S.: A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations. Adv. Differ. Equ. 2020, 169 (2020)

    Article  MathSciNet  Google Scholar 

  8. Akinyemi, L.: q-Homotopy analysis method for solving the seventh-order time-fractional Lax’s Korteweg-de Vries and Sawada-Kotera equations. Comput. Appl. Math. 38, 191 (2019)

  9. Karunakar, P., Chakraverty, S.: Solutions of time-fractional third- and fifth-order Korteweg-de-Vries equations using homotopy perturbation transform method. Eng. Comput. 36, 2309–2326 (2019)

    Google Scholar 

  10. Ahmed, H.M.: Numerical Solutions of Korteweg-de Vries and Korteweg-de Vries-Burger’s Equations in a Bernstein Polynomial Basis. Mediterr. J. Math. 16, 102 (2019)

  11. Popowicz, Z.: N=2 Supercomplexification of the Korteweg-de Vries, Sawada-Kotera and Kaup-Kupershmidt Equations. J. Nonlinear Math. Phys. 26, 294–312 (2019)

    Article  MathSciNet  Google Scholar 

  12. Franco-de-Leon, M., Lowengrub, J.: Boundary integral methods for dispersive equations, Airy flow and the modified Korteweg de Vries equation. Adv. Comput. Math. 45, 99–135 (2019)

    Article  MathSciNet  Google Scholar 

  13. Tobisch, E., Pelinovsky, E.: Conditions for modulation instability in higher order Korteweg-de Vries equations. Appl. Math. Lett. 88, 28–32 (2019)

    Article  MathSciNet  Google Scholar 

  14. Harms, P., Muller, M.S.: Weak convergence rates for stochastic evolution equations and applications to nonlinear stochastic wave, HJMM, stochastic Schrödinger and linearized stochastic Korteweg-de Vries equations. Z. Angew. Math. Phys. 70, 16 (2019)

  15. Gao, X.Y., Guo, Y.J., Shan, W.R.: Cosmic dusty plasmas via a (3+1)-dimensional generalized variable-coefficient Kadomtsev-Petviashvili-Burgers-type equation: auto-Bäcklund transformations, solitons and similarity reductions plus observational/experimental supports, Wave. Random Complex (2021) in press, https://doi.org/10.1080/17455030.2021.1942308

  16. Wang, M., Tian, B., Qu, Q.X., Zhao, X.H., Zhang, Z., Tian, H.Y.: Lump, lumpoff, rogue wave, breather wave and periodic lump solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. 97, 2474–2486 (2020)

    Article  MathSciNet  Google Scholar 

  17. Wang, D., Gao, Y.T., Ding, C.C., Zhang, C.Y.: Solitons and periodic waves for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. Commun. Theor. Phys. 72, 115004 (2020)

  18. Shen, Y., Tian, B., Liu, S.H., Yang, D.Y.: Bilinear Bäcklund transformation, soliton and breather solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid dynamics and plasma physics. Phys. Scr. 96, 075212 (2021)

  19. Ding, C.C., Gao, Y.T., Deng, G.F.: Breather and hybrid solutions for a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation for the water waves. Nonlinear Dyn. 97, 2023–2040 (2019)

    Article  Google Scholar 

  20. Liu, S.H., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Du, X.X., Chen, S.S.: Breather, lump, shock and travelling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in fluid mechanics and plasma physics. Int. J. Comput. Math. 98, 1130–1145 (2021)

    Article  MathSciNet  Google Scholar 

  21. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Ablowitz-Kaup-Newell-Segur system, conservation laws and Backlund transformation of a variable-coefficient Korteweg-de Vries equation in plasma physics, fluid dynamics or atmospheric science. Int. J. Mod. Phys. B 34, 2050226 (2020)

    Article  Google Scholar 

  22. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

  23. Chen, Y.Q., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Tian, H.Y., Wang, M.: Reduction and analytic solutions of a variable-coefficient Korteweg-de Vries equation in a fluid, crystal or plasma. Mod. Phys. Lett. B 34, 2050287 (2020)

  24. Hu, C.C., Tian, B., Yin, H.M., Zhang, C.R., Zhang, Z.: Dark breather waves, dark lump waves and lump wave-soliton interactions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Comput. Math. Appl. 78, 166–177 (2019)

    Article  MathSciNet  Google Scholar 

  25. Wang, M., Tian, B., Sun, Y., Yin, H.M., Zhang, Z.: Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave-stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics. Chin. J. Phys. 60, 440–449 (2019)

    Article  MathSciNet  Google Scholar 

  26. Shen, Y., Tian, B., Liu, S.H.: Solitonic fusion and fission for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Phys. Lett. A 405, 127429 (2021)

  27. Deng, G.F., Gao, Y.T., Ding, C.C., Su, J.J.: Solitons and breather waves for the generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt system in fluid mechanics, ocean dynamics and plasma physics. Chaos Solitons Fract. 140, 110085 (2020)

  28. Wang, M., Tian, B., Liu, S.H., Shan, W.R., Jiang, Y.: Soliton, multiple-lump and hybrid solutions of a (2+1)-dimensional generalized Hirota-Satsuma-Ito equation for the water waves. Eur. Phys. J. Plus 136, 635 (2021)

    Article  Google Scholar 

  29. Liu, S.H., Tian, B., Qu, Q.X., Zhang, C.R., Hu, C.C., Wang, M.: Lump, mixed lump-stripe, mixed rogue wave-stripe and breather wave solutions for a (3+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff equation. Mod. Phys. Lett. B 34, 2050243 (2020)

    Article  MathSciNet  Google Scholar 

  30. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C., Deng, G.F., Jia, T.T.: Painlevé analysis, Lie group analysis and soliton-cnoidal, resonant, hyperbolic function and rational solutions for the modified Korteweg-de Vries-Calogero-Bogoyavlenskii-Schiff equation in fluid mechanics. Chaos Solitons Fract. 144, 110559 (2021)

  31. Shen, Y., Tian, B., Zhou, T.Y.: In nonlinear optics, fluid dynamics and plasma physics: symbolic computation on a (2+1)-dimensional extended Calogero-Bogoyavlenskii-Schiff system. Eur. Phys. J. Plus 136, 572 (2021)

    Article  Google Scholar 

  32. Hu, L., Gao, Y.T., Jia, S.L., Su, J.J., Deng, G.F.: Solitons for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the Pfaffian technique. Mod. Phys. Lett. B 33, 1950376 (2019)

    Article  MathSciNet  Google Scholar 

  33. Wang, M., Tian, B., Sun, Y., Zhang, Z.: Lump, mixed lump-stripe and rogue wave-stripe solutions of a (3+1)-dimensional nonlinear wave equation for a liquid with gas bubbles. Comput. Math. Appl. 79, 576–587 (2020)

    Article  MathSciNet  Google Scholar 

  34. Liu, F.Y., Gao, Y.T., Yu, X., Li, L.Q., Ding, C.C., Wang, D.: Lie group analysis and analytic solutions for a (2+1)-dimensional generalized Bogoyavlensky-Konopelchenko equation in fluid mechanics and plasma physics. Eur. Phys. J. Plus 136, 656 (2021)

    Article  Google Scholar 

  35. Shen, Y., Tian, B., Zhang, C.R., Tian, H.Y., Liu, S.H.: Breather-wave, periodic-wave and traveling-wave solutions for a (2+1)-dimensional extended Boiti-Leon-Manna-Pempinelli equation for an incompressible fluid. Mod. Phys. Lett. B 35, 2150261 (2021)

    Article  MathSciNet  Google Scholar 

  36. Hu, L., Gao, Y.T., Jia, T.T., Deng, G.F., Li, L.Q.: Higher-order hybrid waves for the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for an irrotational incompressible fluid via the modified Pfaffian technique. Z. Angew. Math. Phys. 72, 75 (2021)

    Article  MathSciNet  Google Scholar 

  37. Ma, Y.X., Tian, B., Qu, Q.X., Wei, C.C., Zhao, X.: Bäcklund transformations, kink soliton, breather- and travelling-wave solutions for a (3+1)-dimensional B-type Kadomtsev-Petviashvili equation in fluid dynamics. Chin. J. Phys. (2021). https://doi.org/10.1016/j.cjph.2021.07.001

  38. Gao, X.Y., Guo, Y.J., Shan, W.R.: Auto- and hetero-Bäcklund transformations for a generalized three-coupled Korteweg-de Vries system. Rom. J. Phys. 66, 110 (2021)

  39. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  40. Du, X.X., Tian, B., Yuan, Y.Q., Zhang, C.R., Du, Z.: Symmetry reductions, group-invariant solutions and conservation laws of a three-coupled Korteweg-de Vries system. Chin. J. Phys. 60, 665–675 (2019)

    Article  MathSciNet  Google Scholar 

  41. Zhao, Y., Gu, Z.Q., Liu, Y.F.: The Neumann system for the 4th-order eigenvalue problem and constraint flows of the coupled KdV-type equations. Eur. Phys. J. Plus 127, 77 (2012)

    Article  Google Scholar 

  42. Zuo, D.W., Gao, Y.T., Meng, G.Q., Shen, Y.J., Yu, X.: Multi-soliton solutions for the three-coupled KdV equations engendered by the Neumann system. Nonlinear Dyn. 75, 701–708 (2014)

    Article  MathSciNet  Google Scholar 

  43. Biswas, A., Ismail, M.S.: 1–Soliton solution of the coupled KdV equation and Gear–Grimshaw model. Appl. Math.Comput. 216, 3662–3670 (2010)

  44. Hu, X., Li, Y.: Nonlocal symmetry and soliton–cnoidal wave solutions of the Bogoyavlenskii coupled KdV system. Appl. Math. Lett. 51, 20–26 (2016)

  45. Hu, H.C., Lou, S.Y.: Exact Solutions of Bogoyavlenskii Coupled KdV Equations. Commun. Theor. Phys. 42, 485–487 (2004)

  46. Tian, B., Gao, Y.T.: Exact solutions for the Bogoyavlenskii coupled KdV equations. Phys. Lett. A 208, 193–196 (1995)

  47. Verhoeven C., Musette, M.: Grammian N–soliton solutions of a coupled KdV system. J. Phys. A 34, L721–L725 (2001)

  48. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, Lax pair and solutions of the Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves, Mod. Phys. Lett. B (2021). https://doi.org/10.1142/s0217984921504212

  49. Gao, X.Y., Guo, Y.J., Shan, W.R.: Shallow water in an open sea or a wide channel: Auto-and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system. Chaos Solitons Fract. 138, 109950 (2020)

  50. Gao, X.Y., Guo, Y.J., Shan, W.R.: Beholding the shallow water waves near an ocean beach or in a lake via a Boussinesq-Burgers system. Chaos Solitons Fract. 147, 110875 (2021)

  51. Gao, X.Y., Guo, Y.J., Shan, W.R.: Hetero-Bäcklund transformation and similarity reduction of an extended (2+1)-dimensional coupled Burgers system in fluid mechanics. Phys. Lett. A 384, 126788 (2020)

  52. Gao, X.Y., Guo, Y.J., Shan, W.R.: Scaling and hetero–/auto–Backlund transformations with solitons of an extended coupled (2+1)–dimensional Burgers system for the wave processes in hydrodynamics and acoustics. Mod. Phys. Lett. B 34, 2050389 (2020)

  53. Shen, Y., Tian, B., Zhao, X., Shan, W.R., Jiang, Y.: Bilinear form, bilinear auto-Bäcklund transformation, breather and lump solutions for a (3+1)-dimensional generalised Yu-Toda-Sasa-Fukuyama equation in a two-layer liquid or a lattice. Pramana-J. Phys. 95, 137 (2021)

  54. Ma, Y.X., Tian, B., Qu, Q.X., Yang, D.Y., Chen, Y.Q.: Painlevé analysis, Bäcklund transformations and traveling-wave solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili equation in a fluid. Int. J. Mod. Phys. B 35, 2150108 (2021)

  55. Gao, X.Y., Guo, Y.J., Shan, W.R.: Bilinear forms through the binary Bell polynomials, N solitons and Bäcklund transformations of the Boussinesq-Burgers system for the shallow water. Commun. Theor. Phys. 72, 095002 (2020)

  56. Zhao, X., Tian, B., Tian, H.Y., Yang, D.Y.: Bilinear Bäcklund transformation, Lax pair and interactions of nonlinear waves for a generalized (2+1)-dimensional nonlinear wave equation in nonlinear optics/fluid mechanics/plasma physics. Nonlinear Dyn. 103, 1785–1794 (2021)

  57. Gao, X.Y., Guo, Y.J., Shan, W.R.: Water-wave symbolic computation for the Earth, Enceladus and Titan: The higher-order Boussinesq-Burgers system, auto- and non-auto-Bäcklund transformations. Appl. Math. Lett. 104, 106170 (2020)

  58. Ma, Y.X., Tian, B., Qu, Q.X., Tian, H.Y., Liu, S.H.: Bilinear Bäcklund transformation, breather- and travelling-wave solutions for a (2 + 1)-dimensional extended Kadomtsev-Petviashvili II equation in fluid mechanics. Mod. Phys. Lett. B 35, 2150315 (2021)

  59. Zhang, C.R., Tian, B., Sun, Y., Yin, H.M.: Binary Darboux transformation and vector-soliton-pair interactions with the negatively coherent coupling in a weakly birefringent fiber. EPL 127, 40003 (2019)

    Article  Google Scholar 

  60. Du, X.X., Tian, B., Yuan, Y.Q., Du, Z.: Symmetry reductions, group-invariant solutions, and conservation laws of a (2+1)-dimensional nonlinear Schrödinger equation in a Heisenberg ferromagnetic spin chain, Ann. Phys. (Berlin) 531, 1900198 (2019)

  61. Su, J.J., Gao, Y.T., Deng, G.F., Jia, T.T.: Solitary waves, breathers, and rogue waves modulated by long waves for a model of a baroclinic shear flow. Phys. Rev. E 100, 042210 (2019)

  62. Tian, H.Y., Tian, B., Yuan, Y.Q., Zhang, C.R.: Superregular solutions for a coupled nonlinear Schrödinger system in a two-mode nonlinear fiber. Phys. Scr. 96, 045213 (2021)

  63. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N–coupled nonautonomous nonlinear Schrodinger system for an optical fiber or plasma. Nonlinear Dyn. (2021). https://doi.org/10.1007/s11071-021-06886-2

  64. Chen, S.S., Tian, B., Chai, J., Wu, X.Y., Du, Z.: Lax pair, binary Darboux transformations and dark-soliton interaction of a fifth-order defocusing nonlinear Schrödinger equation for the attosecond pulses in the optical fiber communication. Wave. Random Complex 30, 389–402 (2020)

  65. Ding, C.C., Gao, Y.T., Deng, G.F., Wang, D.: Lax pair, conservation laws, Darboux transformation, breathers and rogue waves for the coupled nonautonomous nonlinear Schrödinger system in an inhomogeneous plasma. Chaos Solitons Fract. 133, 109580 (2020)

  66. Wang, M., Tian, B., Hu, C.C., Liu, S.H.: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Appl. Math. Lett. 119, 106936 (2021)

  67. Yang, D.Y., Tian, B., Qu, Q.X., Li, H., Zhao, X.H., Chen, S.S., Wei, C.C.: Darboux-dressing transformation, semi-rational solutions, breathers and modulation instability for the cubic-quintic nonlinear Schrödiger system with variable coefficients in a non-Kerr medium, twin-core nonlinear optical fiber or waveguide. Phys. Scr. 96, 045210 (2021)

  68. Zhao, X., Tian, B., Qu, Q.X., Yuan, Y.Q., Du, X.X., Chu, M.X.: Dark-dark solitons for the coupled spatially modulated Gross-Pitaevskii system in the Bose-Einstein condensation. Mod. Phys. Lett. B 34, 2050282 (2020)

    Article  MathSciNet  Google Scholar 

  69. Hirota, R.: The Direct Method in Soliton Theory. Springer, Berlin (1980)

    Google Scholar 

  70. Wang, D., Gao, Y.T., Su, J.J., Ding, C.C.: Bilinear forms and soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation in an optical fiber. Mod. Phys. Lett. B 34, 2050336 (2020)

  71. Jia, T.T., Gao, Y.T., Deng, G.F., Hu, L.: Quintic time-dependent-coefficient derivative nonlinear Schrödinger equation in hydrodynamics or fiber optics: bilinear forms and dark/anti-dark/gray solitons. Nonlinear Dyn. 98, 269–282 (2019)

  72. Feng, Y.J., Gao, Y.T., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers and lumps of a (3+1)-dimensional generalized Konopelchenko-Dubrovsky-Kaup-Kupershmidt equation in ocean dynamics, fluid mechanics and plasma physics. Eur. Phys. J. Plus 135, 272 (2020)

    Article  Google Scholar 

  73. Wang, D., Gao, Y.T., Yu, X., Li, L.Q., Jia, T.T.: Bilinear form, solitons, breathers, lumps and hybrid solutions for a (3+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation. Nonlinear Dyn. 104, 1519–1531 (2021)

    Article  Google Scholar 

  74. Jia, T.T., Gao, Y.T., Yu, X., Li, L.Q.: Lax pairs, Darboux transformation, bilinear forms and solitonic interactions for a combined Calogero-Bogoyavlenskii-Schiff-type equation. Appl. Math. Lett. 114, 106702 (2021)

  75. Yang, D.Y., Tian, B., Qu, Q.X., Zhang, C.R., Chen, S.S., Wei, C.C.: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Chaos Solitons Fract. 150,110487 (2021)

  76. Gao, X.T., Tian, B., Shen, Y., Feng, C.H.: Comment on “Shallow water in an open sea or a wide channel: Auto- and non-auto-Bäcklund transformations with solitons for a generalized (2+1)-dimensional dispersive long-wave system”. Chaos Solitons Fract. 151, 111222 (2021)

  77. Feng, Y.J., Gao, Y.T., Jia, T.T., Li, L.Q.: Soliton interactions of a variable-coefficient three-component AB system for the geophysical flows. Mod. Phys. Lett. B 33, 1950354 (2019)

    Article  MathSciNet  Google Scholar 

  78. Du, X.X., Tian, B., Qu, Q.X., Yuan, Y.Q., Zhao, X.H.: Lie group analysis, solitons, self-adjointness and conservation laws of the modified Zakharov-Kuznetsov equation in an electron-positron-ion magnetoplasma. Chaos Solitons Fract. 134, 109709 (2020)

  79. Zhang, C.R., Tian, B., Qu, Q.X., Liu, L., Tian, H.Y.: Vector bright solitons and their interactions of the couple Fokas-Lenells system in a birefringent optical fiber. Z. Angew. Math. Phys. 71, 18 (2020)

    Article  MathSciNet  Google Scholar 

  80. Wang, M., Tian, B., Qu, Q.X., Du, X.X., Zhang, C.R., Zhang, Z.: Lump, lumpoff and rogue waves for a (2+1)-dimensional reduced Yu-Toda-Sasa-Fukuyama equation in a lattice or liquid. Eur. Phys. J. Plus 134, 578 (2019)

    Article  Google Scholar 

  81. Su, J.J., Gao, Y.T., Ding, C.C.: Darboux transformations and rogue wave solutions of a generalized AB system for the geophysical flows. Appl. Math. Lett. 88, 201–208 (2019)

    Article  MathSciNet  Google Scholar 

  82. Tian, H.Y., Tian, B., Zhang, C.R., Chen, S.S.: Darboux dressing transformation and superregular breathers for a coupled nonlinear Schrödinger system with the negative coherent coupling in a weakly birefringent fiber. Int. J. Comput. Math. (2021). https://doi.org/10.1080/00207160.2021.1900568

  83. Deng, G.F., Gao, Y.T., Su, J.J., Ding, C.C., Jia, T.T.: Solitons and periodic waves for the (2+1)-dimensional generalized Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Nonlinear Dyn. 99, 1039–1052 (2020)

    Article  Google Scholar 

  84. Chen, S.S., Tian, B., Sun, Y., Zhang, C.R.: Generalized Darboux Transformations, Rogue Waves, and Modulation Instability for the Coherently Coupled Nonlinear Schrödinger Equations in Nonlinear Optics, Ann. Phys. (Berlin) 531, 1900011 (2019)

  85. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Chaos Solitons Fract. (2021) in press, Ms. No. CHAOS-D-21-02144R1

  86. Wei, C.C., Tian, B., Qu, Q.X., Chen, S.S., Yang, D.Y.: Lax pair, Darboux transformation and rogue-periodic waves of a nonlinear Schrodinger-Hirota equation with the spatio-temporal dispersion and Kerr law nonlinearity in nonlinear optics. Mod. Phys. Lett. B 33, 2150451 (2021)

  87. Yang, D.Y., Tian, B., Tian, H.Y., Chen, Y.Q., Shan, W.R., Jiang, Y.: Interaction between the breather and breather-like soliton, and breather-to-soliton conversions of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Optik (2021). https://doi.org/10.1016/j.ijleo.2021.166815

    Article  Google Scholar 

  88. Satsuma, J., Hirota, R.: A coupled KdV equation is one case of the four-reduction of the KP hierarchy. J. Phys. Soc. Jpn. 51, 3390–3397 (1982)

    Article  MathSciNet  Google Scholar 

  89. Matsuno, Y.: Bilinear Transformation Method. Acad., Orlando (1984)

Download references

Acknowledgements

We express our sincere thanks to the Editors and Reviewers for their valuable comments. This work has been supported by the National Nature Science Foundation of China under Grant No. 11871116 and Fundamental Research Funds for the Central Universities of China under Grant No. 2019XD-A11. XYG also thanks the National Scholarship for Doctoral Students of China and BUPT Innovation and Entrepreneurship Support Program, Beijing University of Posts and Telecommunications.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Jiang Guo or Wen-Rui Shan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XY., Guo, YJ. & Shan, WR. Hetero-Bäcklund Transformation, Bilinear Forms and N Solitons for a Generalized Three-Coupled Korteweg-de Vries System. Qual. Theory Dyn. Syst. 20, 87 (2021). https://doi.org/10.1007/s12346-021-00512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00512-7

Keywords

Mathematics Subject Classification

Navigation