Skip to main content
Log in

Analytical Traveling Wave and Soliton Solutions of the \((2+1)\) Dimensional Generalized Burgers–Huxley Equation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

This paper employs the modified Kudryashov method, Riccati-Bernoulli sub-ODE method and the bifurcation methods to study a nonlinear \((2+1)\)—dimensional generalised Burgers–Huxley equation in inhomogeneous dispersive medium to construct exact traveling wave solutions. By applying the Galilean wave transformation we obtained an ordinary differential equations. As a result, we investigated the dynamical behaviour of new traveling wave solutions under different parameter conditions. The solutions obtained by these methods provide us a powerful tool for solving nonlinear evolution equations in various fields of applied sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availibility

All data generated or analysed during this study are included in this published article.

References

  1. Gromov, E.M.: Propagation of short nonlinear wave packets and solitons in smoothly inhomogeneous media. Phys. Lett. A 227, 67–71 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yu, X., Gao, Y.-T., Sun, Z.-Y., Liu, Y.: N-soliton solutions, Bäcklund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation. Phys. Scr. 81, 045402 (2010)

    Article  MATH  Google Scholar 

  3. Wang, X.Y., Zhu, Z.S., Lu, Y.K.: Solitary wave solutions of the generalized Burgers-Huxley equation. J. Phys. A 23(3), 271–274 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Satsuma, J., Ablowitz, M., Fuchssteiner, B., Kruskal, M.: Topics in Soliton Theory and Exactly Solvable Nonlinear Equations. World Scientific Publishing Co., Singapore (1986)

    Google Scholar 

  5. Scott, A.C.: Neurophysics. Wiley, New York (1977)

    Google Scholar 

  6. Wang, X.Y.: Nerve propagation and wall in liquid crystals. Phys. Lett. A 112, 402–406 (1985)

    Article  Google Scholar 

  7. Kyrychko, Y.N., Bartuccelli, M.V., Blyuss, K.B.: Persistence of traveling wave solution of a fourth order diffusion system. J. Comput. Appl. Math. 176, 433–443 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carey, A.B., Giles, R.H., McLean, R.G.: The land scape epidemiology of rabies in Virginia. Am. J. Trop. Med. Hyg. 27, 573–580 (1978)

    Article  Google Scholar 

  10. Fitzhugh, R.: Mathematical models of excitation and propagation in nerve. Biological Engineering. McGraw-Hill, New York (1969)

  11. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–554 (1952)

    Article  Google Scholar 

  12. Bazsa, G., Epstein, I.R.: Traveling waves in the nitric acid-iron(II) reaction. J. Phys. Chem. 89, 3050–3053 (1985)

    Article  Google Scholar 

  13. Yefimova, OYu., Kudryashov, N.A.: Exact solutions of the Burgers-Huxley equation. J. Appl. Math. Mech. 68(3), 413–420 (2004)

    Article  MathSciNet  Google Scholar 

  14. Estévez, P.G., Gordoa, P.R.: Painlevé analysis of the generalized Burgers-Hexley equation. J. Phys. A: Math. Gen. 23, 4831–4837 (1990)

    Article  MATH  Google Scholar 

  15. Estévez, P.G.: Non-classical symmetries and the singular manifold method: the Burgers and the Burgers-Huxley equations. J. Phys. A Math. Gen. 27(6), 2113–2127 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Korpinar, Z., Inc, M., Alshomrani, A.S., Baleanu, D.: On exact special solutions for the stochastic regularized long wave-Burgers equation. Adv. Difference Equ. 2020(1), 1–12 (2020)

    Article  MathSciNet  Google Scholar 

  17. Kudryashov, N.A.: Seven common errors in finding exact solutions of nonlinear differential equations. Commun. Nonlin. Sci. Numer. Simul. 14, 3507–3509 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lu, S., Guo, Y., Chen, L.: Periodic solutions for Liénard equation with an indefinite singularity. Nonlinear Anal. Real World Appl. 45, 542–556 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Deng, X.: Travelling wave solutions for the generalized Burgers-Huxley equation. Appl. Math. Comput. 204(2), 733–737 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Hashim, I., Noorani, M.S.M., Said Al-Hadidi, M.R.: Solving the generalized Burgers-Huxley equation using the Adomian decomposition method. Math. Comput. Model. 43(11–12), 1404–1411 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wazwaz, A.-M.: Analytic study on Burgers Fisher and Huxley equations and combined forms of these equations. Appl. Math. Comput. 195(2), 754–761 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Bataineh, A.S., Noorani, M.S.M., Hashim, I.: Analytical treatment of gBH equation by homotopy analysis method. Bull. Malays. Math. Sci. Soc. 32(2), 233–243 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Gao, H., Zhao, R.: New exact solutions to the generalized Burgers-Huxley equation. Appl. Math. Comput. 217(4), 1598–1603 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Triki, H., Wazwaz, A.: Soliton-like solutions to the generalized Burgers-Huxley equation with variable coefficients. Cent. Eur. J. Eng. 3(4), 660–668 (2013)

    Google Scholar 

  25. Neeraj, K.T.: Analytical solution of two dimensional nonlinear space-time fractional Burgers-Huxley equation using fractional sub-equation method. Nat. Acad. Sci. Lett. 41(5), 295–299 (2018)

    Article  MathSciNet  Google Scholar 

  26. Shanmuga Priya, T., Gomathi, T.: Lie symmetries and classifications of (2+1)-dimensional potential Huxley equation. Internat. J. Crea. Res. Thou. 6(1), 124–129 (2018)

    Google Scholar 

  27. Javidi, M.: Spectral collocation method for the solution of the generalized Burger-Fisher equation. Appl. Math. Comput. 174, 345–352 (2006)

    MathSciNet  MATH  Google Scholar 

  28. Wazwaz, A.M.: The tanh method for generalized forms of nonlinear heat conduction and Burgers-Fisher equations. Appl. Math. Comput. 169, 321–338 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Kudryashov, N.A.: One method for finding exact solutions of nonlinear differential equations. Commun. Nonlinear Sci. Numer. Simul. 17(6), 2248–2253 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ege, S.M., Misirli, E.: Solutions of the space-time fractional foam-drainage equation and the fractional Klein-Gordon equation by use of modified Kudryashov method. Int. J. Res. Advent Technol. 2(3), 384–388 (2014)

    Google Scholar 

  31. Yang, X.-F., Deng, Z.-C., Wei, Y.: A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application. Adv. Difference Equ. 2015(17), 17 (2015)

    MathSciNet  MATH  Google Scholar 

  32. Leta, T.D., et al.: Dynamical behavior of traveling wave Solutions for a \((2+1)\)-dimensional Bogoyavlenskii coupled system. Qual. Theory Dyn. Syst. 20(1), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  33. Leta, T.D., Liu, W., El Achab, A.: Dynamics of singular traveling wave solutions of a short Capillary-Gravity wave equation. J Appl. Anal. Comput. 11(3), 1191–1207 (2021)

    MathSciNet  Google Scholar 

  34. Li, J.: Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions. Science, Beijing (2013)

    Google Scholar 

  35. Leta, T.D., Li, J.: Various exact soliton solutions and bifurcations of a generalized Dullin-Gottwald-Holm equation with a power law nonlinearity. Internat. J. Bifur. Chaos 27(8), 1750129 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J., Chen, G.: On a class of singular nonlinear traveling wave equations. Internat. J. Bifur. Chaos 17(11), 4049–4065 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (1990)

    MATH  Google Scholar 

  38. Arai, A.: Exactly solvable supersymmetric quantum mechanics. J. Math. Anal. Appl. 158(1), 63–79 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  39. Arai, A.: Exact solutions of multi-component nonlinear Schrödinger and Klein-Gordon equations in two-dimensional space time. J. Phys. A 34(20), 4281–4288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temesgen Desta Leta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author is supported by Talented Young Scientist Program of Ministry of Science and Technology of China (Ethiopia-18-010) and National Natural Science Foundation of China [Grant Number 1191101161]. The second author is supported by the National Natural Science Foundation of China [grant number 11771216]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leta, T.D., Liu, W., Rezazadeh, H. et al. Analytical Traveling Wave and Soliton Solutions of the \((2+1)\) Dimensional Generalized Burgers–Huxley Equation. Qual. Theory Dyn. Syst. 20, 90 (2021). https://doi.org/10.1007/s12346-021-00528-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00528-z

Keywords

Mathematics Subject Classification

Navigation