Skip to main content
Log in

The use of improved-F expansion method for the time-fractional Benjamin–Ono equation

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

This study investigates new exact solutions of the time-fractional Benjamin–Ono equation by using the improved-F expansion method. Here, the time-fractional derivative is considered in terms of Conformable fractional derivative (CFD). At first, the fractional complex transform is used to convert the time-fractional Benjamin–Ono equation to an ordinary differential equation. Secondly, the proposed method has applied the given equation to construct exact solutions. Finally, all obtained analytical solutions are presented at the end of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ali, M.R.: A truncation method for solving the time-fractional Benjamin–Ono equation. Hindawi J. Appl. Math. 2019, 1–7 (2019)

    Article  Google Scholar 

  2. Bai, Q., Shu, J., Li, L., Li, H.: Dynamical behavior of non-autonomous fractional stochastic reaction-diffusion equations. J. Math. Anal. Appl. 485, 123833 (2020)

    Article  MathSciNet  Google Scholar 

  3. Benjamin, T.B.: Internal waves of permanent form in fluid of greath depth. J. Fluid Mech. 29, 559–592 (1967)

    Article  Google Scholar 

  4. Bohannan, G.W.: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14, 1487–1498 (2008)

    Article  MathSciNet  Google Scholar 

  5. Cui, Y.: Uniqueness of solution for boundary value problems for fractional differential equations. Appl. Math. Lett. 51, 48–54 (2016)

    Article  MathSciNet  Google Scholar 

  6. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

    Article  MathSciNet  Google Scholar 

  7. Kaplan, M., San, S., Bekir, A.: On the exact solutions and conservation laws to the Benjamin–Ono equation. J. Appl. Anal. Comput. 8(1), 1–9 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Matsuno, Y.: Exact multi-soliton solution of the Benjamin–Ono equation. J. Phys. A Math. Gen. 12(4), 619–621 (1979)

    Article  Google Scholar 

  9. Molinet, L., Pilod, D.: The Cauchy problem for the Benjamin–Ono equation in \(L^2\) revisited. Anal. PDE 5(2), 365–397 (2012)

    Article  MathSciNet  Google Scholar 

  10. Neyrame, A., Roozi, A., Hosseini, S.S., Shafiof, S.M.: Exact travelling wave solutions for some nonlinear partial differential equations. J. King Saud Univ. Sci. 22(4), 275–278 (2010)

    Article  Google Scholar 

  11. Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  12. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. 39, 1082–1091 (1975)

    Article  MathSciNet  Google Scholar 

  13. Pindza, E., Maré, E.: Sinc collocation method for solving the Benjamin-Ono equation. J. Comput. Methods Phys. 2014, 392962 (2014)

  14. Podlubny, I.: Fractional differential equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  15. Satsuma, J., Ishimori, Y.: Periodic wave solutions of the Benjamin–Ono equation. J. Phys. Soc. 46, 681–687 (1979)

    Article  Google Scholar 

  16. Singh, J., Kumar, D., Nieto, J.J.: Chaos Solitons Fractals. Analysis of an El Nino-Southern Oscillation model with a new fractional derivative 99, 109–115 (2017)

    Google Scholar 

  17. Stenger, F.: Numerical methods based on Sinc and analytic functions. Springer, New York (1993)

    Book  Google Scholar 

  18. Sun, H., Chen, W.: Fractal derivative multi-scale model of fluid particle transverse accelerations in fully developed turbulence. Sci. China Ser. E Technol. Sci. 52(3), 680–683 (2009)

    Article  Google Scholar 

  19. Taşbozan, O.: New analytical solutions for time-fractional Benjamin–Ono equation arising internal waves in deep water. China Ocean Eng. 33(5), 593–600 (2019)

    Article  MathSciNet  Google Scholar 

  20. Yang, H., Sun, J., Fu, C.: Time- fractional Benjamin–Ono equation for algebraic gravity solitary waves in baroclinic athmosphere and exact multi-soliton solution as well as interaction. Commun. Non Sci. Numer. Simul. 71, 187–201 (2019)

    Article  Google Scholar 

  21. Weideman, J.A.C.: Computing the Hilbert transform on the real line. Math. Comput. 64(210), 745–762 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahar Karaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaman, B. The use of improved-F expansion method for the time-fractional Benjamin–Ono equation. RACSAM 115, 128 (2021). https://doi.org/10.1007/s13398-021-01072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01072-w

Keywords

Mathematics Subject Classification

Navigation