Skip to main content
Log in

On totally nonpositive matrices associated with a triple negatively realizable

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Let \(A \in {\mathbb {R}}^{n \times n}\) be a totally nonpositive matrix (t.n.p.) with rank r and principal rank p, that is, every minor of A is nonpositive and p is the size of the largest invertible principal submatrix of A. We introduce that a triple (nrp) will be called negatively realizable if there exists a t.n.p. matrix A of order n and such that its rank is r and its principal rank is p. In this work we extend the results obtained for irreducible totally nonnegative matrices given in Cantó and Urbano (Linear Algebra Appl 551:125–146. https://doi.org/10.1016/j.laa.2018.03.045, 2018) to t.n.p. matrices. For that, we consider the sequence of the first p-indices of A and study the linear dependence relations between their rows and columns. These relations allow us to construct t.n.p. matrices associated with a triple (nrp) negatively realizable and a specific sequence of the first p-indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, T.: Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987). https://doi.org/10.1016/0024-3795(87)90313-2

    Article  MathSciNet  MATH  Google Scholar 

  2. Bapat, R.B., Raghavan, T.E.S.: Nonnegative Matrices and Applications. Cambridge University Press, New York (1997)

    Book  Google Scholar 

  3. Bhatia, R.: Positive Definite Matrices, Princeton Ser. Appl. Math. (2007)

  4. Cantó, R., Urbano, A.M.: On the maximum rank of totally nonnegative matrices. Linear Algebra Appl. 551, 125–146 (2018). https://doi.org/10.1016/j.laa.2018.03.045

    Article  MathSciNet  MATH  Google Scholar 

  5. Cantó, R., Koev, P., Ricarte, B., Urbano, A.M.: LDU-factorization of nonsingular totally nonpositive matrices. SIAM J. Matrix Anal. Appl. 30, 777–782 (2008). https://doi.org/10.1137/060662897

    Article  MathSciNet  MATH  Google Scholar 

  6. Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in echelon form of totally nonpositive (negative) rectangular matrices. Linear Algebra Appl. 431, 2213–2227 (2009). https://doi.org/10.1016/j.laa.2009.07.020

    Article  MathSciNet  MATH  Google Scholar 

  7. Cantó, R., Ricarte, B., Urbano, A.M.: Quasi-\(LDU\) factorization of nonsingular totally nonpositive matrices. Linear Algebra Appl. 439, 836–851 (2013). https://doi.org/10.1016/j.laa.2012.06.010

    Article  MathSciNet  MATH  Google Scholar 

  8. Cantó, R., Ricarte, B., Urbano, A.M.: Full rank factorization in quasi-\(LDU\) form of totally nonpositive rectangular matrices. Linear Algebra Appl. 440, 61–82 (2014). https://doi.org/10.1016/j.laa.2013.11.002

    Article  MathSciNet  MATH  Google Scholar 

  9. Cantó, R., Peláez, M.J., Urbano, A.M.: On the characterization of totally nonpositive matrices. SeMA J. 73, 347–368 (2016). https://doi.org/10.1007/s40324-016-0073-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Fallat, S.M., van den Driessche, P.: On Matrices with all minors negative. Electron. J. Linear Algebra 7, 92–99 (2000). http://math.technion.ac.il/iic/ela

  11. Fallat, S.M., Gekhtman, M.I.: Jordan structure of totally nonnegative matrices. Can. J. Math. 57, 82–98 (2005). https://doi.org/10.4153/CJM-2005-004-0

    Article  MathSciNet  MATH  Google Scholar 

  12. Fallat, S.M, Johnson, C.R.: Totally Nonnegative Matrices. Princeton Ser. Appl. Math. (2011)

  13. Fallat, S.M., Gekhtman, M.I., Johnson, C.R.: Spectral structures of irreducible totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 22, 627–645 (2000). https://doi.org/10.1137/S0895479800367014

    Article  MathSciNet  MATH  Google Scholar 

  14. Gasca, M., Micchelli, C.A.: Total Positivity and Applications. Math. Appl., 359, Kluwer Academic Publishers, Dordrecht (1996)

  15. Huang, R., Chu, D.: Total nonpositivity of nonsingular matrices. Linear Algebra Appl. 432, 2931–2941 (2010). https://doi.org/10.1016/j.laa.2009.12.043

    Article  MathSciNet  MATH  Google Scholar 

  16. Karlin, S.: Total Nonpositivity, vol. I. Stanford University Press, Stanford (1968)

    Google Scholar 

  17. Parthasarathy, T., Ravindran, G.: N-matrices. Linear Algebra Appl. 139, 89–102 (1990). https://doi.org/10.1016/0024-3795(90)90390-X

    Article  MathSciNet  MATH  Google Scholar 

  18. Pinkus, A.: Totally Positive Matrices. Cambridge University Press, New York (2010)

    MATH  Google Scholar 

  19. Saigal, R.: On the class of complementary cones and Lemke’s algorithm. SIAM J. Appl. Math. 23, 46–60 (1972). https://www.jstor.org/stable/2099622

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Cantó.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Ministerio de Economía y Competividad under the Spanish DGI Grant MTM2017-85669-P-AR.

Appendix

Appendix

In this section, we construct Algorithm 2 associated with Procedure 1 to obtain an upper block echelon TN matrix \(V\in {\mathbb {R}}^{n \times n}\) with \(\mathop {\mathrm{rank}}\nolimits (V)=r\), \(p\)-\(\mathop {\mathrm{rank}}\nolimits (V)=p\) and the sequence of its first p-indices given by \(\{ 1,i_2,\ldots ,i_p \}\). To apply Algorithm 2 we introduce Algorithm 1 given in [4, Algorithm 1] in order to know the maximum rank of a matrix depending on the sequence of its first p-indices.

figure b
figure c

Finally, we consider a triple \((n,r,p) (1,i_2,\ldots ,i_p)\)-negatively realizable of the type-I (type-II), and we construct Algorithm 3 (Algorithm 4) to obtain a type-I (type-II) t.n.p. matrix A associated with the given triple. These algorithms are based on Procedure 2.

figure d
figure e

As we have seen in the proof of Proposition 8 to obtain a t.n.p. matrix by Procedure 2 we only need that \(\, d_{1} \ge \sum _{j=2}^{i_p} v_{jn}\). As a consequence, from Algorithms 3 and 4, we can obtain different type-I and type-II t.n.p. matrices associated with the given triple by changing the value of D(1, 1) and whenever \(D(1,1) \le -t*V(:,n)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cantó, B., Cantó, R. & Urbano, A.M. On totally nonpositive matrices associated with a triple negatively realizable. RACSAM 115, 134 (2021). https://doi.org/10.1007/s13398-021-01073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01073-9

Keywords

Mathematics Subject Classification

Navigation