Skip to main content
Log in

Gevrey regularity of the solutions of the inhomogeneous partial differential equations with a polynomial semilinearity

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this article, we are interested in the Gevrey properties of the formal power series solution in time of the partial differential equations with a polynomial semilinearity and with analytic coefficients at the origin of \({\mathbb {C}}^{n+1}\). We prove in particular that the inhomogeneity of the equation and the formal solution are together s-Gevrey for any \(s\ge s_c\), where \(s_c\) is a nonnegative rational number fully determined by the Newton polygon of the associated linear PDE. In the opposite case \(s<s_c\), we show that the solution is generically \(s_c\)-Gevrey while the inhomogeneity is s-Gevrey, and we give an explicit example in which the solution is \(s'\)-Gevrey for no \(s'<s_c\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We denote \(\widetilde{f}\) with a tilde to emphasize the possible divergence of the series \(\widetilde{f}\).

  2. We have thereby \(s_c=1\) in the case of Eq. (1.3); and, in the case of Eq. (1.4), \(s_c=p/\kappa -1\) when \(p>\kappa \), and \(s_c=0\) when \(p\le \kappa \). For the definition of the Newton polygon, we refer to Sect. 2 below.

  3. This is obvious due to the filtration of the Gevrey spaces (see Sect. 3.1) and the first point of Proposition 1.

  4. These numbers were named in honor of the mathematician Eugène Charles Catalan (1814–1894). They appear in many probabilist, graphs and combinatorial problems. For example, they can be seen as the number of d-ary trees with m source-nodes, or as the number of ways of associating m applications of a given d-ary operation, or as the number of ways of subdividing a convex polygon into m disjoint (\(d+1\))-gons by means of non-intersecting diagonals. They also appear in theoretical computers through the generalized Dyck words. See for instance [4] and the references inside.

  5. Of course, this case only occurs when \({\mathcal {S}}\ne \emptyset \).

References

  1. Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Universitext. Springer, NewYork (2000)

  2. Balser, W., Loday-Richaud, M.: Summability of solutions of the heat equation with inhomogeneous thermal conductivity in two variables. Adv. Dyn. Syst. Appl. 4(2), 159–177 (2009)

    MathSciNet  Google Scholar 

  3. Canalis-Durand, M., Ramis, J.P., Schäfke, R., Sibuya, Y.: Gevrey solutions of singularly perturbed differential equations. J. Reine Angew. Math. 518, 95–129 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Hilton, P., Pedersen, J.: Catalan numbers, their generalization, and their uses. Math. Intelligencer 13(2), 64–75 (1991)

    Article  MathSciNet  Google Scholar 

  5. Klarner, D.A.: Correspondences between plane trees and binary sequences. J. Combin. Theory 9, 401–411 (1970)

    Article  MathSciNet  Google Scholar 

  6. Lastra, A., Malek, S.: On parametric Gevrey asymptotics for some nonlinear initial value Cauchy problems. J. Differ. Equ. 259, 5220–5270 (2015)

    Article  MathSciNet  Google Scholar 

  7. Lastra, A., Malek, S.: On parametric multisummable formal solutions to some nonlinear initial value Cauchy problems. Adv. Differ. Equ. 2015, 200 (2015)

    Article  MathSciNet  Google Scholar 

  8. Lastra, A., Malek, S., Sanz, J.: On Gevrey solutions of threefold singular nonlinear partial differential equations. J. Differ. Equ. 255, 3205–3232 (2013)

    Article  MathSciNet  Google Scholar 

  9. Lastra, A., Tahara, H.: Maillet type theorem for nonlinear totally characteristic partial differential equations. Math. Ann. 377, 1603–1641 (2020)

    Article  MathSciNet  Google Scholar 

  10. Loday-Richaud, M.: Divergent Series, Summability and Resurgence II. Simple and Multiple Summability, Lecture Notes in Mathematics, vol. 2154. Springer, New York (2016)

  11. Malek, S.: On the summability of formal solutions of nonlinear partial differential equations with shrinkings. J. Dyn. Control Syst. 13(1), 1–13 (2007)

    Article  MathSciNet  Google Scholar 

  12. Malek, S.: On Gevrey asymptotic for some nonlinear integro-differential equations. J. Dyn. Control Syst. 16(3), 377–406 (2010)

    Article  MathSciNet  Google Scholar 

  13. Malek, S.: On the summability of formal solutions for doubly singular nonlinear partial differential equations. J. Dyn. Control Syst. 18(1), 45–82 (2012)

    Article  MathSciNet  Google Scholar 

  14. Miyake, M.: Newton polygons and formal Gevrey indices in the Cauchy–Goursat–Fuchs type equations. J. Math. Soc. Jpn. 43(2), 305–330 (1991)

    Article  MathSciNet  Google Scholar 

  15. Miyake, M., Shirai, A.: Convergence of formal solutions of first order singular nonlinear partial differential equations in the complex domain. Ann. Polon. Math. 74, 215–228 (2000)

    Article  MathSciNet  Google Scholar 

  16. Miyake, M., Shirai, A.: Structure of formal solutions of nonlinear first order singular partial differential equations in complex domain. Funkcial. Ekvac. 48, 113–136 (2005)

    Article  MathSciNet  Google Scholar 

  17. Miyake, M., Shirai, A.: Two proofs for the convergence of formal solutions of singular first order nonlinear partial differential equations in complex domain. Surikaiseki Kenkyujo Kokyuroku Bessatsu, Kyoto Unviversity B37, 137–151 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Nagumo, M.: Über das Anfangswertproblem partieller Differentialgleichungen. Jpn. J. Math. 18, 41–47 (1942)

    Article  MathSciNet  Google Scholar 

  19. Ouchi, S.: Multisummability of formal solutions of some linear partial differential equations. J. Differ. Equ. 185(2), 513–549 (2002)

    Article  MathSciNet  Google Scholar 

  20. Pliś, M.E., Ziemian, B.: Borel resummation of formal solutions to nonlinear Laplace equations in 2 variables. Ann. Polon. Math. 67(1), 31–41 (1997)

    Article  MathSciNet  Google Scholar 

  21. Pólya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis, Vol. I, vol. 125. Springer, Berlin (1954)

  22. Ramis, J.P.: Dévissage Gevrey. Astérisque, Soc. Math. Fr. Paris 59–60, 173–204 (1978)

    MATH  Google Scholar 

  23. Ramis, J.P.: Théorémes d’indices Gevrey pour les équations différentielles ordinaires. Mem. Amer. Math. Soc. 48, viii+95 (1984)

  24. Remy, P.: Gevrey index theorem for some inhomogeneous semilinear partial differential equations with variable coefficients. hal-02263353, version 1 (submitted for publication)

  25. Remy, P.: Gevrey order and summability of formal series solutions of some classes of inhomogeneous linear partial differential equations with variable coefficients. J. Dyn. Control Syst. 22(4), 693–711 (2016)

    Article  MathSciNet  Google Scholar 

  26. Remy, P.: Gevrey order and summability of formal series solutions of certain classes of inhomogeneous linear integro-differential equations with variable coefficients. J. Dyn. Control Syst. 23(4), 853–878 (2017)

    Article  MathSciNet  Google Scholar 

  27. Remy, P.: Gevrey properties and summability of formal power series solutions of some inhomogeneous linear Cauchy–Goursat problems. J. Dyn. Control Syst. 26(1), 69–108 (2020)

    Article  MathSciNet  Google Scholar 

  28. Remy, P.: Gevrey index theorem for the inhomogeneous \(n\)-dimensional heat equation with a power-law nonlinearity and variable coefficients. Acta Sci. Math. (Szeged) 87(1–2), 163–181 (2021)

  29. Shirai, A.: Maillet type theorem for nonlinear partial differential equations and Newton polygons. J. Math. Soc. Jpn. 53, 565–587 (2001)

    Article  MathSciNet  Google Scholar 

  30. Shirai, A.: Convergence of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type. Funkcial. Ekvac. 45, 187–208 (2002)

    MathSciNet  MATH  Google Scholar 

  31. Shirai, A.: A Maillet type theorem for first order singular nonlinear partial differential equations. Publ. RIMS. Kyoto Univ. 39, 275–296 (2003)

    Article  MathSciNet  Google Scholar 

  32. Shirai, A.: Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type. Surikaiseki Kenkyujo Kokyuroku, Kyoto University 1431, 94–106 (2005)

    Google Scholar 

  33. Shirai, A.: Alternative proof for the convergence of formal solutions of singular first order nonlinear partial differential equations. J. Sch. Educ. Sugiyama Jogakuen Univ. 1, 91–102 (2008)

    Google Scholar 

  34. Shirai, A.: Gevrey order of formal solutions of singular first order nonlinear partial differential equations of totally characteristic type. J. Sch. Educ. Sugiyama Jogakuen Univ. 6, 159–172 (2013)

    Google Scholar 

  35. Shirai, A.: Maillet type theorem for singular first order nonlinear partial differential equations of totally characteristic type, part ii. Opuscula Math. 35(5), 689–712 (2015)

    Article  MathSciNet  Google Scholar 

  36. Tahara, H.: Gevrey regularity in time of solutions to nonlinear partial differential equations. J. Math. Sci. Univ. Tokyo 18, 67–137 (2011)

    MathSciNet  MATH  Google Scholar 

  37. Tahara, H., Yamazawa, H.: Multisummability of formal solutions to the Cauchy problem for some linear partial differential equations. J. Differ. Equ. 255(10), 3592–3637 (2013)

    Article  MathSciNet  Google Scholar 

  38. Walter, W.: An elementary proof of the Cauchy–Kowalevsky theorem. Am. Math. Monthly 92(2), 115–126 (1985)

    Article  MathSciNet  Google Scholar 

  39. Yonemura, A.: Newton polygons and formal Gevrey classes. Publ. Res. Inst. Math. Sci. 26, 197–204 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Remy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Remy, P. Gevrey regularity of the solutions of the inhomogeneous partial differential equations with a polynomial semilinearity. RACSAM 115, 145 (2021). https://doi.org/10.1007/s13398-021-01085-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01085-5

Keywords

Mathematics Subject Classification

Navigation