Skip to main content
Log in

New properties of the divided difference of psi and polygamma functions

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Let \(\psi _{n}=\left( -1\right) ^{n-1}\psi ^{\left( n\right) }\) for \(n\ge 0\) , where \(\psi ^{\left( n\right) }\) stands for the psi and polygamma functions. For \(p,q\in \mathbb {R}\) and \(\rho =\min \left( p,q\right) \), let

$$\begin{aligned} D\left[ x+p,x+q;\psi _{n-1}\right] \equiv -\phi _{n}\left( x\right) \end{aligned}$$

be the divided difference of the functions \(\psi _{n-1}\) for \(x>-\rho \). In this paper, we prove that for \(\left| p-q\right| \gtrless 1\), the sequences \(\{\xi _{n}\left( x\right) \}_{n\in \mathbb {N}}\) and \(\{\eta _{n}\left( x\right) \}_{n\in \mathbb {N}}\) defined by

$$\begin{aligned} \xi _{n}\left( x\right) =\frac{n\phi _{n}\left( x\right) }{\phi _{n+1}\left( x\right) }-x\text { and }\eta _{n}\left( x\right) =\left[ \frac{\phi _{n}\left( x\right) }{\left( n-1\right) !}\right] ^{-1/n}-x \end{aligned}$$

are strictly decreasing (increasing) and converge to \(\min \left( p,q\right) \). Furthermore, if \(\left| p-q\right| \gtrless 1\), then the functions \(x\mapsto \xi _{n}\left( x\right) \) and \(x\mapsto \eta _{n}\left( x\right) \) are strictly increasing (decreasing) from \(\left( -\rho ,\infty \right) \) onto \(\left( \rho ,\left( p+q-1\right) /2\right) \) (\(\left( \left( p+q-1\right) /2,\rho \right) \)). These not only generalize and strengthen some known results, but also yield several new sharp bounds involving polygamma functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing. Dover Publications, New York (1972)

    Google Scholar 

  2. Yang, Z.-H., Zheng, S.-Z.: Monotonicity of a mean related to psi and polygamma functions with an application. J. Inequal. Appl. (2016). https://doi.org/10.1186/s13660-016-1155-4

    Article  Google Scholar 

  3. Yang, Z.-H., Tian, J.-F., Ha, M.-H.: A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder. Proc. Am. Math. Soc. 148(5), 2163–2178 (2020). https://doi.org/10.1090/proc/14917

    Article  MathSciNet  MATH  Google Scholar 

  4. Yang, Z.-H., Tian, J.-F.: Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3603–3617 (2019). https://doi.org/10.1090/proc/14917

    Article  MathSciNet  MATH  Google Scholar 

  5. Yang, Z.-H., Tian, J.-F.: Asymptotic expansions for the gamma function in terms of hyperbolic functions. J. Math. Anal. Appl. 478(1), 133–155 (2019). https://doi.org/10.1016/j.jmaa.2019.05.022

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, Z.-H., Tian, J.-F., Wang, M.-K.: A positive answer to Bhatia-Li conjecture on the monotonicity for a new mean in its parameter. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(126), 22 (2020). https://doi.org/10.1007/s13398-020-00856-w

    Article  MathSciNet  MATH  Google Scholar 

  7. Alzer, H.: On some inequalities for the gamma and psi functions. Math. Comput. 66(217), 373–389 (1997). https://doi.org/10.1090/S0025-5718-97-00807-7

    Article  MathSciNet  MATH  Google Scholar 

  8. Alzer, H., Wells, J.: Inequalities for the polygamma functions. SIAM J. Math. Anal. 29, 1459–1466 (1998). https://doi.org/10.1137/S0036141097325071

    Article  MathSciNet  MATH  Google Scholar 

  9. Alzer, H.: Inequalities for the gamma and polygamma functions. Abh. Math. Sem. Univ. Hamburg 68, 363–372 (1998). https://doi.org/10.1007/BF02942573

    Article  MathSciNet  MATH  Google Scholar 

  10. Alzer, H.: Mean-value inequalities for the polygamma functions. Aequationes Math. 61, 151–161 (2001). https://doi.org/10.1007/s000100050167

    Article  MathSciNet  MATH  Google Scholar 

  11. Allasia, G., Giordano, C., Pečarić, J.: Inequalities for the gamma function relating to asymptotic expasions. Math. Inequal. Appl. 5(3), 543–555 (2002). https://doi.org/10.7153/mia-05-54

    Article  MathSciNet  MATH  Google Scholar 

  12. Alzer, H.: Sharp inequalities for the digamma and polygamma functions. Forum Math. 16, 181–221 (2004). https://doi.org/10.1515/form.2004.009

    Article  MathSciNet  MATH  Google Scholar 

  13. Batir, N.: Some new inequalities for gamma and polygamma functions. J. Inequal. Pure Appl. Math. 6(4), 103 (2005) http://www.emis.de/journals/JIPAM/article577.html

  14. Batir, N.: On some properties of digamma and polygamma functions. J. Math. Anal. Appl. 328(1), 452–465 (2007). https://doi.org/10.1016/j.jmaa.2006.05.065

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, A.-J., Cheng, C.-P.: Some completely monotonic functions involving the gamma and polygamma functions. J. Korean Math. Soc. 45(1), 273–287 (2008). https://doi.org/10.4134/JKMS.2008.45.1.273

    Article  MathSciNet  MATH  Google Scholar 

  16. Mortici, C.: Very accurate estimates of the polygamma functions. Asymptot. Anal. 68(3), 125–134 (2010). https://doi.org/10.3233/ASY-2010-0983

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, B.-N., Qi, F.: Some properties of the psi and polygamma functions. Hacet. J. Math. Stat. 39(2), 219–231 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Qi, F., Guo, S., Guo, B.-N.: Complete monotonicity of some functions involving polygamma functions. J. Comput. Appl. Math. 233, 2149–2160 (2010). https://doi.org/10.1016/j.cam.2009.09.044

    Article  MathSciNet  MATH  Google Scholar 

  19. Qi, F., Guo, B.-N.: Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 111(2), 425–434 (2017). https://doi.org/10.1007/s13398-016-0302-6

    Article  MathSciNet  MATH  Google Scholar 

  20. Guo, B.-N., Qi, F.: A completely monotonic function involving the tri-gamma function and with degree one. Appl. Math. Comput. 218(19), 9890–9897 (2012). https://doi.org/10.1016/j.amc.2012.03.075

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, B.-N., Qi, F.: Refinements of lower bounds for polygamma functions. Proc. Am. Math. Soc. 141(3), 1007–1015 (2013). https://doi.org/10.1090/S0002-9939-2012-11387-5

    Article  MathSciNet  MATH  Google Scholar 

  22. Tian, J.-F., Yang, Z.: Asymptotic expansions of Gurland’s ratio and sharp bounds for their remainders. J. Math. Anal. Appl. 493(124545), 19 (2021). https://doi.org/10.1016/j.jmaa.2020.124545

  23. Yang, Z.-H., Chu, Y.-M., Tao, X.-J.: A double inequality for the trigamma function and its applications. Abstr. Appl. Anal. 2014(702718), 9 (2014). https://doi.org/10.1155/2014/702718

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, Z.-H., Chu, Y.-M., Zhang, X.-H.: Sharp bounds for psi function. Appl. Math. Comput. 268, 1055–1063 (2015). https://doi.org/10.1016/j.amc.2015.07.012

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, B.-N., Qi, F., Zhao, J.-L., Luo, Q.-M.: Sharp inequalities for polygamma functions. Math. Slovaca 65(1), 103–120 (2015). https://doi.org/10.1515/ms-2015-0010

    Article  MathSciNet  MATH  Google Scholar 

  26. Qi, F., Guo, B.-N.: Complete monotonicity of divided differences of the di- and tri-gamma functions with applications. Georgian Math. J. (2016). https://doi.org/10.1515/gmj-2016-0004

    Article  MathSciNet  MATH  Google Scholar 

  27. Yang, Z.-H.: Approximations for certain hyperbolic functions by partial sums of their Taylor series and completely monotonic functions related to gamma function. J. Math. Anal. Appl. 441, 549–564 (2016). https://doi.org/10.1016/j.jmaa.2016.04.029

    Article  MathSciNet  MATH  Google Scholar 

  28. Yang, Z., Tian, J.-F.: Monotonicity rules for the ratio of two Laplace transforms with applications. J. Math. Anal. Appl. 470(2), 821–845 (2019). https://doi.org/10.1016/j.jmaa.2018.10.034

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, L.: New bounds for the function involving incomplete gamma function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 901–908 (2019). https://doi.org/10.1007/s13398-018-0519-7

    Article  MathSciNet  MATH  Google Scholar 

  30. Qi, F., Li, W.H., Yu, S.B., Du, X.Y., Guo, B.N.: A ratio of finitely many gamma functions and its properties with applications. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(39), 14 (2021). https://doi.org/10.1007/s13398-020-00988-z

  31. Gao, P.: Properties, some monotonicity, of gamma and q-gamma functions. ISRN Math. Anal. 3757375715, 15 (2011). https://doi.org/10.5402/2011/375715

    Article  MATH  Google Scholar 

  32. Qi, F.: Lower bound of sectional curvature of manifold of beta distributions and complete monotonicity of functions involving polygamma functions. MDPI Preprints 2020110315, 22 (2020). https://doi.org/10.20944/preprints202011.0315.v1

    Article  Google Scholar 

  33. Yang, Z.-H.: Some properties of the divided difference of psi and polygamma functions. J. Math. Anal. Appl. 455, 761–777 (2017). https://doi.org/10.1016/j.jmaa.2017.05.081

    Article  MathSciNet  MATH  Google Scholar 

  34. Qi, F.: Some properties of several functions involving polygamma functions and originating from the sectional curvature of the beta manifold. São Paulo J. Math. Sci. 14(2), 614–630 (2020). https://doi.org/10.1007/s40863-020-00193-1

    Article  MathSciNet  MATH  Google Scholar 

  35. Le Brigant, A., Puechmorel, S.: The Fisher-Rao geometry of beta distributions applied to the study of canonical moments, arXiv preprint (2019). arxiv: 1904.08247

  36. Le Brigant, A., Preston, S., Puechmorel, S.: Fisher-Rao geometry of Dirichlet distributions. Differ. Geom. Appl. 74, 101702 (2021). https://doi.org/10.1016/j.difgeo.2020.101702

    Article  MathSciNet  MATH  Google Scholar 

  37. Elezović, N., Giordano, C., Pečarić, J.: The best bounds in Gautschi’s inequality. Math. Inequal. Appl. 3(2), 239–252 (2000). https://doi.org/10.7153/mia-03-26

  38. Chen, C.-P.: Monotonicity and convexity for the gamma function. J. Inequal. Pure Appl. Math. 6(4), 100 (2005). http://www.emis.de/journals/JIPAM/article574.html

  39. Qi, F., Guo, B.-N.: Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications. Commun. Pure Appl. Anal. 8(6), 1975–1989 (2009). https://doi.org/10.3934/cpaa.2009.8.1975

    Article  MathSciNet  MATH  Google Scholar 

  40. Qi, F., Guo, B.-N.: Necessary and sufficient conditions for functions involving the tri- and tetra-gamma functions to be completely monotonic. Adv. Appl. Math. 44(1), 71–83 (2010). https://doi.org/10.1016/j.aam.2009.03.003

    Article  MathSciNet  MATH  Google Scholar 

  41. Qi, F., Guo, B.-N.: A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications. J. Korean Math. Soc. 48(3), 655–667 (2011). https://doi.org/10.4134/JKMS.2011.48.3.655

    Article  MathSciNet  MATH  Google Scholar 

  42. Qi, F., Guo, B.-N.: An alternative proof of Elezović-Giordano-Pečarić’s theorem. Math. Inequal. Appl. 14(1), 73–78 (2011). https://doi.org/10.7153/mia-14-06

  43. Qi, F., Agarwal, R.P.: On complete monotonicity for several classes of functions related to ratios of gamma functions. J. Inequal. Appl. (2019). https://doi.org/10.1186/s13660-019-1976-z

    Article  MathSciNet  Google Scholar 

  44. Gao, P.: Some completely monotonic functions involving the polygamma functions. J. Inequal. Appl. (2019). https://doi.org/10.1186/s13660-019-2172-x

    Article  MathSciNet  Google Scholar 

  45. Yang, Z.-H., Chu, Y.M.: Monotonicity and absolute monotonicity for the two-parameter hyperbolic and trigonometric functions with applications. J. Inequal. Appl. (2016). https://doi.org/10.1186/s13660-016-1143-8

    Article  MathSciNet  MATH  Google Scholar 

  46. Yang, Z.-H., Zheng, S.-Z.: Complete monotonicity involving some ratios of gamma functions. J. Inequal. Appl. (2017). https://doi.org/10.1186/s13660-017-1527-4

    Article  MathSciNet  MATH  Google Scholar 

  47. Yang, Z.-H., Tian, J.: Monotonicity and inequalities for the gamma function. J. Inequal. Appl. (2017). https://doi.org/10.1186/s13660-017-1591-9

    Article  MathSciNet  MATH  Google Scholar 

  48. Yang, Z.-H., Tian, J.-F.: A class of completely mixed monotonic functions involving the gamma function with applications. Proc. Am. Math. Soc. 146(11), 4707–4721 (2018). https://doi.org/10.1090/proc/14199

    Article  MathSciNet  MATH  Google Scholar 

  49. Yang, Z., Tian, J.-F.: A comparison theorem for two divided differences and applications to special functions. J. Math. Anal. Appl. 464(1), 580–595 (2018). https://doi.org/10.1016/j.jmaa.2018.04.024

    Article  MathSciNet  MATH  Google Scholar 

  50. Yang, Z.-H., Zheng, S.-Z.: Complete monotonicity and inequalites involving Gurland’s ratios of gamma functions. Math. Inequal. Appl. 22(1), 97–109 (2019). https://doi.org/10.7153/mia-2019-22-07

  51. Pólya, G., Szegö, G.: Problems and Theorems in Analysis I. Springer, Berlin (1998)

    Book  Google Scholar 

  52. Alzer, H.: Sub- and superadditive properties of Euler’s gamma function. Proc. Am. Math. Soc. 135(11), 3641–3648 (2007). https://doi.org/10.1090/S0002-9939-07-09057-0

  53. Qi, F., Guo, B.-N.: An inequality involving the gamma and digamma functions. J. Appl. Anal. 22(1), 49–54 (2016). https://doi.org/10.1515/jaa-2016-0005

    Article  MathSciNet  MATH  Google Scholar 

  54. Rosenbaum, R.A.: Subadditive functions. Duke Math. J. 17, 227–242 (1950)

    Article  MathSciNet  Google Scholar 

  55. Petrović, M.: Sur une équation fonctionnelle. Publ. Math. Univ. Belgrade 1, 149–156 (1932)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hang Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the Fundamental Research Fund for the Central Universities under Grant 2015ZD29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, JF., Yang, ZH. New properties of the divided difference of psi and polygamma functions. RACSAM 115, 147 (2021). https://doi.org/10.1007/s13398-021-01084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01084-6

Keywords

Mathematics Subject Classification

Navigation