Skip to main content
Log in

On two-generator Fibonacci numerical semigroups with a prescribed genus

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

A numerical semigroup S is a subset of the set of nonnegative integers closed under addition, containing the zero element and with finite complement in \({\mathbb {N}}_{0}\) (this finite cardinality is named the genus of S). It is well-known that every numerical semigroup S is finitely generated and there are many works concerning the properties of numerical semigroups with a particular type of generators. For instance, Song (Bull Korean Math Soc 57:623–647, 2020) worked on these semigroups whose generators are Thabit numbers of the first, second kind base b and Cunningham numbers. A classical result of Sylvester ensures that if \(\gcd (a,b) = 1\), then the numerical semigroup \(\langle a, b \rangle \) has genus \(\frac{(a-1)(b-1)}{2}\). In this paper, we search for two-generator numerical semigroups whose generators and/or the genus are related to Fibonacci numbers. Our propose is fixing the sets AB and G and looking for triples \((a, b, g) \in A\times B\times G\), where at least one of the sets is related to the Fibonacci numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. On-Line Encyclopedia of Integer Sequences.

References

  1. Benjamin, A.T., Quinn, J.J.: The Fibonacci numbers—exposed more discretely. J. Math. Mag. 76, 182–192 (2003)

    MathSciNet  MATH  Google Scholar 

  2. Bilu, Yu., Hanrot, G., Voutier, P.: Existence of primitive divisors of Lucas and Lehmer numbers (with an appendix by M. Mignotte). J. Reine Angew. Math. 539, 75–122 (2001)

  3. Bras-Amorós, M.: Fibonacci-like behavior of the number of numerical semigroups of a given genus. Semigroup Forum 76, 379–384 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bugeaud, Y., Mignotte, M., Siksek, S.: Sur les nombres de Fibonacci de la forme \(q^ky^p\). C. R. Acad. Sci. Paris 339, 327–330 (2004)

    Article  MathSciNet  Google Scholar 

  5. Bugeaud, Y., Mignotte, M., Luca, F., Siksek, S.: Perfect powers from products of terms in Lucas sequences. J. Reine Angew. Math. 611, 109–129 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bugeaud, Y., Mignotte, M., Siksek, S.: Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas powers. Ann. Math. 163, 969–1018 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dujella, A., Pethő, A.: A generalization of a theorem of Baker and Davenport. Q. J. Math. Oxf. Ser. 49, 291–306 (1998)

    Article  MathSciNet  Google Scholar 

  8. Eliahou, S., Ramírez Alfonsín, J.L.: Two-generator numerical semigroups and Fermat and Mersenne numbers. SIAM J. Discrete Math. 25, 622–630 (2011)

    Article  MathSciNet  Google Scholar 

  9. Eliahou, S., Ramírez Alfonsín, J.L.: On the number of numerical semigroups \(\langle a, b\rangle \) of prime power genus. Semigroup Forum 87, 171–186 (2013)

    Article  MathSciNet  Google Scholar 

  10. Elizalde, S.: Improved bounds on the number of numerical semigroups of a given genus. J. Pure Appl. Algebra 214, 1862–1873 (2010)

    Article  MathSciNet  Google Scholar 

  11. Fel, L.: Symmetric numerical semigroups generated by Fibonacci and Lucas triples. Integers 9, #A09 (2009)

  12. Kalman, D., Mena, R.: The Fibonacci Numbers-Exposed. Math. Mag. 76, 167–181 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Koshy, T.: Fibonacci and Lucas Numbers with Applications. Wiley, New York (2001)

    Book  Google Scholar 

  14. Lagarias, J.: The set of primes dividing the Lucas numbers has density \(2/3\). Pac. J. Math. 118, 449–461 (1985)

    Article  MathSciNet  Google Scholar 

  15. Lengyel, T.: The order of the Fibonacci and Lucas numbers. Fibonacci Q. 33, 234–239 (1995)

    MathSciNet  MATH  Google Scholar 

  16. Marin, J., Ramirez Alfonsín, J., Revuelta, M.: On the Frobenius number of Fibonacci numerical semigroups. Integers 7, #A14 (2007)

  17. Marques, D.: Sharper upper bounds for the order of appearance in the Fibonacci sequence. Fibonacci Q. 50, 233–238 (2013)

    MATH  Google Scholar 

  18. Marques, D.: Fixed points of the order of appearance in the Fibonacci sequence. Fibonacci Q. 50, 346–352 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Matthews, G.L.: Frobenius numbers of generalized fibonacci semigroups. In: Landman, B., Nathanson, M.B., Ne\(\check{s}\)etril, J., Nowakowski, R.J., Pomerance, C., Robertson, A. (eds.) Combinatorial Number Theory, pp. 117-124. De Gruyter, Berlin, New York (2009)

  20. Matveev, E.M.: An explicit lower bound for a homogeneous rational linear form in logarithms of algebraic numbers. II. Izv. Math. 64, 1217–1269 (2000)

    Article  MathSciNet  Google Scholar 

  21. Ramírez Alfonsín, J.L.: Complexity of the Frobenius problem. Combinatorica 16, 143–147 (1996)

    Article  MathSciNet  Google Scholar 

  22. Ribenboim, P.: My Numbers, My Friends: Popular Lectures on Number Theory. Springer, New York (2000)

    MATH  Google Scholar 

  23. Song, K.: The Frobenius problem for numerical semigroups generated by the Thabit numbers of the first, second kind base \(b\) and the Cunningham numbers. Bull. Korean Math. Soc. 57, 623–647 (2020)

    MathSciNet  MATH  Google Scholar 

  24. Sun, Z.H., Sun, Z.W.: Fibonacci numbers and Fermat’s last theorem. Acta Arith. 60, 371–388 (1992)

    Article  MathSciNet  Google Scholar 

  25. Sylvester, J.J.: On subinvariants, i.e. semi-invariants to binary quantities of an unlimited order. Am. J. Math. 5, 79–136 (1882)

    Article  Google Scholar 

  26. Wall, D.D.: Fibonacci series modulo \(m\). Am. Math. Mon. 67, 525–532 (1960)

    Article  MathSciNet  Google Scholar 

  27. Zhai, A.: Fibonacci-like growth of numerical semigroups of a given genus. Semigroup Forum 86, 634–662 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank to the anonymous referees for their careful corrections and their comments that helped to improve the quality of the paper.

Funding

Matheus Bernardini was supported by University of Brasilia, Edital DPI/DIRPE 03/2020. Diego Marques is supported by CNPq—Brazil. Pavel Trojovský was supported by the Project of Excellence PrF UHK no. 2214/2021, University of Hradec Králové, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardini, M., Marques, D. & Trojovský, P. On two-generator Fibonacci numerical semigroups with a prescribed genus. RACSAM 115, 149 (2021). https://doi.org/10.1007/s13398-021-01091-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01091-7

Keywords

Mathematics Subject Classification

Navigation