Skip to main content
Log in

A multicriteria approach to manage credit risk under strict uncertainty

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

Assessing the ability of applicants to repay their loans is generally recognized as a critical task in credit risk management. Credit managers rely on financial and market information, usually in the form of ratios, to estimate the quality of credit applicants. However, there is no guarantee that a given set of ratios contains the information needed for credit classification. Decision rules under strict uncertainty aim to mitigate this drawback. In this paper, we propose the use of a moderate pessimism decision rule combined with dimensionality reduction techniques and compromise programming. Moderate pessimism ensures that neither extreme optimistic nor pessimistic decisions are taken. Dimensionality reduction from a set of ratios facilitates the extraction of the relevant information. Compromise programming allows to find a balance between quality of debt and risk concentration. Our model produces two critical outputs: a quality assessment and the optimum allocation of funds. To illustrate our multicriteria approach, we include a case study on 29 firms listed in the Spanish stock market. Our results show that dimensionality reduction contributes to avoid redundancy and that quality-diversification optimization is able to produce budget allocations with a reduced number of firms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Reviews Comput Stat 2(4):433–459

    Google Scholar 

  • Adams W, Einav L, Levin J (2009) Liquidity constraints and imperfect information in subprime lending. Am Econ Rev 99(1):49–84

    Google Scholar 

  • Altman EI (1968) Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. J Financ 23(4):589–609

    Google Scholar 

  • Altman EI, Iwanicz-Drozdowska M, Laitinen EK, Suvas A (2016) Financial and non-financial variables as long-horizon predictors of bankruptcy. J Credit Risk 12(4):49–78

    Google Scholar 

  • Angilella S, Mazzù S (2015) The financing of innovative smes: a multicriteria credit rating model. Eur J Oper Res 244(2):540–554

    Google Scholar 

  • Armor DJ (1973) Theta reliability and factor scaling. Sociol Methodol 5:17–50

    Google Scholar 

  • Avery RB, Bostic RW, Calem PS, Canner GB (2000) Credit scoring: statistical issues and evidence from credit-bureau files. Real Estate Econ 28(3):523–547

    Google Scholar 

  • Ballestero E (2002) Strict uncertainty: a criterion for moderately pessimistic decision makers. Decis Sci 33(1):87–108

    Google Scholar 

  • Ballestero E (2006) Ranking alternatives from the decision maker’s preferences: an approach based on utility and the notion of marginal action. J Oper Res Soc Jpn 49(1):49–65

    Google Scholar 

  • Ballestero E, Pla-Santamaria D (2004) Selecting portfolios for mutual funds. Omega 32(5):385–394

    Google Scholar 

  • Ballestero E, Romero C (1998) Multiple criteria decision making and its applications to economic problems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Ballestero E, Günther M, Pla-Santamaria D, Stummer C (2007) Portfolio selection under strict uncertainty: a multi-criteria methodology and its application to the frankfurt and vienna stock exchanges. Eur J Oper Res 181(3):1476–1487

    Google Scholar 

  • Bartlett MS (1937) Properties of sufficiency and statistical tests. Proc R Soc Lond Ser A Math Phys Sci 160(901):268–282

    Google Scholar 

  • Bellman R (1957) Dynamic programming. Princeton University Press, New Jersey

    Google Scholar 

  • Bravo M, Pla-Santamaria D (2012) Evaluating loan performance for bank offices: a multicriteria decision-making approach. Inf Syst Oper Res 50(3):127–133

    Google Scholar 

  • Breeden JL (2016) Incorporating lifecycle and environment in loan-level forecasts and stress tests. Eur J Oper Res 255(2):649–658

    Google Scholar 

  • Carmines EG, Zeller RA (1979) Reliability and validity assessment. Quantitative applications in the social sciences. SAGE, Thousand Oaks

    Google Scholar 

  • Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivar Behav Res 12(1):43–47

    Google Scholar 

  • Chen M-Y (2014) Using a hybrid evolution approach to forecast financial failures for taiwan-listed companies. Quant Financ 14(6):1047–1058

    Google Scholar 

  • Conway JM, Huffcutt AI (2003) A review and evaluation of exploratory factor analysis practices in organizational research. Organ Res Methods 6(2):147–168

    Google Scholar 

  • Doumpos M, Zopounidis C (2011) A multicriteria outranking modeling approach for credit rating. Decis Sci 42(3):721–742

    Google Scholar 

  • Edelberg W (2006) Risk-based pricing of interest rates for consumer loans. J Monet Econ 53(8):2283–2298

    Google Scholar 

  • Einav L, Jenkins M, Levin J (2012) Contract pricing in consumer credit markets. Econometrica 80(4):1387–1432

    Google Scholar 

  • Einav L, Jenkins M, Levin J (2013) The impact of credit scoring on consumer lending. Rand J Econ 44(2):249–274

    Google Scholar 

  • Elisabetsky R (1976) Um modelo matemático para decisões de crédito no banco comercial. PhD thesis, Dissertação (Mestrado)–Escola Politécnica, Universidade de São Paulo, São Paulo

  • Eriksson K, Jonsson S, Lindbergh J, Lindstrand A (2014) Modeling firm specific internationalization risk: an application to banks’ risk assessment in lending to firms that do international business. Int Bus Rev 23(6):1074–1085

    Google Scholar 

  • Fabrigar LR, Wegener DT, MacCallum RC, Strahan EJ (1999) Evaluating the use of exploratory factor analysis in psychological research. Psychol Methods 4(3):272

    Google Scholar 

  • Falangis K (2007) The use of MSD model in credit scoring. Oper Res Int J 7(3):481–503

    Google Scholar 

  • Ford JK, MacCallum RC, Tait M (1986) The application of exploratory factor analysis in applied psychology: a critical review and analysis. Pers Psychol 39(2):291–314

    Google Scholar 

  • Freeman L, Hamilton D (2002) A dream deferred or realized: the impact of public policy on fostering black homeownership in new york city throughout the 1990’s. Am Econ Rev 92(2):320–324

    Google Scholar 

  • George W, Snedecor CWG (1989) Statistical methods. Iowa State University Press, Iowa

    Google Scholar 

  • Jory SR, Ngo TN, Wang D (2016) Credit ratings and the premiums paid in mergers and acquisitions. J Empir Financ 39:93–104

    Google Scholar 

  • Kaiser HF (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23(3):187–200

    Google Scholar 

  • Kaiser HF (1974) An index of factorial simplicity. Psychometrika 39(1):31–36

    Google Scholar 

  • Kanitz S (1974) Como prever falencias de empresas. Revista de Negocios Em Exame, Dezembro, pp 95–102

    Google Scholar 

  • Kantardzic M (2011) Data mining: concepts, models, methods, and algorithms. Wiley, New York

    Google Scholar 

  • Kealhofer S (1993) Portfolio management of default risk. KMV Corporation, San Francisco

    Google Scholar 

  • Laplace P-S (1825) Essai philosophique sur les probabilités. H. Remy, Paris

    Google Scholar 

  • Legault, J. and Score, A. (1987). Ca score. warning system for small business failures. Bilanas, June, pages 29–31

  • Li H, Hong L-Y, Zhou Q, Yu H-J (2015) The assisted prediction modelling frame with hybridisation and ensemble for business risk forecasting and an implementation. Int J Syst Sci 46(11):2072–2086

    Google Scholar 

  • Magee S (2013) The effect of foreign currency hedging on the probability of financial distress. Account Financ 53(4):1107–1127

    Google Scholar 

  • McQuown J (1993) Market versus accounting-based measures of default risk. KMV Corporation, San Francisco

    Google Scholar 

  • Mencía J (2012) Assessing the risk-return trade-off in loan portfolios. J Bank Financ 36(6):1665–1677

    Google Scholar 

  • Merton RC (1974) On the pricing of corporate debt: the risk structure of interest rates. J Financ 29(2):449–470

    Google Scholar 

  • Mester LJ (1997) What’s the point of credit scoring? Bus Rev 3(Sep/Oct):3–16

    Google Scholar 

  • Nunnally JC, Bernstein I (1994) Psychometric theory (McGraw-Hill Series in Psychology), vol 3. McGraw-Hill, New York

    Google Scholar 

  • Saunders D, Xiouros C, Zenios SA (2007) Credit risk optimization using factor models. Ann Oper Res 152(1):49–77

    Google Scholar 

  • Sengupta R, Bhardwaj G (2015) Credit scoring and loan default. Int Rev Financ 15(2):139–167

    Google Scholar 

  • Shi J, Xu B (2016) Credit scoring by fuzzy support vector machines with a novel membership function. J Risk Financ Manag 9(4):13

    Google Scholar 

  • Sirignano J, Giesecke K (2019) Risk analysis for large pools of loans. Manag Sci 65(1):107–121

    Google Scholar 

  • Sirignano JA, Tsoukalas G, Giesecke K (2016) Large-scale loan portfolio selection. Oper Res 64(6):1239–1255

    Google Scholar 

  • Spector PE (1992) Summated rating scale construction: An introduction, vol 82. Sage, Newbury Park

    Google Scholar 

  • Springate GL (1978) Predicting the possibility of failure in a Canadian firm: a discriminant analysis. PhD thesis, Simon Fraser University

  • Thomas LC (2009) Consumer credit models: pricing, profit and portfolios: pricing, profit and portfolios. Oxford University Press, Oxford

    Google Scholar 

  • Vasicek O (1984) The philosophy of credit valuation: the credit valuation model. KMV Corporation, San Francisco

    Google Scholar 

  • Wald A (1950) Statistical decision functions. Wiley, New York

    Google Scholar 

  • Wang J, Wang J (2015) Forecasting stock market indexes using principle component analysis and stochastic time effective neural networks. Neurocomputing 156:68–78

    Google Scholar 

  • Weber O (2012) Environmental credit risk management in banks and financial service institutions. Bus Strate Environ 21(4):248–263

    Google Scholar 

  • Woerheide W, Persson D (1992) An index of portfolio diversification. Financ Serv Rev 2(2):73–85

    Google Scholar 

  • Yu P-L (1985) Multiple-criteria decision making: concepts, techniques, and extensions. Plenum Press, New York

    Google Scholar 

  • Zeleny M (1973) Compromise programming. In: Cochrane JL, Zeleny M (eds) Multiple criteria decision making. University of South Carolina Press, Columbia, pp 262–301

    Google Scholar 

  • Zeleny M (1982) Multiple criteria decision making. McGraw-Hill, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pla-Santamaria.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Definition of criteria

 

Criterion

Definitions

1

Return on invested capital (ROIC)

\(\frac{{\text {NOPAT}}}{{\text {EQUITY}}+\text {NET DEBT}}\)

2

Return on assets (ROA)

\(\frac{{\text {EBIT}}}{{\text {ASSETS}}}\)

3

Assets turnover

\(\frac{{\text {SALES}}}{{\text {ASSETS}}}\)

4

Return on equity (ROE)

\(\frac{{\text {NET INCOME}}}{{\text {EQUITY}}}\)

5

Pretax income-to-equity ratio

\(\frac{{\text {PRE-TAX INCOME}}}{{\text {EQUITY}}}\)

6

EBIT-to-sales ratio

\(\frac{{\text {EBIT}}}{{\text {SALES}}}\)

7

Net value added-to-sales ratio

\(\frac{{\text {NET VALUE ADDED}}}{{\text {SALES}}}\)

8

Quick ratio

\(\frac{{\text { ASSETS-INVENTORY}}}{{\text {LIABILITIES}}}\)

9

Current ratio

\(\frac{{\text {CURRENT ASSETS}}}{{\text {CURRENT LIABILITIES}}}\)

10

Accounts receivable net turnover

\(\frac{{\text {SALES}}}{{\text {AVERAGE RECEIVABLES}}}\)

11

Total accounts receivable turnover

\(\frac{{\text {REVENUE}}}{{\text {AVERAGE RECEIVABLES}}}\)

12

Working capital-to-assets ratio

\(\frac{{\text {WORKING CAPITAL}}}{{\text {ASSETS}}}\)

13

Cash ratio

\(\frac{{\text {CASH}}}{{\text {LIABILITIES}}}\)

14

Current liabilities-to-assets ratio

\(\frac{{\text {LIABILITIES}}}{{\text {ASSETS}}}\)

15

Trade payable turnover

\(\frac{{\text { REVENUE COST+OTHER EXPENSES}}}{{\text {AVERAGE TRADE PAYABLE}}}\)

16

Suppliers turnover

\(\frac{{\text {COST OF SALES}}}{{\text {AVERAGE SUPPLIERS}}}\)

17

Financial leverage

\(\frac{{\text {PRE-TAX INCOME}}}{{\text {EQUITY}}} \times \frac{{\text {EBIT}}}{{\text {ASSETS}}}\)

18

Assets-to-liabilities ratio

\(\frac{{\text {ASSETS}}}{{\text {LIABILITIES}}}\)

19

Liabilities-to-(Liabilities+equity) ratio

\(\frac{{\text {LIABILITIES}}}{{\text {LIABILITIES+EQUITY}}}\)

20

Liabilities-to-equity ratio

\(\frac{{\text {LIABILITIES}}}{{\text {EQUITY}}}\)

21

Equity-to-assets ratio

\(\frac{{\text { EQUITY}}}{{\text {ASSETS}}}\)

22

Retained earnings-to-equity ratio

\(\frac{{\text {RETAINED EARNINGS}}}{{\text {EQUITY}}}\)

23

Retained earnings-to-assets ratio

\(\frac{{\text {RETAINED EARNINGS}}}{{\text {ASSETS}}}\)

24

(Non-current liabilities + equity)-to-assets ratio

\(\frac{{\text {NON-CURRENT LIABILITIES+EQUITY}}}{{\text {ASSETS}}}\)

25

Non-current liabilities-to-liabilities ratio

\(\frac{{\text {NON-CURRENT LIABILITIES}}}{{\text {LIABILITIES}}}\)

26

Debt-to-liabilities ratio

\(\frac{{\text {DEBT}}}{{\text {LIABILITIES}}}\)

27

Non-current liabilities-to-assets ratio

\(\frac{{\text {NON-CURRENT LIABILITIES}}}{{\text {ASSETS}}}\)

28

Leverage ratio

\(\frac{{\text {DEBT}}}{{\text {EQUITY}}}\)

29

Debt average cost

\(\frac{{\text {INTEREST EXPENSE}}}{{\text {AVERAGE DEBT}}}\)

30

Short term debt-to-net operating cash flow ratio

\(\frac{{\text {SHORT TERM DEBT}}}{{\text {NET OPERATING CASH FLOW}}}\)

31

Debt-to-net operating cash flow ratio

\(\frac{{\text {DEBT}}}{{\text {NET OPERATING CASH FLOW}}}\)

32

Current liabilities-to-net operating cash flow ratio

\(\frac{{\text {CURRENT LIABILITIES}}}{{\text {NET OPERATING CASH FLOW}}}\)

33

Liabilities -to- net operating cash flow ratio

\(\frac{{\text {LIABILITIES}}}{{\text {NET OPERATING CASH FLOW}}}\)

34

EBIT-to-net operating cash flow before interest and taxes ratio

\(\frac{{\text {EBIT}}}{{\text {NET OPERATING CASH FLOW BIT}}}\)

35

NOPAT-to-net operating cash flow before interest ratio

\(\frac{{\text {NOPAT}}}{{\text {NET OPERATING CASH FLOW BI}}}\)

36

Net income-to-net operating cash flow ratio

\(\frac{{\text {NET INCOME}}}{{\text {NET OPERATING CASH FLOW}}}\)

37

Legault and Score (1987)

Bankruptcy predictive model

38

Elisabetsky (1976)

Bankruptcy predictive model

39

Kanitz (1974)

Bankruptcy predictive model

40

Springate (1978)

Bankruptcy predictive model

41

Altman (1968)

Bankruptcy predictive model

42

Merton (1974)

Bankruptcy predictive model

43

Credit rating

Bankruptcy predictive model

44

Earnings per share

\(\frac{{\text {NET INCOME}}}{{\text {NUMBER OF SHARES}}}\)

45

Sales per share

\(\frac{{\text {SALES}}}{{\text {NUMBER OF SHARES}}}\)

46

Book value per share

\(\frac{{\text {EQUITY}}}{{\text {NUMBER OF SHARES}}}\)

47

Price-to-sales ratio

\(\frac{{\text {PRICE}}}{{\text {SALES}}}\)

48

Price-to-cash flow ratio

\(\frac{{\text {PRICE}}}{{\text {CASH FLOW}}}\)

49

Price-to-book value ratio

\(\frac{{\text {PRICE}}}{{\text {EQUITY}}}\)

50

Price-to-earnings ratio (PER)

\(\frac{{\text {PRICE}}}{{\text {NET INCOME}}}\)

51

Enterprise Value (EV)-to-Ebitda ratio

\(\frac{{\text {ENTERPRISE VALUE}}}{{\text {EBITDA}}}\)

52

Cash flow per share

\(\frac{{\text {CASH FLOW}}}{{\text {NUMBER OF SHARES}}}\)

53

Dividends per share

\(\frac{{\text {DIVIDENDS}}}{{\text {NUMBER OF SHARES}}T}\)

54

Years from foundation

(Self-explanatory)

55

Expectations on the economic sector

(Self-explanatory)

Appendix: Summary of criteria statistics

Key:

  • Mean: Average value.

  • Std: Standard deviation.

  • Max: Maximum value.

  • Min: Minimum value.

  • 0.025-Pct: 0.025-Percentile value.

  • 0.975-Pct: 0.975-Percentile value.

Criterion

Mean

Std

Max

Min

0.025-Pct

0.975-Pct

1

0.08

0.07

0.36

\(-\) 0.03

\(-\) 0.01

0.25

2

0.07

0.06

0.32

\(-\) 0.05

\(-\) 0.02

0.23

3

0.60

0.55

2.92

0.02

0.11

1.93

4

0.13

0.23

1.07

\(-\) 0.50

\(-\) 0.24

0.66

5

0.20

0.30

1.56

\(-\) 0.10

\(-\) 0.06

0.95

6

0.25

0.28

0.95

\(-\) 0.12

\(-\) 0.05

0.63

7

0.42

0.25

1.03

0.08

0.10

0.75

8

0.99

0.78

4.68

0.08

0.25

1.46

9

1.17

0.80

4.68

0.08

0.39

1.82

10

918.72

4.792.10

26.275.89

1.59

1.81

72.03

11

23.08

84.50

466.61

0.79

0.92

36.41

12

\(-\) 0.01

0.15

0.26

\(-\) 0.43

\(-\) 0.39

0.17

13

0.29

0.22

1.00

0.00

0.01

0.78

14

0.28

0.16

0.70

0.02

0.11

0.62

15

2.06

2.22

10.17

0.00

0.00

7.33

16

3.93

2.62

11.53

0.28

1.33

10.07

17

0.37

0.24

0.80

\(-\) 0.09

\(-\) 0.06

0.80

18

0.38

0.19

0.89

0.05

0.11

0.64

19

2.00

1.53

9.35

1.06

1.12

2.79

20

0.62

0.19

0.95

0.11

0.36

0.89

21

0.38

0.84

1.20

\(-\) 3.59

\(-\) 1.43

1.05

22

0.20

0.18

0.56

\(-\) 0.20

\(-\) 0.07

0.56

23

2.65

3.15

17.35

0.12

0.56

10.65

24

0.72

0.16

0.98

0.30

0.38

0.89

25

0.45

0.21

1.00

0.07

0.15

0.75

26

0.57

0.22

0.99

0.09

0.20

0.82

27

0.34

0.16

0.66

0.00

0.11

0.62

28

2.09

4.08

16.15

\(-\) 12.79

\(-\) 5.75

11.08

29

0.05

0.02

0.09

0.02

0.03

0.09

30

2.73

6.93

35.40

\(-\) 6.26

\(-\) 2.47

23.05

31

13.57

42.76

236.48

\(-\) 18.95

\(-\) 7.49

110.44

32

7.47

20.50

105.49

\(-\) 30.45

\(-\) 11.50

58.31

33

21.15

64.39

353.46

\(-\) 47.85

\(-\) 18.15

165.36

34

1.18

2.64

8.97

\(-\) 9.63

\(-\) 4.34

6.09

Criterion

Mean

Std

Max

Min

0.025-Pct

0.975-Pct

35

1.43

3.30

12.28

\(-\) 10.10

\(-\) 5.31

8.91

36

2.86

5.71

27.05

\(-\) 1.99

\(-\) 1.81

21.11

37

\(-\) 0.44

0.93

1.74

\(-\) 1.98

\(-\) 1.73

1.54

38

\(-\) 0.13

1.02

1.43

\(-\) 4.85

\(-\) 2.48

0.51

39

7.23

4.98

28.28

\(-\) 2.28

\(-\) 0.21

9.62

40

0.78

2.73

12.95

\(-\) 0.97

\(-\) 0.82

1.24

41

2.52

2.41

12.95

\(-\) 0.36

0.37

9.36

42

7.36

3.38

16.69

0.14

1.43

15.10

43

0.59

0.13

0.85

0.27

0.30

0.84

44

25.81

51.14

248.08

\(-\) 60.73

\(-\) 44.99

160.68

45

8.35

32.01

55.39

\(-\) 150.65

\(-\) 58.05

28.12

46

3.32

4.54

23.05

0.25

0.59

16.94

47

4.40

8.11

36.32

0.21

0.34

5.47

48

30.30

82.10

447.84

0.12

1.47

252.31

49

16.26

37.96

212.76

0.28

0.70

105.17

50

2.00

2.89

11.28

\(-\) 5.14

\(-\) 3.67

8.14

51

1.34

35.54

30.00

\(-\) 162.17

\(-\) 32.60

26.83

52

1.87

4.86

26.56

\(-\) 2.06

\(-\) 1.05

13.06

53

0.10

0.25

0.90

0.00

0.00

0.83

54

0.52

0.34

1.49

0.02

0.15

1.06

55

0.28

0.22

0.75

0.00

0.00

0.75

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pla-Santamaria, D., Bravo, M., Reig-Mullor, J. et al. A multicriteria approach to manage credit risk under strict uncertainty. TOP 29, 494–523 (2021). https://doi.org/10.1007/s11750-020-00571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-020-00571-0

Keywords

Mathematics Subject Classification

Navigation