Skip to main content
Log in

The Betti side of the double shuffle theory. I. The harmonic coproducts

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

This paper is the first in a series which aims at: (a) giving a proof that the associator relations between multizeta values imply the double shuffle and regularization (DSR) ones, alternative to that of the second-named author’s 2010 paper; (b) enhancing Racinet’s construction of a torsor structure over the \({\mathbb {Q}}\)-scheme of DSR relations to an explicit bitorsor structure. In this paper, we revisit Racinet’s original DSR formalism, whose main character is an algebra coproduct, called the harmonic coproduct, and we introduce a variant which is a module coproduct; we explain the ‘de Rham’ nature of this formalism and construct a ‘Betti’ counterpart of it; we show how both formalisms can be interpreted in terms of geometry, following the ideas of Deligne and Terasoma’s unfinished 2005 preprint; we use Bar-Natan’s interpretation of associators as functors from the category of parenthesized braids to that of chord diagrams to show that any associator relates the Betti and de Rham geometric objects, both in the ‘algebraic’ and in the ‘module’ setups; we derive that any associator relates the Betti and de Rham algebra coproducts, as well as their module counterparts. These results will be used in the next parts of the series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. We set \(\mathrm {i}:=\sqrt{-1}\).

  2. An affine \({\mathbb {Q}}\)-scheme (resp., \({\mathbb {Q}}\)-group scheme) \({\mathsf {X}}\) can be identified with a representable functor from the category of \({\mathbb {Q}}\)-algebras to that of sets (resp. groups), denoted \({\mathbf {k}}\mapsto {\mathsf {X}}({\mathbf {k}})\), for \({\mathbf {k}}\) running over \({\mathbb {Q}}\)-algebras.

  3. \(\mathsf {DMR}\) stands for the French ‘double mélange et régularisation’.

References

  1. André, Y.: Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses, 17. Société Mathématique de France, Paris (2004)

  2. Artin, E.: Theory of braids. Ann. Math. (2) 48, 101–126 (1947)

    Article  MathSciNet  Google Scholar 

  3. Bar-Natan, D.: On associators and the Grothendieck-Teichmüller group I. Selecta Mathematica, New Series 4, 183–212 (1998)

    Article  MathSciNet  Google Scholar 

  4. Birman, J.: Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1974)

  5. Bourbaki, N.: Éléments de mathématique. Fasc. XXXVII. Groupes et algèbres de Lie. Chapitre II: Algèbres de Lie libres. Chapitre III: Groupes de Lie, Actualités Scientifiques et Industrielles, No. 1349. Hermann, Paris (1972)

  6. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. Galois groups over \({\mathbb{Q}}\), 72–297, MSRI publications, 16, Springer-Verlag (1989)

  7. Deligne, P., Goncharov, A.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. Ecole Norm. Sup. (4) 38(1), 1–56 (2005)

    Article  MathSciNet  Google Scholar 

  8. Deligne, P., Terasoma, T.: Harmonic shuffle relation for associators, preprint (2005)

  9. Drinfeld, V.: On quasitriangular quasi-Hopf algebras and on a group that is closely connected with \({\rm Gal}(\overline{{\mathbb{Q}}}/{\mathbb{Q}})\). Leningrad Math. J. 2(4), 829–860 (1991)

    MathSciNet  Google Scholar 

  10. Enriquez, B.: On the Drinfeld generators of \(\mathfrak{grt}_1(k)\) and \(\Gamma \)-functions for associators. Math. Res. Lett. 13(2–3), 231–243 (2006)

    Article  MathSciNet  Google Scholar 

  11. Enriquez, B., Furusho, H.: A stabilizer interpretation of double shuffle Lie algebras. Int. Math. Res. Not. 22, 6870–6907 (2018)

    Article  MathSciNet  Google Scholar 

  12. Enriquez, B., Furusho, H.: The Betti side of the double shuffle theory. II. Double shuffle relations for associators. Preprint arXiv:1807.07786, v4

  13. Enriquez, B., Furusho, H.: The Betti side of the double shuffle theory. III. Bitorsor structures. Preprint arXiv:1908.00444, v4

  14. Fadell, E., Van Buskirk, J.: The braid groups of \(E^2\) and \(S^2\). Duke Math. J. 29, 243–257 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Fox, R.: Free differential calculus, I: Derivation in the free group ring. Ann. Math. (3) 57, 547–560 (1969)

    Article  MathSciNet  Google Scholar 

  16. Furusho, H.: The multiple zeta value algebra and the stable derivation algebra. Publ. Res. Inst. Math. Sci. 39(4), 695–720 (2003)

    Article  MathSciNet  Google Scholar 

  17. Furusho, H.: Pentagon and hexagon equations. Ann. Math. (2) 171(1), 545–556 (2010)

    Article  MathSciNet  Google Scholar 

  18. Furusho, H.: Double shuffle relation for associators. Ann. Math. (1) 174(1), 341–360 (2011)

    Article  MathSciNet  Google Scholar 

  19. Goncharov, A.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5(4), 497–516 (1998)

    Article  MathSciNet  Google Scholar 

  20. Ihara, K., Kaneko, M., Zagier, D.: Derivation and double shuffle relations for multiple zeta values. Compos. Math. 142(2), 307–338 (2006)

    Article  MathSciNet  Google Scholar 

  21. Ihara, Y.: Automorphisms of pure sphere braid groups and Galois representations, The Grothendieck Festschrift, Vol. II, 353–373, Progr. Math., 87, Birkhäuser Boston, Boston, MA (1990)

  22. Ihara, Y.: On the stable derivation algebra associated with some braid groups. Israel J. Math. 80(1–2), 135–153 (1992)

    Article  MathSciNet  Google Scholar 

  23. Le, T.Q.T., Murakami, J.: Kontsevich’s integral for the Kauffman polynomial. Nagoya Math. J. 142, 39–65 (1996)

    Article  MathSciNet  Google Scholar 

  24. Lochak, P., Schneps, L.: The Grothendieck–Teichmüller group and automorphisms of braid groups, The Grothendieck theory of dessins d’enfants (Luminy, 1993), 323–358, London Math. Soc. Lecture Note Ser., 200, Cambridge Univ. Press, Cambridge (1994)

  25. Racinet, G.: Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publ. Math. Inst. Hautes Études Sci. No. 95, 185–231 (2002)

    Article  MathSciNet  Google Scholar 

  26. Weibel, C.: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics 38. Cambridge University Press, Cambridge (1994)

Download references

Acknowledgements

The collaboration of both authors has been supported by Grants JSPS KAKENHI JP15KK0159 and JP18H01110 as well as HighAGT ANR-20-CE40-0016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Enriquez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Index

Index

figure h

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enriquez, B., Furusho, H. The Betti side of the double shuffle theory. I. The harmonic coproducts. Sel. Math. New Ser. 27, 79 (2021). https://doi.org/10.1007/s00029-021-00659-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00659-w

Mathematics Subject Classification

Navigation