Skip to main content
Log in

On the Feigin–Tipunin conjecture

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We prove the Feigin–Tipunin conjecture (Feigin and Tipunin in Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047) on the geometric construction of the logarithmic W-algebras \(W(p)_Q\) associated with a simply-laced simple Lie algebra \({\mathfrak {g}}\) and \(p\in {\mathbb {Z}}_{\ge 2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Bott, R.: A Lefschetz fixed point formula for elliptic complexes I, II. Ann. Math., 86 (1967), 374–407; 88 (1968), 451–491

  2. Arakawa, T., Creutzig, T., Linshaw, A.R.: W-algebras as coset vertex algebras. Inv. Math. 218, 145–195 (2019)

    Article  MathSciNet  Google Scholar 

  3. Adamovic, D., Milas, A.: On the triplet vertex algebra \({\cal{W}}(p)\). Adv. Math. 217, 2664–2699 (2008)

    Article  MathSciNet  Google Scholar 

  4. Adamovic, D., Milas, A.: The \(N=1\) triplet vertex operator superalgebras. Commun. Math. Phys. 288, 225–270 (2009)

    Article  MathSciNet  Google Scholar 

  5. Adamovic, D., Milas, A.: The structure of Zhu’s algebras for certain \({\cal{W}}\)-algebras. Adv. Math. 227, 2425–2456 (2011)

    Article  MathSciNet  Google Scholar 

  6. Adamovic, D., Milas, A.: \(C_2\)-cofinite \({\cal{W}}\)-algebras and their logarithmic representations. Conformal Field Theories and Tensor Categories, pp. 249–270

  7. Adamovic, D., Milas, A., Wang, Q.: On parafermion vertex algebras of \({{\mathfrak{s}}}{{\mathfrak{l}}}(2)_{-\frac{3}{2}}\) and \({{\mathfrak{s}}}{{\mathfrak{l}}}(3)_{-\frac{3}{2}}\), to appear in Communications in Contemporary Mathematics. arXiv:2005.02631

  8. Arakawa, T.: Representation theory of \({\cal{W}}\)-algebras. Invent. Math. 169(2), 219–320 (2007)

    Article  MathSciNet  Google Scholar 

  9. Arakawa, T., Frenkel, E.: Quantum Langlands duality of representations of \({\cal{W}}\)-algebras. Compositio Mathematica 155(12), 2235–2262 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bourbaki, N.: Lie Groups and Lie Algebras, Chapter 4–6. Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 2002, Translated from the 1968 French original by Andrew Pressly. MR 1890629

  11. Bakalov, B., Kac, V.: Generalized Vertex Algebras. arXiv:math/0602072v1

  12. Benkart, G., Kang, S., Oh, S., Park, E.: Construction of irreducible representations over Khovanov–Lauda–Rouquier algebras of finite classical type. Int. Math. Res. Notices 2014(5), 1312–1366 (2014)

    Article  MathSciNet  Google Scholar 

  13. Bringmann, K., Kaszian, J., Milas, A.: Higher depth quantum modular forms, multiple Eichler integrals, and \({{\mathfrak{s}}}{{\mathfrak{l}}}_3\) false theta functions. Res. Math. Sci. 6, (2019)

  14. Bringmann, K., Kaszian, J., Milas, A.: Vector-valued higher depth quantum modular forms and higher Mordell integrals. J. Math. Anal. Appl. 480(2), 15 (2019)

    Article  MathSciNet  Google Scholar 

  15. Bringmann, K., Kaszian, J., Milas, A., Zwegers, S.: Rank two false theta functions and Jacobi forms of negative definite matrix index. Adv. Appl. Math. 112, 101946 (2020)

    Article  MathSciNet  Google Scholar 

  16. Bringmann, K., Milas, A.: \({\cal{W}}\)-algebras, false theta functions and quantum modular forms, \(I\). Int. Math. Research Notices 21, 11351–11387 (2015)

    Article  MathSciNet  Google Scholar 

  17. Bringmann, K., Milas, A.: \(W\)-algebras, higher rank false theta functions, and quantum dimensions. Sel. Math. 23(2), 1249–1278 (2017)

    Article  MathSciNet  Google Scholar 

  18. Borel, A.: Linear algebraic groups. Second. Vol. 126. Graduate Texts in Mathematics. Springer-Verlag, New York, pp. xii+288 (1991)

  19. Cheng, M.C.N., Chun, S. , Ferrari, F., Gukov, S., Harrison, S. M.: \(3\)d Modularity. J. High Energy Phys. 2019(10)

  20. Creutzig, T., Gaiotto, D.: Vertex Algebras for S-duality. arXiv:1708.00875

  21. Creutzig, T., Gainutdinov, A.M., Runkel, I.: A quasi-Hopf algebra for the triplet vertex operator algebra. Commun. Contemp. Math. 22(03), 1950024 (2020)

    Article  MathSciNet  Google Scholar 

  22. Creutzig, T.: Logarithmic W-algebras and Argyres-Douglas theories at higher rank. J. High Energy Phys. volume 2018, Article number: 188 (2018)

  23. Creutzig, T.: W-algebras for Argyres–Douglas theories. Eur. J. Math. 3, 659–690 (2017)

    Article  MathSciNet  Google Scholar 

  24. Creutzig, T., Milas, A.: Higher rank partial and false theta functions and representation theory. Adv. Math. 314(9), 203–227 (2017)

    Article  MathSciNet  Google Scholar 

  25. Dong, C.: Vertex algebras associated with even lattices. J. Algebra. 161, 245–265 (1993)

    Article  MathSciNet  Google Scholar 

  26. Demazure, M.: Une d’emonstration alg’ebrique d’un th’eor’eme de Bott. Invent. math. 5(4), 349–356 (1968)

    Article  MathSciNet  Google Scholar 

  27. Demazure, M.: A very simple proof of Bott’s theorem. Invent Math. 33, 271–272 (1976)

    Article  MathSciNet  Google Scholar 

  28. Dong, C., Lepowsky, J.: Generalized vertex algebras and relative vertex operators. Progr. Math. 112, Birkhauser, Boston, MA, (1993)

  29. Fung, J.H.: Serre duality and applications. http://math.uchicago.edu/~may/REU2013/REUPapers/Fung.pdf

  30. Frenkel, E., Ben-Zvi, D.: Vertex algebras and algebraic curves. Math.Surveys and Monographs, 88, American Math.Soc.,Providence, R1, (2001)

  31. Feigin, B., Frenkel, E.: Quantization of the Drinfeld–Sokolov reduction. Phys. Lett. B 246(1–2), 75–81 (1990)

    Article  MathSciNet  Google Scholar 

  32. Feigin, B., Frenkel, E.: Duality in \(W\)-algebras. Internat. Math. Res. Notices 6, 75–82 (1991)

    Article  MathSciNet  Google Scholar 

  33. Feigin, B., Frenkel, E.: Integrals of motion and quantum groups. In Integrable systems and quantum groups (Montecatini Terme, 1993), volume 1620 of Lecture Notes in Math., pages 349-418. Springer, Berlin, (1996)

  34. Farsad, V., Gainutdinov, A.M., Runkel, I.: \(SL(2, Z)\)-action for ribbon quasi-Hopf algebras. J. Algebras 522, 243–308 (2019)

    Article  MathSciNet  Google Scholar 

  35. Feigin, B., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, I.Y.: Kazhdan-Lusztig correspondence for the representation category of the triplet \(W\)-algebra in logorithmic CFT. Teoret. Mat. Fiz. 148(3), 398–427 (2006)

    Article  MathSciNet  Google Scholar 

  36. Feigin, B., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, IYu.: Logarithmic extensions of minimal models: characters and modular transformations. Nuclear Phys. B. 757, 303–343 (2006)

    Article  MathSciNet  Google Scholar 

  37. Feigin, B., Gainutdinov, A.M., Semikhatov, A.M., Tipunin, IYu.: Modular group representations and fusion in logarithmic conformal field theories and in the quantum group center. Commun. Math. Phys. 265, 47–93 (2006)

    Article  MathSciNet  Google Scholar 

  38. Frenkel, I., Huang, Y.Z., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules. Mem. Am. Math. Soc. 104, (1993)

  39. Frenkel, E., Kac, V., Radul, A., Wang, W.: \(W_{1+\infty }\) and \(W(gl_N)\) with central charge. Nat. Commun. Math. Phys. 170, 337–357 (1995)

    Article  Google Scholar 

  40. Flandoli, I., Lentner, S.: Logarithmic conformal field theories of type \(B_n\), \(l = 4\) and symplectic fermions. J. Math. Phys. 59, 071701 (2018)

    Article  MathSciNet  Google Scholar 

  41. Frenkel, I., Lepowsky, J., Meurman, A.: Vertex operator algebras and the Monster. Pure and Applied Mathematics, 134. Academic Press, Inc., Boston, MA (1988)

  42. Feigin, B., Tipunin, I.Y.: Logarithmic CFTs connected with simple Lie algebras. arXiv:1002.5047

  43. Gorelik, M., Kac, V.: On simplicity of vacuum modules. Adv. Math. 2(1), 621–677 (2007)

    Article  MathSciNet  Google Scholar 

  44. Gainutdinov, A.M., Lentner, S., Ohrmann, T.: Modularization of small quantum groups. arXiv:1809.02116

  45. Hartshorne, R.: Algebraic Geometry. Grad. Texts in Math. 52, Springer-Verlag. New York-Heidelberg (1977)

  46. Jantzen, J. C.: Representations of Algebraic Groups. 2nd ed., AMS (2003)

  47. Kac, V.G.: Vertex Algebras for Beginners. Second edition. University Lecture Series, 10. American Mathematical Society, Providence, RI (1998)

  48. Kac, V.G.: Infinite-Dimensional Lie Algebras. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  49. Kumar, S.: Borel–Weil–Bott theorem and geometry of Schubert varieties. https://kumar.math.unc.edu/notes/kumar_notes_03.pdf

  50. Kumar, S.: Kac–Moody groups, their flag varieties and representation theory. Progr. Math. 204, Birkhauser (2002)

  51. Lurie, J.: A proof of the Borel-Weil-Bott theorem. http://www.math.harvard.edu/~lurie/papers/bwb.pdf

  52. Milas, A.: Characters of Modules of Irrational Vertex Algebras. Conformal Field Theory Automorphic Forms and Related Topics, 1–29

  53. Murakami, J., Nagatomo, K.: Logarithmic knot invariants arising from restricted quantum groups. Int. J. Math. 19(10), 1203–1213 (2008)

    Article  MathSciNet  Google Scholar 

  54. Nagatomo, K.,Tsuchiya, A.: The triplet vertex operator algebra W(p) and the restricted quantum group at root of unity. Advanced Stduies in Pure Mathematics, Exploring new Structures and Natural Constructions in Mathematical Physics. American Mathematical Society

  55. Sugimoto, S.: Simplicities of logarithmic \(W\)-algebras. arXiv:2105.00638

  56. Tsuchiya, A., Kanie, Y.: Fock space representation of the Virasoro algebra. Publ. RIMS, Kyoto Univ. 22, 259–327 (1986)

    Article  MathSciNet  Google Scholar 

  57. Tsuchiya, A., Wood, S.: On the extended \(W\)-algebra of type \({{\mathfrak{s}}}{{\mathfrak{l}}}_2\) at positive rational level. Int. Math. Res. Notices 14, 5357–5435 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is the master thesis of the author, and he wishes to express his gratitude to his supervisor Tomoyuki Arakawa for suggesting the problems and lots of advice to improve this paper. He also gives an address to thanks his previous supervisor Hiraku Nakajima for two years’ detailed guidance. He is deeply grateful to Naoki Genra and Ryo Fujita for their many pieces of advice and encouragement. He thanks Thomas Creutzig, Boris Feigin, and Shigenori Nakatsuka for useful comments and discussions. In particular, [42] is the original idea of this paper, and discussions with Thomas Creutzig and Boris Feigin were very suggestive and interesting for future works of the paper related to their recent works. Finally, he appreciates the referee for the thoughtful and constructive feedback. This work was supported by JSPS KAKENHI Grant Number 19J21384.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoma Sugimoto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: A proof of Lemma 3.7

Appendix A: A proof of Lemma 3.7

For \(1\le i_1,\ldots ,i_n\le l\), denote \(\sigma _{i_n\cdots i_1}\) by \(\sigma _{i_n}\cdots \sigma _{i_1}\). We use the letter \(\sigma _{i_0}\) for the identity map \({\text {id}}_W\) of W throughout this subsection.

Lemma A.1

The condition Lemma 3.7 (1) is equivalent to the following condition: for \(1\le n\le l(w_0)\), we have

$$\begin{aligned} \epsilon _\lambda (\sigma _{i_{n}\cdots i_0})=\sum _{j=0}^{n-1}\epsilon _{\sigma _{i_{j}\cdots i_0}*\lambda }(\sigma _{i_{j+1}}). \end{aligned}$$
(155)

Proof

Let us write \(\sigma \) for \(\sigma _{i_{n}\cdots i_1}\) and i for \(i_{n+1}\), respectively. Then we have

$$\begin{aligned} \epsilon _{\lambda }(\sigma )&=\sigma _i\epsilon _{\lambda }(\sigma )+(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i \end{aligned}$$
(156)
$$\begin{aligned}&=\epsilon _\lambda (\sigma _i\sigma )+\epsilon _{\sigma _i\sigma *\lambda }(\sigma _i)+\alpha _i+\delta _{(\sqrt{p}\overline{\sigma *\lambda },\alpha _i),p-1}\alpha _i+(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i \end{aligned}$$
(157)

where the second equality follows from (61). If \((\sqrt{p}\overline{\sigma *\lambda },\alpha _i)=p-1\), then by (60), (157) is equal to

$$\begin{aligned} \epsilon _\lambda (\sigma _i\sigma )+\alpha _i+(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i=\epsilon _\lambda (\sigma _i\sigma )-\epsilon _{\sigma *\lambda }(\sigma _i)+(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i. \end{aligned}$$
(158)

Thus, we obtain that

$$\begin{aligned} \epsilon _\lambda (\sigma _i\sigma )=\epsilon _\lambda (\sigma )+\epsilon _{\sigma *\lambda }(\sigma _i)-(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i. \end{aligned}$$
(159)

On the other hand, if \((\sqrt{p}\overline{\sigma *\lambda },\alpha _i)\le p-2\), then by (60), (157) is equal to

$$\begin{aligned} \epsilon _\lambda (\sigma _i\sigma )-\epsilon _{\sigma *\lambda }(\sigma _i)+(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i \end{aligned}$$
(160)

Thus, we obtain that

$$\begin{aligned} \epsilon _\lambda (\sigma _i\sigma )=\epsilon _\lambda (\sigma )+\epsilon _{\sigma *\lambda }(\sigma _i)-(\epsilon _{\lambda }(\sigma ),\alpha _i)\alpha _i. \end{aligned}$$
(161)

If \(\lambda \in \Lambda \) satisfies the condition in Lemma 3.7 (1), then by (159) and (161), for any \(0\le n\le l(w_0)-1\), we have

$$\begin{aligned} \epsilon _{\lambda }(\sigma _{i_{n+1}\cdots i_0})=\epsilon _\lambda (\sigma _{i_{n}\cdots i_0})+\epsilon _{\sigma _{i_{n}\cdots i_0}*\lambda }(\sigma _{i_{n+1}}). \end{aligned}$$
(162)

By solving the recurrence relation (162) for n, we obtain (155) for \(1\le n\le l(w_0)\). The converse is clear from (159) and (161). \(\square \)

Remark A.2

By combining Lemma 3.7 (1) with Lemma A.1, the condition Lemma 3.7 (1) and Lemma A.1 are equivalent to the following: For \(1\le n\le l(w_0)-1\), we have

$$\begin{aligned} (\sum _{j=0}^{n-1}\epsilon _{\sigma _{i_{j}\cdots i_0}*\lambda }(\sigma _{i_{j+1}}),\alpha _{i_{n+1}})=0. \end{aligned}$$
(163)

Lemma A.3

The conditions in Lemma 3.7 and Lemma A.1 are independent of the choice of a minimal expression of the longest element \(w_0\in W\).

Proof

By Lemma A.1, it is enough to show that the condition Lemma 3.7 (1) is independent of the choice of a minimal expression \(w_0\). Let \(w_0=\sigma _{i_{l(w_0)}\cdots {i_1}}\) be a minimal expression of \(w_0\) that satisfies the condition Lemma 3.7 (1). For \(\sigma =\sigma _{i_{n-1}\cdots {i_1}}\), we have

$$\begin{aligned} (\epsilon _\lambda (\sigma ),\alpha _{i_n})=0,~(\epsilon _\lambda (\sigma _{i_n}\sigma ),\alpha _{i_{n+1}})=(\epsilon _\lambda (\sigma )+\epsilon _{\sigma *\lambda }(\sigma _{i_{n}}),\alpha _{i_{n+1}})=0. \end{aligned}$$
(164)

When \((\alpha _{i_n},\alpha _{i_{n+1}})=0\), the second equation in (164) leads \((\epsilon _\lambda (\sigma ),\alpha _{i_{n+1}})=0\). Thus, by (60) and (61), we have

$$\begin{aligned} \epsilon _{\lambda }(\sigma _{i_{n+1}}\sigma )=\epsilon _\lambda (\sigma )+\epsilon _{\sigma *\lambda }(\sigma _{i_{n+1}}). \end{aligned}$$
(165)

By (165) and the first equation in (164), we also obtain that \((\epsilon _{\lambda }(\sigma _{i_{n+1}}\sigma ),\alpha _{i_n})=(\epsilon _\lambda (\sigma )+\epsilon _{\sigma *\lambda }(\sigma _{i_{n+1}}),\alpha _{i_n})=0\). Therefore, we have

$$\begin{aligned} (\epsilon _{\lambda }(\sigma ),\alpha _{i_{n+1}})=(\epsilon _{\lambda }(\sigma _{i_{n+1}}\sigma ),\alpha _{i_n})=0. \end{aligned}$$
(166)

When \(i_{n\pm 1}=j\) and \((\alpha _{i_n},\alpha _j)=-1\), for \(\sigma =\sigma _{i_{n-2}}\cdots \sigma _{i_1}\), we have

$$\begin{aligned} (\epsilon _\lambda (\sigma ),\alpha _{j})=(\epsilon _\lambda (\sigma _j\sigma ),\alpha _{i_n}) =(\epsilon _\lambda (\sigma _{i_n}\sigma _j\sigma ),\alpha _j)=0. \end{aligned}$$
(167)

It is straightforward to verify that (167) holds if and only if

$$\begin{aligned} \sqrt{p}((\overline{\sigma *\lambda },\alpha _{i_n}+\alpha _j))\le p-2. \end{aligned}$$
(168)

Since (168) is symmetrical with respect to \(i_n\) and j, we also have

$$\begin{aligned} (\epsilon _\lambda (\sigma ),\alpha _{i_n})=(\epsilon _\lambda (\sigma _{i_n}\sigma ),\alpha _{j}) =(\epsilon _\lambda (\sigma _{j}\sigma _{i_n}\sigma ),\alpha _{i_n})=0. \end{aligned}$$
(169)

Therefore, by (166) and (169), the condition Lemma 3.7 (1) is preserved under relations in the Weyl group W. \(\square \)

Before the proof of Lemma 3.7, we set up some notations. For a sequence \(\mathbf{m}=(m_1,\dots ,m_i)\) of elements in \(\Pi =\{1,\ldots , l\}\), let \(r_{\mathbf{m}}\) denote the corresponding element \(\sigma _{m_1}\cdots \sigma _{m_i}\) in W. Also, for sequences \(\mathbf{m}=(m_1,\dots ,m_i)\) and \(\mathbf{n}=(n_1,\dots ,n_j)\) of elements in \(\Pi \), we write \(\mathbf{m}{} \mathbf{n}\) for the sequence \((m_1,\dots ,m_i,n_1,\dots ,n_j)\). Let us take the sequences \(\mathbf{s}_k\) of elements in \(\Pi \) as in Table 1, and set \((i_{l(w_0)},\dots ,i_1)=\mathbf{s}_1\cdots \mathbf{s}_l\). Then we obtain the minimal expression

$$\begin{aligned} w_0=r_{\mathbf{s}_1\cdots \mathbf{s}_l}=\sigma _{i_{l(w_0)}\cdots i_1} \end{aligned}$$
(170)

of \(w_0\) given in [12]. For convenience, set \(\sigma _{i_0}=r_{\mathbf{s}_{l+1}}={\text {id}}_W\). For \(0\le m<n\le l(w_0)\), \(\tau =\sigma _{i_m}\cdots \sigma _{i_0}\), \(\tau '=\sigma _{i_n}\cdots \sigma _{i_0}\), let \((\epsilon _{\sigma *\lambda })_{\tau \le _L\sigma \le _L\tau '}\) be the sequence

$$\begin{aligned} (\epsilon _{\sigma *\lambda })_{\tau \le _L\sigma \le _L\tau '}=(\epsilon _{\tau *\lambda }(\sigma _{i_{m+1}}),\epsilon _{\sigma _{i_{m+1}}\tau *\lambda }(\sigma _{i_{m+2}}),\ldots ,\epsilon _{\sigma _{i_{n-1}\cdots i_{m+1}}\tau *\lambda }(\sigma _{i_{n}})) \end{aligned}$$

of elements in P. For \(1\le i\le l\), we set

$$\begin{aligned} (\epsilon _{\sigma *\lambda })_{(i+1,i)}=(\epsilon _{\sigma *\lambda })_{r_{\mathbf{s}_{i+1}\cdots \mathbf{s}_{l+1}}\le _L\sigma \le _Lr_{\mathbf{s}_{i}\cdots \mathbf{s}_{l+1}}}. \end{aligned}$$
(171)

Proof of Lemma 3.7

We show that the condition Lemma 3.7 (2) and that in Lemma A.1 are equivalent. By Lemma A.3, it is enough to consider the minimal expression (170) of \(w_0\).

It is straightforward to show the following: first, when \((\sqrt{p}{\bar{\lambda }}+\rho ,\theta )<p\), the list of \((\epsilon _{\sigma *\lambda })_{{\text {id}}\le _L\sigma \le _Lw_0}\) is given by Table 2. Second, when \((\sqrt{p}{\bar{\lambda }}+\rho ,\theta )=p\), the list of \((\epsilon _{\sigma *\lambda })_{{\text {id}}\le _L\sigma \le _Lw_0}\) is given by changing Table 2 as

$$\begin{aligned} {\left\{ \begin{array}{ll} \epsilon _{\sigma _1r_{\mathbf{s}_l}*\lambda }(\sigma _1)=-2\omega _1+\omega _2,~\epsilon _{\sigma _2r_{\mathbf{s}_{l-1}}r_{\mathbf{s}_l}*\lambda }(\sigma _2)=\omega _1-\omega _2+\omega _3,&{}(A_l)\\ \epsilon _{\sigma _1r_{\mathbf{s}_l}*\lambda }(\sigma _1)=-2\omega _1+\omega _2,~\epsilon _{r_{\mathbf{s}_l}*\lambda }(\sigma _2)=\omega _1-\omega _2,&{}(D_l)\\ \epsilon _{\sigma _6r_{\mathbf{s}_6}*\lambda }(\sigma _6)=-2\omega _6+\omega _5,~\epsilon _{\sigma _{321}r_{\mathbf{s}_6}*\lambda }(\sigma _5)=\omega _3-\omega _5+\omega _6,&{}(E_6)\\ \epsilon _{\sigma _7r_{\mathbf{s}_7}*\lambda }(\sigma _7)=-2\omega _7+\omega _6,~\epsilon _{\sigma _{5321}r_{\mathbf{s}_7}*\lambda }(\sigma _6)=-\omega _6+\omega _5+\omega _7,&{}(E_7)\\ \epsilon _{r_{\mathbf{s}_7}\sigma _8*\lambda }(\sigma _8)=-2\omega _8+\omega _7,~\epsilon _{\sigma _8r_{\mathbf{s}_7}\sigma _8*\lambda }(\sigma _7)=-\omega _7+\omega _8,&{}(E_8) \end{array}\right. }\nonumber \\ \end{aligned}$$
(172)

and others are the same as Table 2. Third, when \((\sqrt{p}{\bar{\lambda }}+\rho ,\theta )\le p\), by Table 2 and (172), the equation (163) holds for any \(1\le n\le l(w_0)\). Finally, when \((\sqrt{p}{\bar{\lambda }}+\rho ,\theta )>p\), we have \((\sum _{j=0}^{n-1}\epsilon _{\sigma _{i_{j}\cdots i_0}*\lambda }(\sigma _{i_{j+1}}),\alpha _{i_{n+1}})>0\) for some \(1\le n\le l(w_0)-1\). Thus, Lemma 3.7 is proved.

Corollary A.4

For \(\lambda \in \Lambda \) such that \((\sqrt{p}{\bar{\lambda }}+\rho ,\theta )\le p\), we have \(\epsilon _\lambda (w_0)=-\rho \).

Proof

By Lemma A.1, for the minimal expression (170) of \(w_0\), we have \(\epsilon _{\lambda }(w_0)=\sum _{j=1}^{l(w_0)}\epsilon _{i_{j-1}\cdots i_0*\lambda }(\sigma _{i_j})\). Then by Table 2 and (172), the claim is proved. \(\square \)

Table 1 The list of \(\mathbf{s}_i\) for \(1\le i\le l\) [12, Table 1]
Table 2 The list of \((\epsilon _{\sigma *\lambda })_{{\text {id}}\le _L\sigma \le _Lw_0}\) when \((\sqrt{p}{\bar{\lambda }}+\rho ,\theta )<p\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugimoto, S. On the Feigin–Tipunin conjecture. Sel. Math. New Ser. 27, 86 (2021). https://doi.org/10.1007/s00029-021-00662-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00662-1

Keywords

Mathematics Subject Classification

Navigation