Skip to main content
Log in

Local Langlands correspondence for even orthogonal groups via theta lifts

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Using theta correspondence, we obtain a classification of irreducible representations of an arbitrary even orthogonal group (i.e. the local Langlands correspondence) by deducing it from the local Langlands correspondence for symplectic groups due to Arthur. Moreover, we show that our classifications coincide with the local Langlands correspondence established by Arthur and formulated precisely by Atobe–Gan for quasi-split even orthogonal groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atobe, H., Gan, W.T.: Local theta correspondence of tempered representations and Langlands parameters. Invent. Math. 210(2), 341–415 (2017)

    Article  MathSciNet  Google Scholar 

  2. Atobe, H., Teck Gan, W.: On the local Langlands correspondence and Arthur conjecture for even orthogonal groups. Represent. Theory 21, 354–415 (2017)

    Article  MathSciNet  Google Scholar 

  3. Arthur, J.: The endoscopic classification of representations, volume 61 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI. Orthogonal and symplectic groups (2013)

  4. Atobe, H.: On the uniqueness of generic representations in an \(L\)-packet. Int. Math. Res. Not. 23, 7051–7068 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Atobe, H.: The local theta correspondence and the local Gan-Gross-Prasad conjecture for the symplectic-metaplectic case. Math. Ann. 371(1–2), 225–295 (2018)

    Article  MathSciNet  Google Scholar 

  6. Chan, P.-S., Teck Gan, W.: The local Langlands conjecture for \(\rm GSp(4)\) III: Stability and twisted endoscopy. J. Number Theory 146, 69–133 (2015)

    Article  MathSciNet  Google Scholar 

  7. Choiy, K., Goldberg, D.: Invariance of \(R\)-groups between \(p\)-adic inner forms of quasi-split classical groups. Trans. Am. Math. Soc. 368(2), 1387–1410 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chen, R., Zou, J.: Local Langlands correspondence for unitary groups via theta lifts. arXiv preprint arXiv:2008.01771 (2020)

  9. Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root numbers, central critical \(L\) values, and restriction problems in the representation theory of classical groups.346, 1–109 (2012). Sur les conjectures de Gross et Prasad. I

  10. Gan, W.T., Ichino, A.: Formal degrees and local theta correspondence. Invent. Math. 195(3), 509–672 (2014)

    Article  MathSciNet  Google Scholar 

  11. Gan, W.T., Ichino, A.: The Gross-Prasad conjecture and local theta correspondence. Invent. Math. 206(3), 705–799 (2016)

    Article  MathSciNet  Google Scholar 

  12. Goldberg, D.: Reducibility of induced representations for \({\rm Sp}(2n)\) and \({\rm SO}(n)\). Am. J. Math. 116(5), 1101–1151 (1994)

    Article  Google Scholar 

  13. Ginzburg, D., Rallis, S., Soudry, D.: Periods, poles of \(L\)-functions and symplectic-orthogonal theta lifts. J. Reine Angew. Math. 487, 85–114 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Gan, W.T., Savin, G.: Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence. Compos. Math. 148(6), 1655–1694 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gan, W.T., Sun, B.: The Howe duality conjecture: quaternionic case. In: Representation theory, number theory, and invariant theory, volume 323 of Progr. Math, pp. 175–192. Birkhäuser/Springer, Cham (2017)

  16. Gan, W.T., Takeda, S.: The local Langlands conjecture for GSp(4). Ann. Math. (2), 173(3), 1841–1882 (2011)

  17. Gan, W.T., Takeda, S.: A proof of the Howe duality conjecture. J. Am. Math. Soc. 29(2), 473–493 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kaletha, T.: Genericity and contragredience in the local Langlands correspondence. Algebra Number Theory 7(10), 2447–2474 (2013)

    Article  MathSciNet  Google Scholar 

  19. Konno, T.: A note on the Langlands classification and irreducibility of induced representations of \(p\)-adic groups. Kyushu J. Math. 57(2), 383–409 (2003)

    Article  MathSciNet  Google Scholar 

  20. Kudla, S.S.: On the local theta-correspondence. Invent. Math. 83(2), 229–255 (1986)

    Article  MathSciNet  Google Scholar 

  21. Kudla, S.S.: Splitting metaplectic covers of dual reductive pairs. Isr. J. Math. 87(1–3), 361–401 (1994)

    Article  MathSciNet  Google Scholar 

  22. Kudla, S.: Notes on the local theta correspondence. unpublished notes. available online (1996)

  23. Lapid, E.M., Rallis, S.: On the local factors of representations of classical groups. In: Automorphic representations, \(L\)-functions and applications: progress and prospects, volume 11 of Ohio State Univ. Math. Res. Inst. Publ., pp. 309–359. de Gruyter, Berlin (2005)

  24. Luo, C.: Endoscopic character identities for metaplectic groups. J. Reine Angew. Math. 1(ahead-of-print) (2020)

  25. Mœglin, C.: Multiplicité 1 dans les paquets d’Arthur aux places \(p\)-adiques. In: On certain \(L\)-functions, volume 13 of Clay Math. Proc., pp. 333–374. Amer. Math. Soc., Providence, RI, 2011

  26. Mœglin, C., Renard, D.: Sur les paquets d’Arthur des groupes classiques et unitaires non quasi-déployés. In Relative aspects in representation theory, Langlands functoriality and automorphic forms. Lecture Notes in Math, vol. 2221, pp. 341–361. Springer, Cham (2018)

  27. Muić, G., Savin, G.: Symplectic-orthogonal theta lifts of generic discrete series. Duke Math. J. 101(2), 317–333 (2000)

    Article  MathSciNet  Google Scholar 

  28. Mœglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondances de Howe sur un corps \(p\)-adique. Lecture Notes in Mathematics, vol. 1291. Springer, Berlin (1987)

  29. Silberger, A.J.: The Langlands quotient theorem for \(p\)-adic groups. Math. Ann. 236(2), 95–104 (1978)

    Article  MathSciNet  Google Scholar 

  30. Sun, B., Zhu, C.-B.: Conservation relations for local theta correspondence. J. Am. Math. Soc. 28(4), 939–983 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tate, J.: Number theoretic background. In Automorphic forms, representations and \(L\)-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, pp. 3–26. Am. Math. Soc., Providence, R.I., 1979

  32. Vogan Jr., D.A.: The local Langlands conjecture. In: Representation theory of groups and algebras, volume 145 of Contemp. Math., pp. 305–379. Amer. Math. Soc., Providence, RI (1993)

  33. Waldspurger, J.-L.: Démonstration d’une conjecture de dualité de Howe dans le cas \(p\)-adique, \(p\ne 2\). In Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday, Part I (Ramat Aviv, 1989), volume 2 of Israel Math. Conf. Proc., pp. 267–324. Weizmann, Jerusalem (1990)

Download references

Acknowledgements

We would like to thank our supervisor Wee Teck Gan for useful advice. We would also thank Hiraku Atobe, Atsushi Ichino, Wen-Wei Li, and Sug Woo Shin for helpful conversations during the conference “Workshop on Shimura varieties, representation theory and related topics, 2019” in Hokkaido University. We thank Hiroshi Ishimoto, Caihua Luo, Xiaolei Wan, and Chuijia Wang for helpful discussions. Both authors are supported by an MOE Graduate Research Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jialiang Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Local Langlands correspondence for special even orthogonal groups

In [3], Arthur established a weaker version LLC for quasi-split special even orthogonal groups from the LLC for quasi-split even orthogonal groups. This was explicated by Atobe–Gan [2]. Since we now construct the LLC for even orthogonal groups, following Arthur’s idea, we can deduce a weaker version LLC for special even orthogonal groups. We shall do it in this appendix.

Let \(V=V_{2n}\) be a 2n-dimensional orthogonal space and \(\chi _V\) be the discriminant character of V. By [9, §8] and [2, §3], we define

$$\begin{aligned} \Phi ({{\,\mathrm{SO}\,}}(V_{2n}))=\{\phi : {{\,\mathrm{WD}\,}}_{F} \rightarrow \text {O}(2n, {\mathbb {C}}) | \det (\phi )=\chi _{V}\} /({{\,\mathrm{SO}\,}}(2n, {\mathbb {C}})\text{-conjugacy }). \end{aligned}$$

and call an element \(\phi \in \Phi ({{\,\mathrm{SO}\,}}(V_{2n}))\) an L-parameter for \({{\,\mathrm{SO}\,}}(V_{2n})\). Note that \(\Phi ({{\,\mathrm{SO}\,}}(V_{2n}))\) is different from \(\Phi ({\text {O}}(V_{2n}))\) since we consider the \({{\,\mathrm{SO}\,}}(2n,\mathbb C)\)-conjugacy rather than \({\text {O}}(2n,{\mathbb {C}})\)-conjugacy here. There is a natural surjective map

$$\begin{aligned} \Phi ({{\,\mathrm{SO}\,}}(V_{2n}))\twoheadrightarrow \Phi ({\text {O}}(V_{2n})). \end{aligned}$$
(A.1)

We define \(\Phi ^\epsilon ({{\,\mathrm{SO}\,}}(V_{2n}))\) to be the preimage of \(\Phi ^\epsilon ({\text {O}}(V_{2n}))\). It is easy to check that the map (A.1) is bijective on the subset \(\Phi ^\epsilon ({{\,\mathrm{SO}\,}}(V_{2n}))\) and is a two-to-one map on \(\Phi ({{\,\mathrm{SO}\,}}(V_{2n})){\setminus } \Phi ^\epsilon ({{\,\mathrm{SO}\,}}(V_{2n}))\).

Next we state the local Langlands correspondence for special even orthogonal groups. The reader can consult [2, §3.3] for a detailed description.

Desideratum 10.6

Fix \((d,c)\in (F^\times )^2\). Let \(V_{2n}=V_{2n}^+\) be the orthogonal space associated to (dc), and \(\chi _V=(\cdot , d)_F\) be the discriminant character of \(V_{2n}\).

  1. (1)

    There exists a surjective map

    $$\begin{aligned} {\mathcal {L}}: \bigsqcup _{\delta \in \{\pm 1\}} {{\,\mathrm{Irr}\,}}\left( {{\,\mathrm{SO}\,}}(V_{2n}^\delta )\right) \longrightarrow \Phi ({{\,\mathrm{SO}\,}}(V_{2n})) \end{aligned}$$

    which is finite-to-one. For any \(\phi \in \Phi ({{\,\mathrm{SO}\,}}(V_{2n}))\), we denote \({\mathcal {L}}^{-1}(\phi )\) by \(\Pi _{\phi }\) and call it the L-packet of \(\phi \). We also write \(\Pi _{\phi }({{\,\mathrm{SO}\,}}(V_{2n}))=\Pi _{\phi }\cap {{\,\mathrm{Irr}\,}}\left( {{\,\mathrm{SO}\,}}(V_{2n})\right) \).

  2. (2)

    For each Whittaker datum \({\mathfrak {W}}_{c^\prime }\), there exists a canonical bijection

    $$\begin{aligned} {\mathcal {J}}_{{\mathfrak {W}}_{c^\prime }} : \Pi _{\phi } \longrightarrow \widehat{{\mathcal {S}}^+_{\phi }}. \end{aligned}$$
    (A.2)
  3. (3)

    The L-packet \(\Pi _{\phi }\) and the bijection \({\mathcal {J}}_{{\mathfrak {W}}_{c^\prime }}\) satisfy the analogues of Theorem 4.4 (3)-(12).

Desideratum 10.6 has not been established. However, following what Arthur did in [3], we can deduce a weaker version of Desideratum 10.6 as follows.

We introduce an equivalence relation \(\sim _{\epsilon }\) on \({{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))\). Choose an element \(\epsilon \in \text {O}(V_{2n}^\delta )\) such that \(\det (\epsilon )=-1\). For \(\pi _0\in {{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))\), we define its conjugate \(\pi _0^\epsilon \) by

$$\begin{aligned} \pi _0^\epsilon (h)=\pi _0(\epsilon ^{-1}h\epsilon ) \quad \text{ for } h\in {\text {O}}(V_{2n}^\delta ). \end{aligned}$$

Then the equivalence relation \(\sim _{\epsilon }\) on \({{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))\) is defined by

$$\begin{aligned} \pi _0 \sim _{\epsilon } \pi _0^\epsilon . \end{aligned}$$

We denote by \([\pi _0]\) the image of a representation \(\pi _0\in {{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))\) under the canonical map \({{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))\rightarrow {{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))/\sim _{\epsilon }\). We say that \([\pi _0]\in {{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))/\sim _{\epsilon }\) is tempered (resp. discrete) if some (and hence any) representative \(\pi _0\) is tempered (resp. discrete). We also define an equivalence relation \(\sim _{\det }\) on \({{\,\mathrm{Irr}\,}}(\text {O}(V_{2n}^\delta ))\) by

$$\begin{aligned} \pi \sim _{\det } \pi \otimes \det \quad \text{ for } \pi \in {{\,\mathrm{Irr}\,}}(\text {O}(V_{2n}^\delta )). \end{aligned}$$

Then the restriction and the induction gives a canonical bijection

$$\begin{aligned} {{\,\mathrm{Irr}\,}}({\text {O}}(V_{2n}^\delta ))/\sim _{\det } \longleftrightarrow {{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))/\sim _{\epsilon }. \end{aligned}$$

We state the weaker version of LLC for \({{\,\mathrm{SO}\,}}(V_{2n})\) as follows:

Theorem A.1

(Weak LLC for special even orthogonal groups) Fix \((d,c)\in (F^\times )^2\). Let \(V_{2n}=V_{2n}^+\) be the orthogonal space associated to (dc), and \(\chi _V=(\cdot , d)_F\) be the discriminant character of \(V_{2n}\).

  1. (1).

    There exists a surjective map

    $$\begin{aligned} {\mathcal {L}}: \bigsqcup _{\delta \in \{\pm 1\}} \left( {{\,\mathrm{Irr}\,}}\left( {{\,\mathrm{SO}\,}}(V_{2n}^\delta )\right) /\sim _{\epsilon }\right) \longrightarrow \Phi ({\mathrm{O}}(V_{2n})), \end{aligned}$$

    which is finite-to-one. For \(\phi \in \Phi ({\mathrm{O}}(V_{2n}))\), we denote \(\mathcal L^{-1}(\phi )\) by \(\Pi ^0_{\phi }\) and call it the L-packet of \(\phi \). We also write \(\Pi ^0_{\phi }({{\,\mathrm{SO}\,}}(V_{2n}))=\Pi ^0_{\phi }\cap {{\,\mathrm{Irr}\,}}\left( {{\,\mathrm{SO}\,}}(V_{2n})\right) \).

  2. (2).

    For each Whittaker datum \({\mathfrak {W}}_{c^\prime }\), there exist a canonical bijection

    $$\begin{aligned} {\mathcal {J}}^0_{{\mathfrak {W}}_{c^\prime }} : \Pi ^0_{\phi } \longrightarrow \widehat{{\mathcal {S}}^+_{\phi }}. \end{aligned}$$
    (A.3)
  3. (3).

    The L-packet \(\Pi ^0_{\phi }\) and the bijection \({\mathcal {J}}^0_{{\mathfrak {W}}_{c^\prime }}\) satisfy the analogues of Theorem 4.4 (3)-(12).

  4. (4).

    For \(\phi \in \Phi ({\mathrm{O}}(V_{2n})),\) let \(\Pi _{\phi }\) be the L-packet defined in Theorem 4.4. Then the image of \(\Pi _{\phi }\) under the map

    $$\begin{aligned} {{\,\mathrm{Irr}\,}}({\mathrm{O}}(V_{2n}^\delta ))\longrightarrow \left( {{\,\mathrm{Irr}\,}}(\mathrm{O}(V_{2n}^\delta ))/\sim _{\det } \right) \longrightarrow \left( {{\,\mathrm{Irr}\,}}({{\,\mathrm{SO}\,}}(V_{2n}^\delta ))/\sim _{\epsilon }\right) \end{aligned}$$

    is the packet \(\Pi _{\phi }^0\) and the diagram

    is commutative for any Whittaker datum \({\mathfrak {W}}_{c^\prime }\), where \(\ell :{\mathcal {S}}^+_{\phi }\rightarrow {\mathcal {S}}_{\phi }\) is the natural embedding.

Proof

This follows from Theorem 4.4; see also Atobe–Gan [2, §3.5] for an explication. \(\square \)

Appendix B: The Plancherel measures and normalized intertwining operators

We recall the definition of Plancherel measures and prove Lemma 7.2 in this Appendix.

We retain the notation in Sect. 7.1. Let \({\overline{P}}=M_{P} U_{{{\overline{P}}}}\) be the opposite parabolic subgroup to P of \({\text {O}}(V)\) and consider the induced representation

$$\begin{aligned} {{\,\mathrm{Ind}\,}}_{{\overline{P}}}^{{\text {O}}\left( V\right) }\left( \tau _{s} \otimes \pi _0 \right) . \end{aligned}$$

Similarly to those of Sect. 7.1, they are realized on the space of smooth functions

$$\begin{aligned} {\overline{\Psi }}_{s} : {\text {O}}(V) \rightarrow {\mathscr {V}}_{\tau } \otimes {\mathscr {V}}_{\pi _0} \end{aligned}$$

such that

$$\begin{aligned} {\overline{\Psi }}_{s}\left( u_{{{\overline{P}}}} m_{P}(a) h_0 h\right)&=|\det (a)|_{F}^{s+\rho _{{{\overline{P}}}}} \tau (a) \pi _0(h_0) {\overline{\Psi }}_{s}\left( h\right) \end{aligned}$$

for any \( u_{{{\overline{P}}}} \in U_{{{\overline{P}}}}, a\in {{\,\mathrm{GL}\,}}(X), h_0\in \text {O}(V_0), h \in \text {O}(V)\). As in [10, §12], we define the standard intertwining operator

$$\begin{aligned} J_{{\overline{P}}|P}(\tau _{s}\otimes \pi _0): {{\,\mathrm{Ind}\,}}_{P}^{\text {O}(V)}(\tau _{s}\otimes \pi _0)&\longrightarrow {{\,\mathrm{Ind}\,}}_{{\overline{P}}}^{{\text {O}}(V)}(\tau _{s}\otimes \pi _0) \end{aligned}$$

by (the meromorphic continuations of) the integrals

$$\begin{aligned} J_{{\overline{P}}|P}(\tau _{s}\otimes \pi _0)\Psi _s(h)&= \int _{U_{{{\overline{P}}}}} \Psi _s({\bar{u}}h)d{\bar{u}} \end{aligned}$$

for \(\Psi _s\in {{\,\mathrm{Ind}\,}}_{P}^{{\text {O}}(V)}(\tau _{s}\otimes \pi _0)\). Similarly, we have the standard intertwining operator

$$\begin{aligned} J_{P|{{\overline{P}}}}(\tau _{s}\otimes \pi _0): {{\,\mathrm{Ind}\,}}_{\overline{P}}^{{\text {O}}(V)}(\tau _{s}\otimes \pi _0)&\longrightarrow {{\,\mathrm{Ind}\,}}_{P}^{{\text {O}}(V)}(\tau _{s}\otimes \pi _0). \end{aligned}$$

By [10, §12], the Plancherel measure associated to \({{\,\mathrm{Ind}\,}}_{ P}^{{\text {O}}(V)}(\tau _{s}\otimes \pi _0)\) is a rational function \(\mu (\tau _{s}\otimes \pi _0)\) such that

$$\begin{aligned} J_{P|{\overline{P}}}(\tau _{s}\otimes \pi _0)\circ J_{{\overline{P}}|P}(\tau _{s}\otimes \pi _0)= \mu (\tau _{s}\otimes \pi _0)^{-1}. \end{aligned}$$

At this point, the Plancherel measure \(\mu (\tau _{s}\otimes \pi _0)\) is only well-defined up to a scalar since it depends on the choice of Haar measures on \(U_P\) and \(U_{{{\overline{P}}}}\). We refer the reader to [10, Appendix B.2] for the choice of these Haar measures we used here.

Fix a Whittaker datum \({\mathfrak {W}}_{c^\prime }\). Let \({\widetilde{w}}_{c^\prime }\) be the lift of w in (7.1). Then there is a intertwining isomorphism

$$\begin{aligned} \ell (w_{c^\prime },\tau _s\otimes \pi _0): {{\,\mathrm{Ind}\,}}_{{{\overline{P}}}}^{\text {O}(V)}(\tau _{s}\otimes \pi _0)\rightarrow {{\,\mathrm{Ind}\,}}_P^{\text {O}(V)}(w(\tau _{s}\otimes \pi _0)) \end{aligned}$$

given by left translation

$$\begin{aligned} \left( \ell (w_{c^\prime },\tau _s\otimes \pi _0){\overline{\Psi }}_{s}\right) (h) ={\overline{\Psi }}_s({\widetilde{w}}_{c^\prime }^{-1}h) \end{aligned}$$

for \({\overline{\Psi }}_s\in {{\,\mathrm{Ind}\,}}_{{{\overline{P}}}}^{\text {O}(V)}(\tau _{s}\otimes \pi _0)\) and \(h\in {\text {O}}(V)\). It is easy to check that the following diagram

(B.1)

is commutative, where \(\mathcal M({\widetilde{w}}_{c^\prime },\tau _{s}\otimes \pi _0)\) is the unnormalized intertwining operator defined in Sect. 7.1.

Note that

$$\begin{aligned} {\widetilde{w}}_{c^\prime }^2= m_P((-\mathbf{1 })^{k-1})\cdot \mathbf{1} _{V_0}. \end{aligned}$$

Hence \({\widetilde{w}}_{c^\prime }^2\) lies in the center of \(M_P\). We have an intertwining isomorphism

$$\begin{aligned} \ell (w^2_{c^\prime },\tau _s\otimes \pi _0): {{\,\mathrm{Ind}\,}}_{P}^{\text {O}(V)}(\tau _{s}\otimes \pi _0)\rightarrow {{\,\mathrm{Ind}\,}}_P^{\text {O}(V)}(w^2(\tau _{s}\otimes \pi _0))={{\,\mathrm{Ind}\,}}_P^{\text {O}(V)}(\tau _{s}\otimes \pi _0) \end{aligned}$$

given by left translation

$$\begin{aligned} \left( \ell (w_{c^\prime }^2,\tau _s\otimes \pi _0)\Psi _{s}\right) (h) = \Psi _s(({\widetilde{w}}_{c^\prime })^{-2}h)=\omega _{\tau }(-1)^{k-1}\Psi _s(h). \end{aligned}$$
(B.2)

for \(\Psi _s\in {{\,\mathrm{Ind}\,}}_{P}^{{\text {O}}(V)}(\tau _{s}\otimes \pi _0)\) and \(h\in {\text {O}}(V)\). Here \(\omega _\tau \) is the central character of \(\tau \). Then we have the following commutative diagram

(B.3)

Combining (B.1), (B.2) and (B.3), we have

$$\begin{aligned}&{\mathcal {M}}({\widetilde{w}}_{c^\prime },w(\tau _{s}\otimes \pi _0))\circ {\mathcal {M}}({\widetilde{w}}_{c},\tau _{s}\otimes \pi _0)\nonumber \\&\quad = \ell (w^2_{c^\prime },\tau _s\otimes \pi _0)\circ J_{P|{{\overline{P}}}}(\tau _{s}\otimes \pi _0)\circ J_{{{\overline{P}}}|P}(\tau _{s}\otimes \pi _0)\nonumber \\&\quad = \omega _{\tau }(-1)^{k-1}\times \mu (\tau _{s}\otimes \pi _0)^{-1}. \end{aligned}$$
(B.4)

Now we begin to prove Lemma 7.2 for even orthogonal groups.

Proposition B.1

Let \({\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w, \tau _{s} \otimes \pi _0\right) \) and be the normalized intertwining operator defined in Sect. 7.1. Then we have

  1. (i)

    \( {\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w, w(\tau _{s} \otimes \pi _0)\right) \circ {\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w, \tau _{s} \otimes \pi _0\right) =1 \);

  2. (ii)

    \({\mathcal {R}}_{{\mathfrak {W}}_{c\prime }}\left( w, w(\tau _{-{\bar{s}}} \otimes \pi _0)\right) ^*={\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w,\tau _{s} \otimes \pi _0 \right) \).

In particular, \({\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w,\tau _{s} \otimes \pi _0 \right) \) is unitary when s is purely imaginary. Hence \({\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w,\tau _{s} \otimes \pi _0 \right) \) is holomorphic at \(s=0\).

Proof

We first prove (i). Let \(\phi _\tau \) and \(\phi _{0}\) be the L-parameters of \(\tau \) and \(\pi _0\). Then by (B.4) and Corollary 8.10, we have

$$\begin{aligned}&\quad {\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w, w(\tau _{s} \otimes \pi _0)\right) \circ {\mathcal {R}}_{{\mathfrak {W}}_{c^\prime }}\left( w, \tau _{s} \otimes \pi _0\right) \\&=\epsilon (V)^{2k}\times \chi _{V}(c^\prime /c)^{2k}\times r(w,w(\tau _s\otimes \pi _{0}))^{-1}\times r(w,\tau _s\otimes \pi _{0})^{-1}\\&\quad \times |c^\prime |_F^{k\rho _P}\times |c^\prime |_F^{k\rho _{{{\overline{P}}}}}\times {\mathcal {M}}({\widetilde{w}}_{c^\prime },w(\tau _{s}\otimes \pi _0))\circ {\mathcal {M}}({\widetilde{w}}_{c^\prime },\tau _{s}\otimes \pi _0)\\&=r(w,w(\tau _s\otimes \pi _{0}))^{-1}\times r(w,\tau _s\otimes \pi _{0})^{-1}\times \omega _{\tau }(- 1)^{k-1}\times \mu (\tau _{s}\otimes \pi _0)^{-1}\\&=r(w,w(\tau _s\otimes \pi _{0}))^{-1}\times r(w,\tau _s\otimes \pi _{0})^{-1}\times \omega _{\tau }(- 1)^{k-1}\times \gamma (s,\phi _{\tau }\otimes \phi _{0}^{\vee },\psi )^{-1}\\&\quad \times \gamma (-s,\phi _{\tau }^{\vee }\otimes \phi _0, \psi _{-1} )\times \gamma (2s, \wedge ^2\circ \phi _{\tau }, \psi )^{-1}\times \gamma (-2s, \wedge ^{2} \circ \phi _{\tau }^{\vee },\psi _{-1})^{-1}\\&=1, \end{aligned}$$

where the last equality follows from (7.3), (7.4) and the following formulas

$$\begin{aligned} \gamma (s,\phi ,\psi )&= \frac{\varepsilon (s,\phi ,\psi )\times L(1-s,\phi ^\vee )}{L(s,\phi )},\\ \varepsilon (s,\phi ,\psi _{-1})&=\det (\phi )(-1)\times \varepsilon (s,\phi ,\psi ) \end{aligned}$$

for any representation \(\phi \) of \({{\,\mathrm{WD}\,}}_F\).

The second statement follows from a similar argument in [3, Proposition 2.3.1], we omit the details here.\(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zou, J. Local Langlands correspondence for even orthogonal groups via theta lifts. Sel. Math. New Ser. 27, 88 (2021). https://doi.org/10.1007/s00029-021-00704-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00704-8

Keywords

Mathematics Subject Classification

Navigation