Skip to main content
Log in

The harmonic polytope

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the harmonic polytope, which arose in Ardila, Denham, and Huh’s work on the Lagrangian geometry of matroids. We describe its combinatorial structure, showing that it is a \((2n-2)\)-dimensional polytope with \((n!)^2\left( 1+\frac{1}{2}+\cdots +\frac{1}{n}\right) \) vertices and \(3^n-3\) facets. We also give a formula for its volume: it is a weighted sum of the degrees of the projective varieties of all the toric ideals of connected bipartite graphs with n edges; or equivalently, a weighted sum of the lattice point counts of all the corresponding trimmed generalized permutahedra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Of course, this is the same information as the relative order of the \(z_i\)s. We use the reverse order because it is consistent with our choice of working with inner normal fans.

  2. This should not be confused with the permutohedron, which makes no further appearances in the paper.

References

  1. Adiprasito, K., Huh, J., Katz, E.: Hodge theory for combinatorial geometries. Ann. Math. (2) 188(2), 381–452 (2018)

    Article  MathSciNet  Google Scholar 

  2. Ardila, F.: The geometry of matroids. Notices Am. Math. Soc. 65(8), 902–908 (2018)

    Article  MathSciNet  Google Scholar 

  3. Ardila, F.: The bipermutahedron. arXiv:2008.02295

  4. Ardila, F., Denham, G., Huh, J.: Lagrangian geometry of matroids. arXiv:2004.13116

  5. Ardila, F., Denham, G., Huh, J.: Lagrangian combinatorics of matroids. In preparation (2021)

  6. Ardila, F., Klivans, C.J.: The Bergman complex of a matroid and phylogenetic trees. J. Comb. Theory Ser. B 96(1), 38–49 (2006)

    Article  MathSciNet  Google Scholar 

  7. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete Comput. Geom. 2(4), 319–326 (1987)

    Article  MathSciNet  Google Scholar 

  8. Bernstein, D.N.: The number of roots of a system of equations. Funkcional. Anal. i Priložen. 9(3), 1–4 (1975)

    MathSciNet  Google Scholar 

  9. Billera, L.J.: The algebra of continuous piecewise polynomials. Adv. Math. 76(2), 170–183 (1989)

    Article  MathSciNet  Google Scholar 

  10. Brion, M.: Piecewise polynomial functions, convex polytopes and enumerative geometry. In: Parameter Spaces (Warsaw, 1994), Banach Center Publ., vol. 36, pp. 25–44. Polish Acad. Sci. Inst. Math., Warsaw (1996)

  11. Brylawski, T.: The Tutte polynomial part I: general theory. In: Matroid Theory and Its Applications, Volume 83 of C.I.M.E. Summer Sch., pp. 125–275. Springer, Heidelberg (2010)

  12. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2011)

    Google Scholar 

  13. de Medrano, L.L., Rincón, F., Shaw, K.: Chern–Schwartz–MacPherson cycles of matroids. Proc. Lond. Math. Soc. (3) 120(1), 1–27 (2020)

    Article  MathSciNet  Google Scholar 

  14. Dawson, J.E.: A collection of sets related to the Tutte polynomial of a matroid. In: Graph Theory, Singapore 1983, Volume 1073 of Lecture Notes in Math., pp. 193–204. Springer, Berlin (1984)

  15. Dyer, M.E.: The complexity of vertex enumeration methods. Math. Oper. Res. 8(3), 381–402 (1983)

    Article  MathSciNet  Google Scholar 

  16. Dyer, M.E., Frieze, A.M.: On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17(5), 967–974 (1988)

    Article  MathSciNet  Google Scholar 

  17. Feichtner, E.M., Yuzvinsky, S.: Chow rings of toric varieties defined by atomic lattices. Invent. Math. 155(3), 515–536 (2004)

    Article  MathSciNet  Google Scholar 

  18. Herzog, J., Hibi, T., Ohsugi, H.: Binomial Ideals, Volume 279 of Graduate Texts in Mathematics. Springer, Cham (2018)

    Google Scholar 

  19. Huh, J., Katz, E.: Log-concavity of characteristic polynomials and the Bergman fan of matroids. Math. Ann. 354(3), 1103–1116 (2012)

    Article  MathSciNet  Google Scholar 

  20. Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Am. Math. Soc. 25(3), 907–927 (2012)

    Article  MathSciNet  Google Scholar 

  21. Huh, J.: h-vectors of matroids and logarithmic concavity. Adv. Math. 270, 49–59 (2015)

    Article  MathSciNet  Google Scholar 

  22. Linial, N.: Hard enumeration problems in geometry and combinatorics. SIAM J. Algebr. Discrete Methods 7(2), 331–335 (1986)

    Article  MathSciNet  Google Scholar 

  23. MacPherson, R.D.: Chern classes for singular algebraic varieties. Ann. Math. 2(100), 423–432 (1974)

    Article  MathSciNet  Google Scholar 

  24. McMullen, P.: Valuations and Euler-type relations on certain classes of convex polytopes. Proc. Lond. Math. Soc. (3) 35(1), 113–135 (1977)

    Article  MathSciNet  Google Scholar 

  25. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Notices (IMRN) 6, 1026–1106 (2009)

    Article  MathSciNet  Google Scholar 

  26. Stanley, R.P.: Enumerative Combinatorics. Volume 1, Volume 49 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  27. Sabbah, C.: Quelques remarques sur la géométrie des espaces conormaux. Number 130, pp. 161–192. 1985. Differential systems and singularities (Luminy, 1983)

  28. Schwartz, M.-H.: Classes caractéristiques définies par une stratification d’une variété analytique complexe. I. C. R. Acad. Sci. Paris 260, 3262–3264 (1965)

    MathSciNet  MATH  Google Scholar 

  29. Simis, A., Vasconcelos, W.V., Villarreal, R.H.: On the ideal theory of graphs. J. Algebra 167(2), 389–416 (1994)

    Article  MathSciNet  Google Scholar 

  30. Sturmfels, B.: Gröbner Bases and Convex Polytopes, Volume 8 of University Lecture Series. American Mathematical Society, Providence (1996)

    Google Scholar 

  31. Villarreal, R.H.: Rees algebras of edge ideals. Commun. Algebra 23(9), 3513–3524 (1995)

    Article  MathSciNet  Google Scholar 

  32. Ziegler, G.M.: Lectures on Polytopes, Volume 152 of Graduate Texts in Mathematics. Springer, New York (1995)

    Google Scholar 

Download references

Acknowledgements

The first author would like to thank Graham Denham and June Huh for the very rewarding collaboration that led to the construction of the harmonic polytope. We would like to thank the anonymous referees for their careful reading of the work and their valuable suggestions to improve the exposition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Ardila.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

F. Ardila: Partially supported by NSF Grant DMS-1855610 and Simons Fellowship 613384. L. Escobar: Partially supported by NSF Grant DMS-1855598.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardila, F., Escobar, L. The harmonic polytope. Sel. Math. New Ser. 27, 91 (2021). https://doi.org/10.1007/s00029-021-00687-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00687-6

Mathematics Subject Classification

Navigation