Skip to main content
Log in

A tetrachotomy for expansions of the real ordered additive group

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(\mathcal {R}\) be an expansion of the ordered real additive group. When \(\mathcal {R}\) is o-minimal, it is known that either \(\mathcal {R}\) defines an ordered field isomorphic to \((\mathbb {R},<,+,\cdot )\) on some open subinterval \(I\subseteq \mathbb {R}\), or \(\mathcal {R}\) is a reduct of an ordered vector space. We say \(\mathcal {R}\) is field-type if it satisfies the former condition. In this paper, we prove a more general result for arbitrary expansions of \((\mathbb {R},<,+)\). In particular, we show that for expansions that do not define dense \(\omega \)-orders (we call these type A expansions), an appropriate version of Zilber’s principle holds. Among other things we conclude that in a type A expansion that is not field-type, every continuous definable function \([0,1]^m \rightarrow \mathbb {R}^n\) is locally affine outside a nowhere dense set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. To prove Fact 1.2, the reader can either easily redo the proof of [22, Theorem 1.1] or simply apply [18, Theorem C].

References

  1. Abu Zaid, F.: Algorithmic solutions via model theoretic interpretations. Ph.D. thesis, RWTH Aachen University (2016)

  2. Abu Zaid, F., Grädel, E., Kaiser, L., Pakusa, W.: Model-theoretic properties of \(\omega \)-automatic structures. Theory Comput. Syst. 55(4), 856–880 (2014)

    Article  MathSciNet  Google Scholar 

  3. Anashin, V.S.: Quantization causes waves: smooth finitely computable functions are affine. P-Adic Num. Ultrametr. Anal. Appl. 7(3), 169–227 (2015)

    Article  MathSciNet  Google Scholar 

  4. Balderrama, W., Hieronymi, P.: Definability and decidability in expansions by generalized Cantor sets. Preprint arXiv:1701.08426 (2017)

  5. Banach, S.: Über die Baire’sche Kategorie gewisser Funktionenmengen. Stud. Math. 3(1), 174–179 (1931)

    Article  Google Scholar 

  6. Gorman, A.B., Hieronymi, P., Kaplan, E., Meng, R., Walsberg, E., Wang, Z., Xiong, Z., Yang, H.: Continuous regular functions. Log. Methods Comput. Sci. 16(1), 17 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Boas Jr., R.P., Widder, D.V.: Functions with positive differences. Duke Math. J. 7, 496–503 (1940)

    MathSciNet  MATH  Google Scholar 

  8. Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis method for strongly linear hybrid systems (extended abstract). In: Grumberg, O. (ed.) Computer Aided Verification. Lecture Notes in Computer Science, vol. 1254, pp. 167–178. Springer, Berlin (1997)

    Chapter  Google Scholar 

  9. Boigelot, B., Rassart, S., Wolper, P.: On the expressiveness of real and integer arithmetic automata (extended abstract). In Proceedings of the 25th International Colloquium on Automata, Languages and Programming, ICALP ’98, pp. 152–163. Springer-Verlag, London, UK (1998)

  10. Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Logic, Methodology and Philosophy of Science (Proceedings of the 1960 International Congress), pp. 1–11. Stanford University Press, Stanford, CA (1962)

  11. Charlier, É., Leroy, J., Rigo, M.: An analogue of Cobham’s theorem for graph directed iterated function systems. Adv. Math. 280, 86–120 (2015)

    Article  MathSciNet  Google Scholar 

  12. Delon, F.: \({ Q}\) muni de l’arithmétique faible de Penzin est décidable. Proc. Am. Math. Soc. 125(9), 2711–2717 (1997)

    Article  Google Scholar 

  13. Dolich, A., Miller, C., Steinhorn, C.: Structures having o-minimal open core. Trans. Am. Math. Soc. 362(3), 1371–1411 (2010)

    Article  MathSciNet  Google Scholar 

  14. Van Den Dries, L.: The field of reals with a predicate for the powers of two. Manuscr. Math. 54(1–2), 187–195 (1985)

    Article  MathSciNet  Google Scholar 

  15. Elgot, C.C., Rabin, M.O.: Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. J. Symb. Logic 31(2), 169–181 (1966)

    Article  Google Scholar 

  16. Engelking, R.: Dimension theory. North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw (1978). Translated from the Polish and revised by the author, North-Holland Mathematical Library, 19

  17. Fornasiero, A.: Expansions of the reals which do not define the natural numbers. arXiv:1104.1699, unpublished note (2011)

  18. Fornasiero, A., Hieronymi, P., Walsberg, E.: How to avoid a compact set. Adv. Math. 317, 758–785 (2017)

    Article  MathSciNet  Google Scholar 

  19. Friedman, H., Kurdyka, K., Miller, C., Speissegger, P.: Expansions of the real field by open sets: definability versus interpretability. J. Symb. Logic 75(4), 1311–1325 (2010)

    Article  MathSciNet  Google Scholar 

  20. Friedman, H., Miller, C.: Expansions of o-minimal structures by sparse sets. Fund. Math. 167(1), 55–64 (2001)

    Article  MathSciNet  Google Scholar 

  21. Grigoriev, A.: On o-minimality of extensions of \(\mathbb{R} \) by restricted generic smooth functions. arXiv:math/0506109 (2005)

  22. Hieronymi, P.: Defining the set of integers in expansions of the real field by a closed discrete set. Proc. Am. Math. Soc. 138(6), 2163–2168 (2010)

    Article  MathSciNet  Google Scholar 

  23. Hieronymi, P.: Expansions of the ordered additive group of real numbers by two discrete subgroups. J. Symb. Logic 81(3), 1007–1027 (2016)

    Article  MathSciNet  Google Scholar 

  24. Hieronymi, P.: When is scalar multiplication decidable? Ann. Pure Appl. Logic 10, 1162–1175 (2019)

    Article  MathSciNet  Google Scholar 

  25. Hieronymi, P., Tychonievich, M.: Interpreting the projective hierarchy in expansions of the real line. Proc. Am. Math. Soc. 142(9), 3259–3267 (2014)

    Article  MathSciNet  Google Scholar 

  26. Hieronymi, P., Walsberg, E.: Interpreting the monadic second order theory of one successor in expansions of the real line. Isr. J. Math. 224(1), 39–55 (2018)

    Article  MathSciNet  Google Scholar 

  27. Hrushovski, E.: A new strongly minimal set. Ann. Pure Appl. Logic 62(2), 147–166 (1993)

    Article  MathSciNet  Google Scholar 

  28. Kawakami, T., Takeuchi, K., Tanaka, H., Tsuboi, A.: Locally o-minimal structures. J. Math. Soc. Jpn. 64(3), 783–797 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer-Verlag, New York (1995)

    Book  Google Scholar 

  30. Konečný, M.: Real functions computable by finite automata using affine representations. Theor. Comput. Sci. 284(2), 373–396 (2002). Computability and complexity in analysis (Castle Dagstuhl, 1999)

    Article  MathSciNet  Google Scholar 

  31. Laskowski, M.C., Steinhorn, C.: On o-minimal expansions of Archimedean ordered groups. J. Symb. Logic 60(3), 817–831 (1995)

    Article  MathSciNet  Google Scholar 

  32. Le Gal, O.: A generic condition implying o-minimality for restricted \(C^\infty \)-functions. Ann. Fac. Sci. Toulouse Math. (6) 19(3–4), 479–492 (2010)

    Article  MathSciNet  Google Scholar 

  33. Loveys, J., Peterzil, Y.: Linear o-minimal structures. Isr. J. Math. 81(1–2), 1–30 (1993)

    Article  MathSciNet  Google Scholar 

  34. Marker, D., Peterzil, Y., Pillay, A.: Additive reducts of real closed fields. J. Symb. Logic 57(1), 109–117 (1992)

    Article  MathSciNet  Google Scholar 

  35. Miller, C., Speissegger, P.: Expansions of the real line by open sets: o-minimality and open cores. Fund. Math. 162(3), 193–208 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Muller, J.-M.: Some characterizations of functions computable in on-line arithmetic. IEEE Trans. Comput. 43(6), 752–755 (1994)

    Article  MathSciNet  Google Scholar 

  37. Peterzil, Y., Starchenko, S.: A trichotomy theorem for o-minimal structures. Proc. Lond. Math. Soc. (3) 77(3), 481–523 (1998)

    Article  MathSciNet  Google Scholar 

  38. Pillay, A., Scowcroft, P., Steinhorn, C.: Between groups and rings. Rocky Mt. J. Math. 19(3), 871–885 (1989). Quadratic forms and real algebraic geometry (Corvallis, OR, 1986)

    Article  MathSciNet  Google Scholar 

  39. Rolin, J.-P., Speissegger, P., Wilkie, A.J.: Quasianalytic Denjoy-Carleman classes and o-minimality. J. Am. Math. Soc. 16(4), 751–777 (2003)

    Article  MathSciNet  Google Scholar 

  40. Simon, P.: A Guide to NIP Theories. Lecture Notes in Logic, vol. 44. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  41. Zil’ber, B.: Strongly minimal countably categorical theories. ii. Sib. Math. J. 25(3), 396–412 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Samantha Xu for useful conversations on the topic of this paper, Kobi Peterzil for answering our questions related to [34], and Chris Miller and Michel Rigo for correspondence around Sect. 8. We thank the anonymous referee for very helpful comments that improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Hieronymi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was partially supported by NSF grants DMS-1300402 and DMS-1654725. The second author was partially supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 291111/ MODAG. A preprint of this paper was disseminated under the title “On continuous functions definable in expansions of the ordered real additive group”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hieronymi, P., Walsberg, E. A tetrachotomy for expansions of the real ordered additive group. Sel. Math. New Ser. 27, 54 (2021). https://doi.org/10.1007/s00029-021-00668-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00668-9

Mathematics Subject Classification

Navigation