Skip to main content
Log in

A new Weyl group action related to the quasi-classical Gelfand–Graev action

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We construct a Weyl group action on the DKS type varieties, a certain class of varieties associated with quivers. As a result, on some special DKS type varieties, we can give a quiver theoretic explanation of the quasi-classical Gelfand–Graev action discovered by Ginzburg and Riche and studied by Ginzburg and Kazhdan recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. \({{\,\mathrm{m}\,}}^{-1}(0)\) is isomorphic to the variety \(\Lambda _{D,V}\) defined in [19, § 3.1].

  2. Unfortunately, the symbol \(v_i\) has been used for a component of a dimension vector. The good news is that we only use \(v_i\) to denote a vector in V in this subsection. Outside this subsection, \(v_i\) always denotes a component of a dimension vector.

  3. Here and in the following, we often only define a variety (or a map between two varieties) as a set. But all such definitions can be enhanced scheme-theoretically by using suitable base changes. For details, one can see [10].

  4. Compared to [10], the moment maps here have an extra minus sign because [10] and this paper use different sign conventions for moment maps.

  5. The Weyl group action given here is a little different from [10] because we want to ensure the Weyl group action to be a left action.

  6. We choose to write the components of \(\mathbf {v}\) in a descending order, which is in conformity with the convention used in [21] but different from the convention in [7].

  7. If we use the notations of Sect. 3, the orbit equivalence class \([(\alpha _0,\beta _0,\ldots ,\alpha _{n-1},\beta _{n-1})]\) should be written as \(\pi ((\alpha _0,\beta _0,\ldots ,\alpha _{n-1},\beta _{n-1}))\). In this section, we prefer using this shorter notation.

References

  1. Bernšteĭn, I.N., Gel’fand, I.M., Gel’fand, S.I.: Differential operators on the base affine space and a study of \({ \mathfrak{g}}\)-modules, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), Halsted, New York, pp. 21– 64 (1975)

  2. Bezrukavnikov, R., Braverman, A., Positselskii, L.: Gluing of abelian categories and differential operators on the basic affine space. J. Inst. Math. Jussieu 1(4), 543–557 (2002)

    Article  MathSciNet  Google Scholar 

  3. Crawley-Boevey, W.: Geometry of the moment map for representations of quivers. Compos. Math. 126(3), 257–293 (2001)

    Article  MathSciNet  Google Scholar 

  4. Crawley-Boevey, W.: Normality of Marsden–Weinstein reductions for representations of quivers. Math. Ann. 325(1), 55–79 (2003)

    Article  MathSciNet  Google Scholar 

  5. Crawley-Boevey, W., Holland, M.P.: Noncommutative deformations of Kleinian singularities. Duke Math. J. 92(3), 605–635 (1998)

    Article  MathSciNet  Google Scholar 

  6. Dancer, A., Kirwan, F., Röser, M.: Hyperkähler implosion and Nahm’s equations. Commun. Math. Phys. 342(1), 251–301 (2016)

    Article  Google Scholar 

  7. Dancer, A., Kirwan, F., Swann, A.: Implosion for Hyperkähler manifolds. Compos. Math. 149(9), 1592–1630 (2013)

    Article  MathSciNet  Google Scholar 

  8. Dancer, A., Kirwan, F., Swann, A.: Implosions and hypertoric geometry. J. Ramanujan Math. Soc. 28A, 81–122 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Ginzburg, V.: Lectures on Nakajima’s quiver varieties, Geometric methods in representation theory. I. Sémin. Congr. Soc. Math. Fr. Paris 24, 145–219 (2012)

    MATH  Google Scholar 

  10. Ginzburg, V., Kazhdan, D.: Differential operators on \(G/U\) and the Gelfand-Graev action, 31 (2018). arXiv:1804.05295

  11. Ginzburg, V., Riche, S.: Differential operators on \(G/U\) and the affine Grassmannian. J. Inst. Math. Jussieu 14(3), 493–575 (2015)

    Article  MathSciNet  Google Scholar 

  12. Grosshans, F.D.: Algebraic Homogeneous Spaces and Invariant Theory. Lecture Notes in Mathematics, vol. 1673. Springer, Berlin (1997)

    Book  Google Scholar 

  13. Grothendieck, A.: Torsion homologique et sections rationnelles. Séminaire Claude Chevalley 3, 1–29 (1958)

    Google Scholar 

  14. Grothendieck, A.: Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II. Inst. Hautes Études Sci. Publ. Math., vol. 24, p. 231 (1965)

  15. Guillemin, V., Jeffrey, L., Sjamaar, R.: Symplectic implosion. Transform. Groups 7(2), 155–184 (2002)

    Article  MathSciNet  Google Scholar 

  16. King, A.D.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxf. Ser. (2) 45(180), 515–530 (1994)

    Article  MathSciNet  Google Scholar 

  17. Kronheimer, P.B., Nakajima, H.: Yang-Mills instantons on ALE gravitational instantons. Math. Ann. 288(2), 263–307 (1990)

    Article  MathSciNet  Google Scholar 

  18. Liu, Q.: Algebraic Geometry and Arithmetic Curves. Oxford Graduate Texts in Mathematics, vol. 6. Oxford University Press, Oxford (2002). Translated from the French by Reinie Erné. ISBN 0-19-850284-2

  19. Lusztig, G.: Quiver varieties and Weyl group actions. Ann. Inst. Fourier (Grenoble) 50(2), 461–489 (2000)

    Article  MathSciNet  Google Scholar 

  20. Maffei, A.: A remark on quiver varieties and Weyl groups. Ann. Sci. Norm. Super. Pisa Cl. Sci. (5) 1(3), 649–686 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Nakajima, H.: Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras. Duke Math. J. 76(2), 365–416 (1994)

    Article  MathSciNet  Google Scholar 

  22. Nakajima, H.: Quiver varieties and Kac-Moody algebras. Duke Math. J. 91(3), 515–560 (1998)

    Article  MathSciNet  Google Scholar 

  23. Nakajima, H.: Reflection functors for quiver varieties and Weyl group actions. Math. Ann. 327(4), 671–721 (2003)

    Article  MathSciNet  Google Scholar 

  24. Slodowy, P.: Four Lectures on Simple Groups and Singularities, Communications of the Mathematical Institute, Rijksuniversiteit Utrecht, Rijksuniversiteit Utrecht, vol. 11. Mathematical Institute, Utrecht (1980)

    Google Scholar 

  25. Springer, T.A.: Trigonometric sums, Green functions of finite groups and representations of Weyl groups. Invent. Math. 36, 173–207 (1976)

    Article  MathSciNet  Google Scholar 

  26. Springer, T.A.: A construction of representations of Weyl groups. Invent. Math. 44(3), 279–293 (1978)

    Article  MathSciNet  Google Scholar 

  27. Turaev, V.: Introduction to Combinatorial Torsions. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (2001). Notes taken by Felix Schlenk. ISBN 3-7643-6403-3

  28. Vinberg, È.B., Popov, V.L.: A certain class of quasihomogeneous affine varieties. Izv. Akad. Nauk SSSR Ser. Mat. 36, 749–764 (1972)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author is very grateful for the helpful correspondence with Prof. Victor Ginzburg about the contents of this paper and he also would like to thank Prof. Gang Tian and Prof. Weiping Zhang for their encouragement during the preparation of this paper. Last but not least, the author thanks the anonymous referee, whose comments help to improve the quality of this paper to a great degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangsheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by China Postdoctoral Science Foundation (Grant No. BX201700008), and the fundamental research funds of Shandong University (Grant No. 2020GN063).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X. A new Weyl group action related to the quasi-classical Gelfand–Graev action. Sel. Math. New Ser. 27, 38 (2021). https://doi.org/10.1007/s00029-021-00655-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00655-0

Keywords

Mathematics Subject Classification

Navigation