Skip to main content
Log in

Macdonald polynomials and extended Gelfand–Tsetlin graph

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Using Okounkov’s q-integral representation of Macdonald polynomials we construct an infinite sequence \(\Omega _1,\Omega _2,\Omega _3,\dots \) of countable sets linked by transition probabilities from \(\Omega _N\) to \(\Omega _{N-1}\) for each \(N=2,3,\dots \). The elements of the sets \(\Omega _N\) are the vertices of the extended Gelfand–Tsetlin graph, and the transition probabilities depend on the two Macdonald parameters, q and t. These data determine a family of Markov chains, and the main result is the description of their entrance boundaries. This work has its origin in asymptotic representation theory. In the subsequent paper, the main result is applied to large-N limit transition in (qt)-deformed N-particle beta-ensembles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Assiotis, T., Najnudel, J.: The boundary of the orbital beta process. arXiv:1905.08684

  3. Bochner, S.: Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley (1955)

    Book  Google Scholar 

  4. Borodin, A., Olshanski, G.: Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann. Math. (2) 161, 1319–1422 (2005)

    Article  MathSciNet  Google Scholar 

  5. Borodin, A., Olshanski, G.: Representations of the Infinite Symmetric Group. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  6. Bump, D.: Lie groups. Springer (2004 and 2013)

  7. Cuenca, C.: Asymptotic formulas for Macdonald polynomials and the boundary of the (q,t)-Gelfand–Tsetlin graph. SIGMA 14, 001, 66 pages (2018). arXiv:1704.02429

  8. Cuenca, C., Gorin, V., Olshanski, G.: The elliptic tail kernel. Int. Math. Res. Not. (to appear); advance online publication (2020). https://doi.org/10.1093/imrn/rnaa038; arXiv:1907.11841

  9. Dynkin, E.B.: Sufficient statistics and extreme points. Ann. Probab. 6, 705–730 (1978)

    Article  MathSciNet  Google Scholar 

  10. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. Wiley, Hoboken (1971)

    MATH  Google Scholar 

  11. Forrester, P.J., Rains, E.M.: Interpretations of some parameter dependent generalizations of classical matrix ensembles. Probab. Theory Relat. Fields 131, 1–61 (2005)

    Article  MathSciNet  Google Scholar 

  12. Forrester, P.J., Warnaar, S.: The importance of Selberg integral. Bull. Am. Math. Soc. 45(4), 489–534 (2008)

    Article  MathSciNet  Google Scholar 

  13. Gasper, G., Rahman, M.: Basic Hypergeometric Series. With a foreword by Richard Askey, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 96. Cambridge University Press, Cambridge (2004)

  14. Gorin, V.: The \(q\)-Gelfand–Tsetlin graph, Gibbs measures and \(q\)-Toeplitz matrices. Adv. Math. 229, 201–266 (2012)

    Article  MathSciNet  Google Scholar 

  15. Gorin, V., Olshanski, G.: A quantization of the harmonic analysis on the infinite-dimensional unitary group. J. Funct. Anal. 270, 375–418 (2016)

    Article  MathSciNet  Google Scholar 

  16. Heckman, G., Schlichtkrull, H.: Harmonic Analysis and Special Functions on Symmetric Spaces. Perspectives in Mathematics, vol. 16. Academic Press, Elsevier (1995)

    MATH  Google Scholar 

  17. Helgason, S.: Differential geometry, Lie groups, and symmetric spaces. Am. Math. Soc. (1974 and 2001)

  18. Kim, J.S., Stanton, D.: On \(q\)-integrals over order polytopes. Adv. Math. 308, 1269–1317 (2017)

    Article  MathSciNet  Google Scholar 

  19. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  20. Meyer, P.-A.: Probability and Potentials. Blaisdell, Waltham (1966)

    MATH  Google Scholar 

  21. Nazarov, M., Tarasov, V.: On irreducibility of tensor products of Yangian modules associated with skew Young diagrams. Duke Math. J. 112, 343–378 (2002)

    Article  MathSciNet  Google Scholar 

  22. Okounkov, A.: (Shifted) Macdonald polynomials: q-integral representation and combinatorial formula. Comp. Math. 112, 147–182 (1998)

    Article  MathSciNet  Google Scholar 

  23. Okounkov, A., Olshanski, G.: Shifted Jack polynomials, binomial formula, and applications. Math. Res. Lett. 4(1), 69–78 (1997)

    Article  MathSciNet  Google Scholar 

  24. Okounkov, A., Olshanski, G.: Asymptotics of Jack polynomials as the number of variables goes to infinity. Int. Math. Res. Not. 1998(13), 641–682 (1998)

    Article  MathSciNet  Google Scholar 

  25. Okounkov, A., Olshanski, G.: Limits of \(BC\)-type orthogonal polynomials as the number of variables goes to infinity. In: Kuznetsov, V., Sahi, S. (eds.) Jack, Hall–Littlewood and Macdonald polynomials. Contemporary Mathematics Series, vol. 417. AMS, pp. 281–318 (2006)

  26. Olshanski, G.: Unitary representations of infinite-dimensional pairs \((G,K)\) and the formalism of R. Howe. In: Vershik, A.M., Zhelobenko, D.P. (eds.) Representations of Lie Groups and Related Topics. Advances in Contemporary Mathematics, vol. 7. Gordon and Breach, N.Y., London etc., pp. 269–463 (1990)

  27. Olshanski, G.: The problem of harmonic analysis on the infinite-dimensional unitary group. J. Funct. Anal. 205(2), 464–524 (2003)

    Article  MathSciNet  Google Scholar 

  28. Olshanski, G.: Probability measures on dual objects to compact symmetric spaces, and hypergeometric identities. Funct. Anal. Appl. 37, 281–301 (2003)

    Article  MathSciNet  Google Scholar 

  29. Olshanski, G.: Extended Gelfand–Tsetlin graph, its \(q\)-boundary, and \(q\)-B-splines. Funct. Anal. Appl. 50(2), 107–130 (2016). arXiv:1607.04201

  30. Olshanski, G.: Macdonald-level extension of beta ensembles and large-\(N\) limit transition. Commun. Math. Phys. (to appear); advance online publication (2020): https://doi.org/10.1007/s00220-020-03899-7; arXiv:2007.06264

  31. Parthasarathy, K.R.: Probability Measures on Metric Spaces. Academic Press, New York (1967)

    Book  Google Scholar 

  32. Pickrell, D.: Separable representations for automorphism groups of infinite symmetric spaces. J. Funct. Anal. 90, 1–26 (1990)

    Article  MathSciNet  Google Scholar 

  33. Sato, R.: Quantized Vershik–Kerov theory and quantized central probability measures on branching graphs. J. Funct. Anal. 277, 2522–2557 (2019)

    Article  MathSciNet  Google Scholar 

  34. Sato, R.: Inductive limits of compact quantum groups and their unitary representations. arXiv:1908.03988

  35. Winkler, G.: Choquet Order and Simplices. With Applications in Probabilistic Models. Lecturer Notes in Mathematics, vol. 1145. Springer, Berlin (1985)

Download references

Acknowledgements

I am grateful to Cesar Cuenca and an anonymous referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigori Olshanski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. Olshanski: Research supported by the Russian Science Foundation under Project 20-41-09009.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olshanski, G. Macdonald polynomials and extended Gelfand–Tsetlin graph. Sel. Math. New Ser. 27, 41 (2021). https://doi.org/10.1007/s00029-021-00660-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00660-3

Keywords

Mathematics Subject Classification

Navigation