Skip to main content
Log in

New bounds of Wilker- and Huygens-type inequalities for inverse trigonometric functions

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

By using two-parameter functions, this paper presents a family of new Wilker and Huygens type inequalities involving inverse trigonometric functions. It can recover parts of previous results, and can also achieve much better approximation performance than those of prevailing methods. The application of approximating the integral computation is shown by numerical examples, which shows the better approximation effect of the new method. More other forms of bounding functions, or even three-parameter functions, can be used for further improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Banjac, B., Makragić, M., Malešević, B.: Some notes on a method for proving inequalities by computer. Results Math. 69(1), 161–176 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Chen, C.P., Paris, R.B.: Series representations of the remainders in the expansions for certain trigonometric functions and some related inequalities. Math. Inequal. Appl. 20(4), 1003–1016 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Chen, C.P.: Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions. Integral Transforms Special Funct. 23(12), 865–873 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Chen, C.P., Sandor, J.: Inequality chains for Wilker, Huygens and Lazarevic type inequalities. J. Math. Inequal. 8(1), 55–67 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Chen, C.-P., Malesevic, B.: Inequalities related to certain inverse trigonometric and inverse hyperbolic functions, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 114, 2 (2020). https://doi.org/10.1007/s13398-020-00836-0

  6. Chen, C.-P., Paris, R.B.: On the Wilker and Huygens-type inequalities. J. Math. Inequal. 14(3), 685–705 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Chen, X.-D., Shi, J., Wang, Y., Pan, X.: A new method for sharpening the bounds of several special functions. Results Math. 72(1–2), 695–702 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Chen, X.-D., Jin, S., Chen, L., Wang, Y.: A new method for refining the Shafer’s equality and bounding the definite integrals. Results Math. 73(2), 78 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Chen, X.-D., Ma, J.Y., Jin, J.P., Wang, Y.G.: A two-point-Padé-approximant-based method for bounding some trigonometric functions. J. Inequal. Appl. 140, 1–15 (2018)

    Google Scholar 

  10. Chu, H., Yang, Z., Chu, Y., et al.: Generalized Wilker-type inequalities with two parameters. J. Inequal. Appl. 2016, 187 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Debnath, L., Mortici, C., Zhu, L.: Refinements of Jordan-Steckin and Becker-Stark inequalities. Results Math. 67(1–2), 207–215 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Huygens, C.: Oeuvres Completes 1888–1940, Société Hollondaise des Science, Haga (1940)

  13. Jiang, W.D., Luo, Q.M., Qi, F.: Refinements and sharpening of some Huygens and Wilker type inequalities. Math. Inequal. Appl. 6(1), 19–22 (2014)

    Google Scholar 

  14. Lutovac, T., Malešsević, B., Mortici, C.: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 116, 1–16 (2017)

    MathSciNet  Google Scholar 

  15. Lutovac, T., Malesevic, B., Mortici, C.: The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 116 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Malešević, B., Lutovac, T., Rašajski, M., Mortici, C.: Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 90, 1–15 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Malešević, B., Lutovac, T., Rašajski, M., et al.: Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 1, 90 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Malešević, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10, 849–876 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Malešević, B., Banjac, B., Jovović, I.: A proof of two conjectures of Chao-Ping Chen for inverse trigonometricfunctions. J. Math. Inequal. 11(1), 151–162 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Malešević, B., Lutovac, T., Banjac, B.: A proof of an open problem of Yusuke Nishizawa for a power-exponential function. J. Math. Inequal. 12(2), 473–485 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Malesevic, B., Lutovac, T., Banjac, B.: A proof of an open problem of Yusuke Nishizawa for a power-exponential function. J. Math. Inequal. 12(2), 473–485 (2018). https://doi.org/10.7153/jmi-2018-12-35

    Article  MathSciNet  MATH  Google Scholar 

  22. Mortici, C.: The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 14, 535–541 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Mortici, C.: A subtly analysis of Wilker inequation. Appl. Math. Comput. 231, 516–520 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Malesevic, B., Makragic, M.: A method for proving some inequalities on mixed trigonometric polynomial functions. J. Math. Inequal. 10(3), 849–876 (2016). https://doi.org/10.7153/jmi-11-63

    Article  MathSciNet  MATH  Google Scholar 

  25. Neuman, E., Sándor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13, 715–723 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Neuman, E.: Wilker and Huygens-type inequalities for the generalized trigonometric and for the generalized hyperbolic functions. Appl. Math. Comput. 230(3), 211–217 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Nenezić, M., Zhu, L.: Some improvements of Jordan-Steckin and Becker-Stark inequalities. Appl. Anal. Discrete Math. 12, 244–256 (2018)

    MathSciNet  Google Scholar 

  28. Nenezić, M., Malesević, B., Mortici, C.: New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 283, 299–315 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Rasajski, M., Lutovac, T., Malesevic, B.: About some exponential inequalities related to the sinc function. J. Inequal. Appl. 2018(1), 150 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Sumner, J.S., Jagers, A.A., Vowe, M., Anglesio, J.: Inequalities involving trigonometric functions. Am. Math. Mon. 98(3), 264–267 (1991)

    Google Scholar 

  31. Wei, M., He, Y., Wang, G.: Shafer-Fink type inequalities for arc lemniscate functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), 14 (2020)

  32. Wilker, J.B.: Problem E-3306. Am. Math. Mon. 96, 55 (1989)

    Google Scholar 

  33. Wu, S.H., Srivastava, H.M.: A further refinement of Wilker’s inequality. Integral Transforms Spec. Funct. 19(10), 757–765 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Wu, S.H., Yu, H.P., Deng, Y.P., et al.: Several improvements of Mitrinovic-Adamovic and Lazarevic’s inequalities with applications to the sharpening of Wilker-type inequalities. J. Nonlinear Sci. Appl. 9(4), 1755–1765 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Wu, S., Bercu, G.: Pade approximants for inverse trigonometric functions and their applications. J. Inequal. Appl. 2017, 31 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Wu, S., Li, S., Bencze, M.: Sharpened versions of Mitrinovic-Adamovic, Lazarevic and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688–2696 (2016)

    MathSciNet  MATH  Google Scholar 

  37. Yang, Z.H., Chu, Y.M., Zhang, X.H.: Sharp Cusa-type inequalities with two parameters and their applications. Appl. Math. Comput. 268, 1177–1198 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Zhu, L.: A refinement of the Becker-Stark inequalities. Math. Notes 93(3–4), 421–425 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Zhu, L.: New bounds for the exponential function with cotangent. J. Inequal. Appl. 2018(1), 106 (2018)

    MathSciNet  Google Scholar 

  40. Zhu, L., Nenezić, M.: New approximation inequalities for circular functions. J. Inequal. Appl. 2018(1), 313 (2018)

    MathSciNet  Google Scholar 

  41. Zhu, L.: Sharp inequalities of Mitrinovic-Adamovic type. Rev. Real Acad. Ciencias Exactas Físicas y Natur. Ser. A Matemát. 113(2), 957–968 (2019)

    MathSciNet  MATH  Google Scholar 

  42. Zhu, L.: On Frame’s inequalities. J. Inequal. Appl. 94, 1–14 (2018)

    MathSciNet  Google Scholar 

  43. Zhu, L.: An unity of Mitrinovic-Adamovic and Cusa-Huygens inequalities and the analogue for hyperbolic functions. Rev. Real Acad. Ciencias Exactas Físicas y Natur. Ser. A Matemát. 113(4), 3399–3412 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Zhu, L.: On Wilker-type inequalities. Math. Inequal. Appl. 10(4), 727–731 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Zhu, L.: New Mitrinovic-Adamovic type inequalities. Rev. Real Acad. Ciencias Exactas Físicas y Natur. Ser. A Matemát. 114(3), 119 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zhu, L.: Some new bounds for Sinc function by simultaneous approximation of the base and exponential functions. Rev. Real Acad. Ciencias Exactas Físicas y Natur. Ser. A Matemát. 114(2), 81 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Zhu, L.: New inequalities of Wilker’s type for circular functions. AIMS Math. 5(5), 4874–4888 (2020)

    MathSciNet  Google Scholar 

  48. Zhu, L., Sun, Z.J.: Refinements of Huygens- and Wilker-type inequalities. AIMS Math. 5(4), 2967–2978 (2020)

    MathSciNet  Google Scholar 

  49. Zhu, L.: Sharp inequalities of Mitrinovic-Adamovic type. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(2), 957–968 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Zhu, L.: An unity of Mitrinovic-Adamovic and Cusa-Huygens inequalities and the analogue for hyperbolic functions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(4), 3399–3412 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research work was partially supported by Zhejiang Key Research and Development Project of China (LY19F020041, 2018C01030), the National Natural Science Foundation of China (61972120, 61672009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Diao Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XD., Wang, H., Yang, K. et al. New bounds of Wilker- and Huygens-type inequalities for inverse trigonometric functions. RACSAM 115, 36 (2021). https://doi.org/10.1007/s13398-020-00969-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00969-2

Keywords

Mathematics Subject Classification

Navigation