Skip to main content

Advertisement

Log in

Abstract

Sharp bounds of various kinds for the famous unnormalized sinc function defined by \((\sin x)/x\) are useful in mathematics, physics and engineering. In this paper, we reconsider the Cusa–Huygens inequality by solving the following problem: given real numbers \(a,b, c\in {{\mathbb {R}}}\) and \(T\in (0,\pi /2],\) we find the necessary and sufficient conditions such that the inequalities

$$\begin{aligned} \frac{\sin x}{x}>a+b\cos ^{c}x,\quad x\in (0,T) \end{aligned}$$

and

$$\begin{aligned} \frac{\sin x}{x}<a+b\cos ^{c}x,\quad x\in (0,T) \end{aligned}$$

hold true. In the case \( c=1\), the inequalities are extended on \( (0, \pi ). \) We use the elementary methods, only, improving several known results in the existing literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants. Inequalities and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

  2. Bagul, Y.J.: Remark on the paper of Zheng Jie Sun and Ling Zhu. J. Math. Inequal. 13(3), 801–803 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bagul, Y.J., Chesneau, C.: Refined forms of Oppenheim and Cusa–Huygens type inequalities. Preprint, https://hal.archives-ouvertes.fr/hal-01972893 (2019)

  4. Bagul, Y.J., Chesneau, C.: Some new simple inequalities involving exponential, trigonometric and hyperbolic functions. Cubo 21, 21–35 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bagul, Y.J., Chesneau, C., Kostić, M.: The Cusa–Huygens inequality revisited. Novi Sad J. Math. (2020). (In press)

  6. Bhayo, B.A., Klén, R., Sándor, J.: New trigonometric and hyperbolic inequalities. Miskolc Math. Notes 18(1), 125–137 (2017)

    Article  MathSciNet  Google Scholar 

  7. Bhayo, B.A., Sándor, J.: On Carlson’s and Shafer’s inequalities. Issues Anal. 3(21), 3–15 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, C.-P., Sándor, J.: Inequality chains for Wilker, Huygens and Lazarević type inequalities. J. Inequal. Appl. 8, 55–67 (2014)

    Article  Google Scholar 

  9. Chen, C.-P., Cheung, W.-S.: Sharp Cusa and Becker–Stark inequalities. J. Inequal. Appl. 136, 2011 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Dhaigude, R.M., Chesneau, C., Bagul, Y.J.: About trigonometric-polynomial bounds of sinc function. Math. Sci. Appl. E-Notes 8(1), 100–104 (2020)

    Google Scholar 

  11. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  12. Huygens, C.: Oeuvres completes. Soc. Hollondaise Sci. pp. 1888–1940, (1895)

  13. Malešević, B., Nenezić, M., Zhu, L., Banjac, B., Petrović, M.: Some new estimates of precision of Cusa–Huygens and Huygens approximations. Preprint arxiv:1907.00712 (2019)

  14. Mitrinović, D.S.: Analytic Inequalities. Springer, Berlin (1970)

    Book  Google Scholar 

  15. Mortici, C.: The natural approach of Wilker–Cusa–Huygens inequalities. Math. Inequal. Appl. 14(3), 535–541 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Neuman, E., Sándor, J.: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa–Huygens, Wilker and Huygens inequalities. Math. Inequal. Appl. 13(4), 715–723 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Qi, F., Cui, L.-H., Xu, S.-L.: Some inequalities constructed by Tchebysheff’s integral inequality. Math. Inequal. Appl. 2(4), 517 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Sándor, J.: Sharp Cusa–Huygens and related inequalities. Notes Numb. Theory Discrete Math. 9, 50–54 (2013)

    MATH  Google Scholar 

  19. Sándor, J., Bencze, M.: On Huygen’s trigonometric inequality. RGMIA Res. Rep. Coll., 8(3), (2005)

  20. Sándor, J., Oláh-Gal, R.: On Cusa–Huygens type trigonometric and hyperbolic inequalities. Acta. Univ. Sapientiae Math. 4(2), 145–153 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Zhu, L.: Sharp inequalities of Mitrinović–Adamović type. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113(2), 957–968 (2019)

    Article  MathSciNet  Google Scholar 

  22. Zhu, L.: An unity of Mitrinović–Adamović and Cusa–Huygens inequalities and the analogue for hyperbolic functions. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113, 3–4 (2019)

    MATH  Google Scholar 

  23. Zhu, L.: New Cusa–Huygens type inequalities. AIMS Math. 5(5), 5320–5331 (2020)

    Article  MathSciNet  Google Scholar 

  24. Zhu, L.: New Mitrinović–Adamović type inequalities. RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 114(3), 119 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the two referees for their detailed and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Chesneau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The Marko Kostić was supported in part by Ministry of Science and Technological Development, Republic of Serbia, Grant no. 174024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagul, Y.J., Chesneau, C. & Kostić, M. On the Cusa–Huygens inequality. RACSAM 115, 29 (2021). https://doi.org/10.1007/s13398-020-00978-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00978-1

Keywords

Mathematics Subject Classification

Navigation