Skip to main content
Log in

Dynamics of Second Order Lattice Systems with Almost Periodic Nonlinear Part

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

We investigate the existence of the uniform global attractor for a family of infinite dimensional second order non-autonomous lattice dynamical systems with nonlinear part of the form \(f\left( u,t\right) \), where we introduce a suitable Banach space W and we assume that \(\left( f\left( \cdot ,t\right) ,\partial _{2}f\left( \cdot ,t\right) \right) \) is an element of the hull of an almost periodic function \(\left( f_{0}\left( \cdot ,t\right) ,\partial _{2}f_{0}\left( \cdot ,t\right) \right) \) with values in W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

The authors declare that data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. Abdallah, A.Y.: Attractors for first order lattice systems with almost periodic nonlinear part. Discrete Cont. Dyn. Sys.-B 25, 1241–1255 (2020)

    MathSciNet  MATH  Google Scholar 

  2. Abdallah, A.Y.: Global attractor for the lattice dynamical system of a nonlinear Boussinesq equation. Abst. Appl. Anal. 2005, 655–671 (2005)

    Article  MathSciNet  Google Scholar 

  3. Abdallah, A.Y.: Long-time behavior for second order lattice dynamical systems. Acta Appl. Math. 106, 47–59 (2009)

    Article  MathSciNet  Google Scholar 

  4. Abdallah, A.Y.: Upper semicontinuity of the attractor for lattice dynamical systems of partly dissipative reaction diffusion systems. J. Appl. Math. 2005, 273–288 (2005). https://doi.org/10.1155/JAM.2005.273

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates, P.W., Lu, K., Wang, B.: Attractors for lattice dynamical systems. Int. J. Bifurc. Chaos 11, 143–153 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bell, J.: Some threshold results for models of myelinated nerves. Math. Biosci. 54, 181–190 (1981)

    Article  MathSciNet  Google Scholar 

  7. Bell, J., Cosner, C.: Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons. Q. Appl. Math. 42, 1–14 (1984)

    Article  MathSciNet  Google Scholar 

  8. Bellrti, V., Pata, V.: Attractors for semilinear strongly damped wave equation on \({\mathbb{R}}^{3}\). Discrete Cont. Dyn. Sys. 7, 719–735 (2001)

    Article  Google Scholar 

  9. Boughoufala, A.M., Abdallah, A.Y.: Attractors for FitzHugh-Nagumo lattice systems with almost periodic nonlinear parts (submitted)

  10. Caraballo, T., Morillas, F., Valero, J.: Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities. J. Differ. Equ. 253, 667–693 (2012)

    Article  MathSciNet  Google Scholar 

  11. Caraballo, T., Morillas, F., Valero, J.: Random attractors for stochastic lattice systems with non-Lipschitz nonlinearity. J. Differ. Equ. Appl. 17, 161–184 (2011)

    Article  MathSciNet  Google Scholar 

  12. Carrol, T.T.L., Pecora, L.M.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)

    Article  MathSciNet  Google Scholar 

  13. Chate, H., Courbage, M. (eds.): Lattice systems. Phys. D 103(1-4), 1-612 (1997)

  14. Chepyzhov, V.V., Vishik, M.I.: Attractors of non-autonomous dynamical systems and their dimension. J. Math. Pures Appl. 73, 279–333 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Chow, S.N.: Lattice dynamical systems. In: Dynamical System, Lecture Notes in Mathematics, pp. 1–102. Springer, Berlin (2003)

  16. Chow, S.N., Mallet-Paret, J.: Pattern formation and spatial chaos in lattice dynamical systems: I. IEEE Trans. Circuits Syst. 42, 746–751 (1995)

    Article  MathSciNet  Google Scholar 

  17. Chow, S.N., Mallet-Paret, J., Van Vleck, E.S.: Pattern formation and spatial chaos in spatially discrete evolution equations. Rand. Comput. Dyn. 4, 109–178 (1996)

    MathSciNet  MATH  Google Scholar 

  18. Chua, L.O., Roska, T.: The CNN paradigm. IEEE Trans. Circuits Syst. 40, 147–156 (1993)

    Article  Google Scholar 

  19. Chua, L.O., Yang, Y.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MathSciNet  Google Scholar 

  20. Chua, L.O., Yang, Y.: Cellular neural networks: applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

  21. Erneux, T., Nicolis, G.: Propagating waves in discrete bistable reaction diffusion systems. Phys. D 67, 237–244 (1993)

    Article  MathSciNet  Google Scholar 

  22. Han, X., Kloden, P.E., Usman, B.: Upper semi-continuous convergence of attractors for a 47 Hopeld-type lattice model. Nonlinearity 33, 1881–1906 (2020)

    Article  MathSciNet  Google Scholar 

  23. Huang, J., Han, X., Zhou, S.: Uniform attractors for non-autonomous Klein–Gordon–Schrödinger lattice systems. Appl. Math. Mech.-Engl. Ed. 30, 1597–1607 (2009)

    Article  Google Scholar 

  24. Jia, X., Zhao, C., Yang, X.: Global attractor and Kolmogorov entropy of three component reversible Gray–Scott model on infinite lattices. Appl. Math. Comput. (2012)

  25. Kapral, R.: Discrete models for chemically reacting systems. J. Math. Chem. 6, 113–163 (1991)

    Article  MathSciNet  Google Scholar 

  26. Keener, J.P.: Propagation and its failure in coupled systems of discrete excitable cells. SIAM J. Appl. Math. 47, 556–572 (1987)

    Article  MathSciNet  Google Scholar 

  27. Keener, J.P.: The effects of discrete gap junction coupling on propagation in myocardium. J. Theor. Biol. 148, 49–82 (1991)

    Article  Google Scholar 

  28. Levitan, B.M., Zhikov, V.V.: Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  29. Ma, Q.F., Wang, S.H., Zhong, C.K.: Necessary and sufficient conditions for the existence of global attractor for semigroup and application. Indiana Univ. Math. J. 51, 1541–1559 (2002)

    Article  MathSciNet  Google Scholar 

  30. Mallet-Paret, J., Chow, S.N.: Pattern formation and spatial chaos in lattice dynamical systems: II. IEEE Trans. Circuits Syst. 42, 752–756 (1995)

    Article  MathSciNet  Google Scholar 

  31. Oliveira, J., Pereira, J., Perla, M.: Attractors for second order periodic lattices with nonlinear damping. J. Differ. Equ. Appl. 14, 899–921 (2008)

    Article  MathSciNet  Google Scholar 

  32. Pazy, A.: Semigroups of linear operators and applications to partial differential equations, vol. 44. Applied Mathematical Sciences, Springer, New York (1983)

    Book  Google Scholar 

  33. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics, vol. 68, 2nd edn. Applied Mathematical Sciences, Springer, New York (1997)

  34. Wang, B.: Asymptotic behavior of non-autonomous lattice systems. J. Math. Anal. Appl. 331, 121–136 (2007)

    Article  MathSciNet  Google Scholar 

  35. Wannan, R.T., Abdallah, A.Y.: Long-time behavior of non-autonomous FitzHugh–Nagumo lattice systems. Q. Theory Dyn. Syst. 19, 1–17 (2020). https://doi.org/10.1007/s12346-020-00414-0

    Article  MathSciNet  MATH  Google Scholar 

  36. Yang, X., Zhao, C., Cao, J.: Dynamics of the discrete coupled nonlinear Schrödinger–Boussinesq equations. Appl. Math. Comput. 219, 8508–8524 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Zhao, C., Zhou, S.: Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete Cont. Dyn. Sys. 21, 643–663 (2008)

    Article  MathSciNet  Google Scholar 

  38. Zhou, S.: Attractors for second order lattice dynamical systems. J. Differ. Equ. 179, 605–624 (2002)

    Article  MathSciNet  Google Scholar 

  39. Zhou, S.: Attractors for first order dissipative lattice dynamical systems. Phys. D 178, 51–61 (2003)

    Article  MathSciNet  Google Scholar 

  40. Zhou, S.: Attractors and approximations for lattice dynamical systems. J. Differ. Equ. 200, 342–368 (2004)

    Article  MathSciNet  Google Scholar 

  41. Zhou, S., Zhao, M.: Uniform exponential attractor for second order lattice system with quasi-periodic external forces in weighted space. Int. J. Bifur. Chaos Appl. Sci. Eng. 24(1), 9pp (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Y. Abdallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, A.Y. Dynamics of Second Order Lattice Systems with Almost Periodic Nonlinear Part. Qual. Theory Dyn. Syst. 20, 58 (2021). https://doi.org/10.1007/s12346-021-00497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-021-00497-3

Keywords

Mathematics Subject Classification

Navigation