Skip to main content
Log in

The effect of regularization in portfolio selection problems

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

Portfolio selection problems have been thoroughly studied under the risk-and-return paradigm introduced by Markowitz. However, the usefulness of this approach has been hindered by some practical considerations that have resulted in poorly diversified portfolios, or, solutions that are extremely sensitive to parameter estimation errors. In this work, we use sampling methods to cope with this issue and compare the merits of two approaches: a sample average approximation approach and a performance-based regularization (PBR) method that appeared recently in the literature. We extend PBR by incorporating three different risk metrics—integrated chance-constraints, quantile deviation, and absolute semi-deviation—and deriving the corresponding regularization formulas. Additionally, a numerical comparison using index-based portfolios is presented using historic data that includes the subprime crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Arnott R, Berkin A, Ye J (2000) How well have investors been served in the 1980s and 1990s? J Portf Manag 26(4):84–91

    Google Scholar 

  • Ban GY, Karoui NE, Lim A (2016) Machine learning and portfolio optimization. Manag Sci (2016)

  • Belloni A, Chernozhukov V (2013) Least squares after model selection in high-dimensional sparse models. Bernoulli 19(2):521–547

    Google Scholar 

  • Bertsimas D, Sim M (2004) The price of robustness. Oper Res 52(1):35–53

    Google Scholar 

  • Best M, Grauer R (1991) On the sensitivity of mean-variance-efficient portfolios to changes in asset means: some analytical and computational results. Rev Financ Stud 4(2):315–342

    Google Scholar 

  • Bishop C (2006) Pattern recognition and machine learning (information science and statistics). Springer, New York

    Google Scholar 

  • Bogle J (1995) The triumph of indexing. The Vanguard Group, Pennsylvania

    Google Scholar 

  • Broadie M (1993) Computing efficient frontiers using estimated parameters. Ann Oper Res 45(1):21–58

    Google Scholar 

  • Brodie J, Daubechies I, De Mol C, Giannone D, Loris I (2009) Sparse and stable markowitz portfolios. Proc Nat Acad Sci 106(30):12267–12272

    Google Scholar 

  • Candes E, Tao T (2007) The dantzig selector: statistical estimation when p is much larger than n. Ann Stat 35(6):2313–2351

    Google Scholar 

  • Chopra V, Ziemba W (1993) The effect of errors in means, variances, and covariances on optimal portfolio choice. J Portof Manag 19(2):6–11

    Google Scholar 

  • Corsaro S, De Simone V (2019) Adaptive \(\ell_1\)-regularization for short-selling control in portfolio selection. Comput Optim Appl 72(2):457–478

    Google Scholar 

  • Cotton T, Ntaimo L (2015) Computational study of decomposition algorithms for mean-risk stochastic linear programs. Math Program Comput 7(4):471–499

    Google Scholar 

  • Dai Z, Wen F (2018) Some improved sparse and stable portfolio optimization problems. Financ Res Lett 27:46–52

    Google Scholar 

  • DeMiguel V, Nogales FJ (2009) Portfolio selection with robust estimation. Oper Res 57(3):560–577

    Google Scholar 

  • Elton MGE, Blake C (1996) The persistence of risk-adjusted mutual fund performance. J Bus 69(2):133–157

    Google Scholar 

  • Escudero LF, Monge JF, Morales DR (2018) On the time-consistent stochastic dominance risk averse measure for tactical supply chain planning under uncertainty. Comput Oper Res 100:270–286

    Google Scholar 

  • Fastrich B, Paterlini S, Winker P (2015) Constructing optimal sparse portfolios using regularization methods. CMS 12(3):417–434

    Google Scholar 

  • Fernandes B, Street A, Valladão D, Fernandes C (2016) An adaptive robust portfolio optimization model with loss constraints based on data-driven polyhedral uncertainty sets. Eur J Oper Res 255(3):961–970

    Google Scholar 

  • Frankfurter G, Phillips H, Seagle J (1971) Portfolio selection: the effects of uncertain means, variances, and covariances. J Financ Quant Anal 6(5):1251–1262

    Google Scholar 

  • Frost P, Savarino J (1986) An empirical bayes approach to efficient portfolio selection. J Financ Quant Anal 21(3):293–305

    Google Scholar 

  • Frost P, Savarino J (1988) For better performance: constraint portfolio weights. J Portf Manag 15(1):29–34

    Google Scholar 

  • Goldfarb D, Iyengar G (2003) Robust portfolio selection problems. Math Oper Res 28(1):1–38

    Google Scholar 

  • Green R, Hollifield B (1992) When will mean-variance efficient portfolios be well diversified? J Financ 47(5):1785–1809

    Google Scholar 

  • Haneveld WK (1986) Duality in stochastic linear and dynamic programming. Springer, Berlin

    Google Scholar 

  • Homem-de-Mello T, Pagnoncelli BK (2016) Risk aversion in multistage stochastic programming: a modeling and algorithmic perspective. Eur J Oper Res 249(1):188–199

    Google Scholar 

  • Kawas B, Thiele A (2011) A log-robust optimization approach to portfolio management. OR Spectrum 33(1):207–233

    Google Scholar 

  • Kolm P, Tütüncü R, Fabozzi FJ (2014) 60 years of portfolio optimization: practical challenges and current trends. Eur J Oper Res 234(2):356–371

    Google Scholar 

  • Kozmík V, Morton DP (2015) Evaluating policies in risk-averse multi-stage stochastic programming. Math Program 152(1–2):275–300

    Google Scholar 

  • Krokhmal P, Zabarankin M, Uryasev S (2011) Modeling and optimization of risk. Surv Oper Res Manag Sci 16(2):49–66

    Google Scholar 

  • Lim A, Shanthikumar JG, Vahn GY (2011) Conditional value-at-risk in portfolio optimization: coherent but fragile. Oper Res Lett 39(3):163–171

    Google Scholar 

  • Linderoth J, Shapiro A, Wright S (2006) The empirical behavior of sampling methods for stochastic programming. Ann Oper Res 142(1):215–241

    Google Scholar 

  • Malkiel B (1995) Returns from investing in equity mutual funds 1971 to 1991. J Financ 50(2):549–572

    Google Scholar 

  • Malkiel B (1996) Not so random. Barron, New York, p 55

    Google Scholar 

  • Mansini R, Ogryczak W, Speranza MG (2014) Twenty years of linear programming based portfolio optimization. Eur J Oper Res 234(2):518–535

    Google Scholar 

  • Markowitz H (1952) Portfolio selection. J Financ 7(1):77–91

    Google Scholar 

  • Michaud R (1989) The Markowitz optimization enigma: is ’optimized’ optimal? Financ Anal J 45(1):31–42

    Google Scholar 

  • Ogryczak W, Ruszczyski A (2002) Dual stochastic dominance and quantile risk measures. Int Trans Oper Res 9(5):661–680

    Google Scholar 

  • Quaranta AG, Zaffaroni A (2008) Robust optimization of conditional value at risk and portfolio selection. J Bank Financ 32(10):2046–2056

    Google Scholar 

  • Ruszczyski A, Shapiro A (2006) Optimization of convex risk functions. Math Oper Res 31(3):433–452

    Google Scholar 

  • Shapiro A (2003) Monte Carlo sampling methods. Stochastic programming, handbooks in operations research and management science, vol 10. Elsevier, New York, pp 353–425

    Google Scholar 

  • Soyster A (1973) Convex programming with set-inclusive constraints and applications to inexact linear programming. Oper Res 21(5):1154–1157

    Google Scholar 

  • Still S, Kondor I (2010) Regularizing portfolio optimization. New J Phys 12(7):075034

    Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

    Google Scholar 

  • Tikhonov A (1963) Solution of incorrectly formulated problems and the regularization method. Soviet Math Dokl 4(4):1035–1038

    Google Scholar 

  • Walden M (2015) Active versus passive investment management of state pension plans: implications for personal finance. J Financ Counsel Plan 26(2):160–171

    Google Scholar 

  • Wang Z, Glynn PW, Ye Y (2016) Likelihood robust optimization for data-driven problems. CMS 13(2):241–261

    Google Scholar 

  • Witten IH, Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann Publishers Inc., San Francisco

    Google Scholar 

  • Woerheide W, Persson D (1992) An index of portfolio diversification. Financ Serv Rev 2(2):73–85

    Google Scholar 

Download references

Acknowledgements

This work was supported by Fondecyt under Grant 1170178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo K. Pagnoncelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was funded by Fondecyt project 1170178.

A Proofs

A Proofs

Proof

(Lemma 1) We have

$$\begin{aligned} \mathrm {SV}[ {\mathsf {z}}]&= \frac{1}{n-1} \sum _{i=1}^{n} \left( z_{i} - \frac{1}{n}\sum _{j=1}^{n} z_{j}\right) ^{2} \\&= \frac{1}{n-1} \left\{ \sum _{i=1}^{n} z_{i}^{2} - \frac{2}{n} \sum _{i=1}^{n} \sum _{j=1}^{n} z_{i}z_{j} + n \cdot \frac{1}{n^{2}} \left( \sum _{j=1}^{n} z_{j} \right) ^{2}\right\} \\&= \frac{1}{n-1} \left\{ z^{T}I_{n}z - \frac{2}{n} \sum _{i=1}^{n} \sum _{j=1}^{n} z_{i}z_{j} + \frac{1}{n} \sum _{i=1}^{n} \sum _{j=1}^{n} z_{i}z_{j} \right\} \\&= \frac{1}{n-1} \left\{ z^{T}I_{n}z - \frac{1}{n} z^{T}1_{n}1_{n}^{T}z \right\} \\&= z^{T} \left\{ \frac{1}{n-1}[I_{n} - n^{-1}1_{n}1_{n}^{T}] \right\} z \\&= z^{T}\Omega _{n}z. \end{aligned}$$

\(\square\)

Proof

(Proposition 1) From Definition 6, given that the \(Y_{i}\) are independent and identically distributed we have

$$\begin{aligned} \mathrm {Var}\left[ \widehat{\mathrm {ICC}}(w;{\mathsf {Y}}) \right]&= \frac{1}{n^{2}} \sum _{i=1}^{n} \mathrm {Var}\big [(h_{i} - w^{T}X_{i})^{+}\big ] \\&= \frac{1}{n^{2}} \cdot n\mathrm {Var}\big [(h - w^{T}X)^{+}\big ] \\&= \frac{1}{n} \mathrm {Var}\big [(h - w^{T}X)^{+}\big ]. \end{aligned}$$

\(\square\)

Proof

(Proposition 2) Let \({\mathsf {Y}} = (Y_{1}, \ldots , Y_{n})\) with \(Y_{i} := -X_{i}\). Then the sample average of \({\mathsf {Y}}\) verifies \(\hat{\mu _{{\mathsf {Y}}}} = -{\hat{\mu }}\) and we have that \(Y_{i}\) are i.i.d. and they have finite second moment. Rewriting the expression for \(\widehat{\mathrm {ASD}}_{n}[w; {\mathsf {X}}]\) in terms of \({\mathsf {Y}}\) we have

$$\begin{aligned} \widehat{\mathrm {ASD}}(w; {\mathsf {X}})&= \frac{1}{n} \sum _{i=1}^{n} \big (w^{T}X_{i} - w^{T}{\hat{\mu }} \big )^{+} \\&= \frac{1}{n} \sum _{i=1}^{n} \big (w^{T}\widehat{\mu _{{\mathsf {Y}}}} - w^{T}Y_{i}\big )^{+} \\&= \widehat{\mathrm {ICC}}\big (w,w^{T}\widehat{\mu _{{\mathsf {Y}}}};{\mathsf {Y}}\big ). \end{aligned}$$

Thus, by Corollary 1

$$\begin{aligned} \mathrm {SV}\Big [\widehat{\mathrm {ASD}}_{n}(w; {\mathsf {X}}) \Big ] = \frac{1}{n} {\tilde{z}}^{T}\Omega _{n}{\tilde{z}}, \end{aligned}$$

where \(\Omega _{n}\) is as above, \({\tilde{z}} = ({\tilde{z}}_{1}, \ldots , {\tilde{z}}_{n})\) and \({\tilde{z}}_{i} = \big (w^{T}\widehat{\mu _{{\mathsf {Y}}}} - w^{T}Y_{i}\big )^{+}\). Rewriting the result back in terms of \({\mathsf {X}}\) gives the desired result. \(\square\)

Proof

(Lemma 2) The expression to be minimized in Problem (10), which we refer to as \(F(\eta )\), is piecewise linear with breaking points at \(Z_{1}, \ldots , Z_{n}\). For \(m \in \{-\lceil n\alpha \rceil +1 , \ldots , \lceil n\alpha \rceil +n - 1\}\) we define

$$\begin{aligned} \Delta (m) := F(Z_{(\lceil n\alpha \rceil + m + 1)}) - F(Z_{(\lceil n\alpha \rceil + m)}), \end{aligned}$$

where \(Y_{(i)}\) is the ith order statistic. Note that

$$\begin{aligned} \Delta (m)&= \frac{1}{n} \Bigg \{ \sum _{i=1}^{n} (1-\alpha ) \Big [ (Z_{(\lceil n\alpha \rceil + m + 1)} - Z_{i})^{+} - (Z_{(\lceil n\alpha \rceil + m)} - Z_{i})^{+} \Big ] \\&\quad + \alpha \Big [ (Z_{i} - Z_{(\lceil n\alpha \rceil + m + 1)})^{+} - (Z_{i} - Z_{(\lceil n\alpha \rceil + m)})^{+} \Big ] \Bigg \} \\&= \frac{1}{n} \Bigg \{ (1-\alpha ) \big (\lceil n\alpha \rceil + m \big ) \big (Z_{(\lceil n\alpha \rceil + m + 1)} - Z_{(\lceil n\alpha \rceil + m)} \big ) \\&\quad + \alpha (n - \lceil n\alpha \rceil - m) \big (Z_{(\lceil n\alpha \rceil + m)} - Z_{(\lceil n\alpha \rceil + m + 1)}\big ) \Bigg \} \\&= \frac{1}{n} \big (Z_{(\lceil n\alpha \rceil + m + 1)} - Z_{(\lceil n\alpha \rceil + m)} \big ) \Big [\lceil n\alpha \rceil - n\alpha + m \Big ] \\&= \frac{1}{n} \big (Z_{(\lceil n\alpha \rceil + m + 1)} - Z_{(\lceil n\alpha \rceil + m)} \big ) [p + m]. \end{aligned}$$

From the definition, \(0 \le p < 1\). Thus \(\Delta (m) < 0\) for \(m \le -1\) and \(\Delta (m) > 0\) for \(m > 0\). If \(p > 0\), then \(\Delta (0) > 0\) and thus \(\eta ^{*} = Z_{(\lceil n\alpha \rceil - 1)}\) is unique. If \(p = 0\), then \(\Delta (0) = 0\), i.e.,

$$\begin{aligned} F(Z_{(\lceil n\alpha \rceil + 1)}) = F(Z_{(\lceil n\alpha \rceil )}). \end{aligned}$$

Since \(F(\cdot )\) is piecewise linear, then its minimum value is \(F(Z_{\lceil n\alpha \rceil })\) and \(\eta =Z_{(\rceil n\alpha \rceil )}\) is one of its minimizers, which concludes the proof. \(\square\)

Proof

(Proposition 3) Using the notation above, Lemma 2 implies that

$$\begin{aligned} \widehat{\mathrm {QDEV}}_{\alpha }(w; {\mathsf {X}})&= (\epsilon _{1} + \epsilon _{2}) \frac{1}{n} \sum _{i=1}^{n} (1-\alpha )\big (\eta (p) - Z_{i} \big )^{+} + \alpha \big (Z_{i} - \eta (p)\big )^{+} \\&= \frac{1}{n} \sum _{i=1}^{n} \epsilon _{1}\big (\eta (p) - Z_{i} \big )^{+} + \epsilon _{2} \big (Z_{i} - \eta (p)\big )^{+}, \end{aligned}$$

where \(\eta (p)\) can be \(Z_{(\lceil n\alpha \rceil )}\) or \(Z_{(\lceil n\alpha \rceil - 1)}\) depending on the value of p. The result follows from the assumption that the \(Z_i\) observations are i.i.d. \(\square\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagnoncelli, B.K., del Canto, F. & Cifuentes, A. The effect of regularization in portfolio selection problems. TOP 29, 156–176 (2021). https://doi.org/10.1007/s11750-020-00578-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-020-00578-7

Keywords

Mathematics Subject Classification

Navigation