Skip to main content
Log in

On egalitarian values for cooperative games with a priori unions

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

In this paper, we extend the equal division and the equal surplus division values for transferable utility cooperative games to the more general setup of transferable utility cooperative games with a priori unions. In the case of the equal surplus division value we propose three possible extensions. We provide axiomatic characterizations of the new values. Furthermore, we apply the proposed modifications to a particular motivating example and compare the numerical results with those obtained with the original values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In this example the quota units are the square meters of the apartments. For the approach we adopt to be meaningful, the quota unit numbers must be integers.

  2. Notice that we have included the efficiency in the definition of value. We could have considered it as one more property and then it would have appeared explicitly in the characterizations; nothing relevant would have changed in that case.

  3. A value g for TU-games with a priori unions satisfies the quotient game property if, for all \(( N,v,P)\in {\mathcal {G}}^U\) with \(P=\{P_1,\ldots ,P_m\}\) and for its quotient game (Mv/P), it holds that \(\sum _{i\in P_k}g_{i}\left( N,v,P\right) =g_{k}\left( M,v/P,P^{m}\right) \) for all \(P_k\in P\), where \(P^m=\left\{ \left\{ 1\right\} ,\left\{ 2\right\} ,\ldots ,\left\{ m\right\} \right\} \).

  4. \(v_{P_{k}}\) denotes the characteristic function of the TU-game \((P_{k},v_{P_{k}})\), where \(v_{P_{k}}(S)=v(S)\) for all \(S\subseteq P_{k}\).

References

  • Algaba E, Fragnelli V, Sánchez-Soriano J (2019) Handbook of the Shapley value. CRC Press, Boca Raton

    Book  Google Scholar 

  • Alonso-Meijide JM, Casas-Méndez B, Fiestras-Janeiro G, Holler MJ (2011) The Deegan–Packel index for simple games with a priori unions. Qual Quant 45:425–439

    Article  Google Scholar 

  • Alonso-Meijide JM, Casas-Méndez B, González-Rueda A, Lorenzo-Freire S (2014) Axiomatic of the Shapley value of a game with a priori unions. Top 22:749–770

    Article  Google Scholar 

  • Alonso-Meijide JM, Fiestras-Janeiro G (2002) Modification of the Banzhaf value for games with a coalition structure. Ann Oper Res 109:213–227

    Article  Google Scholar 

  • Arín J, Kuipers J, Vermeulen D (2003) Some characterizations of egalitarian solutions on classes of TU-games. Math Soc Sci 46:327–345

    Article  Google Scholar 

  • Aumann RJ, Drèze J (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237

    Article  Google Scholar 

  • Béal S, Rémila E, Solal P (2019) Coalitional desirability and the equal division value. Theory Decis 86:95–106

    Article  Google Scholar 

  • Casajus A, Hüttner F (2014) Null, nullifying, or dummifying players: the difference between the Shapley value, the equal division value, and the equal surplus division value. Econ Lett 122:167–169

    Article  Google Scholar 

  • Casas-Méndez B, García-Jurado I, van den Nouweland A, Vázquez-Brage M (2003) An extension of the \(\tau \)-value to games with coalition structures. Eur J Oper Res 148:494–513

    Article  Google Scholar 

  • Chun Y, Park B (2012) Population solidarity, population fair-ranking and the egalitarian value. Int J Game Theory 41:255–270

    Article  Google Scholar 

  • Costa J (2016) A polynomial expression of the Owen value in the maintenance cost game. Optimization 65:797–809

    Article  Google Scholar 

  • Crettez B, Deloche R (2019) A law-and-economics perspective on cost-sharing rules for a condo elevator. Rev Law Econ 15:1–20

    Article  Google Scholar 

  • Dietzenbacher B, Borm P, Hendrickx R (2017) The procedural egalitarian solution. Games Econ Behav 106:179–187

    Article  Google Scholar 

  • Driessen TSH, Funaki Y (1991) Coincidence of and collinearity between game theoretic solutions. OR Spectr 13:15–30

    Article  Google Scholar 

  • Dutta B (1990) The egalitarian solution and reduced game properties in convex games. Int J Game Theory 19:153–169

    Article  Google Scholar 

  • Dutta B, Ray D (1989) A concept of egalitarianism under participation constraints. Econometrica 57:615–635

    Article  Google Scholar 

  • Ferrières S (2017) Nullified equal loss property and equal division values. Theory Decis 83:385–406

    Article  Google Scholar 

  • Hu XF (2020) The weighted Shapley-egalitarian value for cooperative games with a coalition structure. Top 28:193–212

    Article  Google Scholar 

  • Hu XF, Xu GJ, Li DF (2019) The egalitarian efficient extension of the Aumann-Drèze value. J Optim Theory Appl 181:1033–1052

    Article  Google Scholar 

  • Ju Y, Borm P, Ruys P (2007) The consensus value: a new solution concept for cooperative games. Soc Choice Welf 28:685–703

    Article  Google Scholar 

  • Klijn F, Slikker M, Tijs S, Zarzuelo J (2000) The egalitarian solution for convex games: some characterizations. Math Soc Sci 40:111–121

    Article  Google Scholar 

  • Lorenzo-Freire S (2016) On new characterizations of the Owen value. Oper Res Lett 44:491–494

    Article  Google Scholar 

  • Moretti S, Patrone F (2008) Transversality of the Shapley value. Top 16:1–41

    Article  Google Scholar 

  • Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Mathematical economics and game theory. Springer, New York, pp 76–88

    Chapter  Google Scholar 

  • Saavedra-Nieves A, García-Jurado I, Fiestras-Janeiro G (2018) Estimation of the Owen value based on sampling. In: Gil E, Gil E, Gil J, Gil MA (eds) The mathematics of the uncertain: a tribute to Pedro Gil. Springer, New York, pp 347–356

    Chapter  Google Scholar 

  • Selten R (1972) Equal share analysis of characteristic function experiments. In: Sauermann H (ed) Contributions to experimental economics III. Mohr, Siebeck, pp 130–165

    Google Scholar 

  • Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the Theory of Games II. Princeton University, Press, pp 307–317

  • van den Brink R (2007) Null or nullifying players: the difference between the Shapley value and equal division solutions. J Econ Theory 136:767–775

    Article  Google Scholar 

  • van den Brink R, Funaki Y (2009) Axiomatizations of a class of equal surplus sharing solutions for TU-games. Theory Decis 67:303–340

    Article  Google Scholar 

  • van den Brink R, Chun Y, Funaki Y, Park B (2016) Consistency, population solidarity, and egalitarian solutions for TU-games. Theory Decis 81:427–447

    Article  Google Scholar 

  • van den Brink R, van der Laan G, Moes N (2015) Values for transferable utility games with coalition and graph structure. Top 23:77–99

    Article  Google Scholar 

  • Vázquez-Brage M, García-Jurado I, Carreras F (1996) The Owen value applied to games with graph-restricted communication. Games Econ Behav 12:42–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. García-Jurado.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the ERDF, the MINECO/AEI grants MTM2017-87197-C3-1-P, MTM2017-87197-C3-3-P, and by the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2016-015 and ED431C-2017/38 and Centro Singular de Investigación de Galicia ED431G/01). The authors would like to thank two anonymous referees for their helpful suggestions to improve this article.

Appendix

Appendix

(a) Independence of the properties of Theorem 3.2:

  • \(\varphi _{i}=\) \(\frac{v(P_{k})}{p_{k}}+\frac{v(N)-\sum _{l\in M}v(P_{l})}{mp_{k}}\) satisfies ADD, SWU and SAU, but not NPP.

  • \(\varphi _{i}=\) \(\frac{v(N)}{n}\) satisfies ADD, SWU and NPP, but not SAU.

  • \(\varphi _{i}=\frac{2v(N)}{mp_{k}}\) if \(\displaystyle i=\min _{j\in P_{k}}j\) or \(\varphi _{i}=\frac{(p_{k}-2)v(N)}{mp_{k}(p_{k}-1)}\) if \(i\in P_{k}\) and \(i\ne \min _{j\in P_{k}}j\), satisfies ADD, SAU and NPP, but not SWU.

  • \(\varphi _{i}=\frac{2v(N)}{mp_{k}|Z_{k}|}\) if \(\displaystyle i\in Z_{k}=\{j\in P_{k}/v(j)=\min _{z\in P_{k}}v(z)\}\), \(\varphi _{i}=\frac{ (p_{k}-2)v(N)}{mp_{k}(p_{k}-|Z_{k}|)}\) if \(i\in P_{k}\backslash Z_{k}\), satisfies SWU, SAU and NPP, but not ADD.

(b) Independence of the properties of Theorem 4.4:

  • \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+\frac{v(N)-\sum _{l\in M}v(P_{l})}{n}\) satisfies ADD, SWU, DUNPP, but not SAU.

  • \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+\frac{2(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}}\) if \(\displaystyle i=\min _{j\in P_{k}}j\) or \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+\frac{(p_{k}-2)(v(N)-\sum _{l\in M}v(P_{l}))}{ mp_{k}(p_{k}-1)}\) if \(i\in P_{k}\) and \(i\ne \min _{j\in P_{k}}j\), satisfies ADD, SAU and DUNPP, but not SWU.

  • \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+\frac{2(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}|Z_{k}|}\) if \(\displaystyle i\in Z_{k}=\{j\in P_{k}/v(j)=\min _{z\in P_{k}}v(z)\}\), \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+ \frac{(p_{k}-2)(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}(p_{k}-|Z_{k}|)}\) if \( i\in P_{k}\backslash Z_{k}\), satisfies SWU, SAU and DUNPP, but not ADD.

  • \(\varphi _{i}=v(i)+\frac{v(P_{k})-\sum _{j\in P_{k}}v(j)}{p_{k}}+\frac{ v(N)-\sum _{l\in M}v(P_{l})}{mp_{k}}\) satisfies ADD, SWU and SAU, but not DUNPP.

(c) Independence of the properties of Theorem 4.5:

  • \(\varphi _{i}=v(i)+\frac{v(P_{k})-\sum _{j\in P_{k}}v(j)}{p_{k}}+\frac{ v(N)-\sum _{l\in M}v(P_{l})}{n}\) satisfies ADD, SWU and DUPP, but not SAU.

  • \(\varphi _{i}=v(i)+\frac{v(P_{k})-\sum _{j\in P_{k}}v(j)}{p_{k}}+\frac{ 2(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}}\) if \(\displaystyle i=\min _{j\in P_{k}}j\) or \(\varphi _{i}=v(i)+\frac{v(P_{k})-\sum _{j\in P_{k}}v(j)}{p_{k}}+ \frac{(p_{k}-2)(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}(p_{k}-1)}\) if \(i\in P_{k}\) and \(i\ne \min _{j\in P_{k}}j\), satisfies ADD, SAU and DUPP, but not SWU.

  • \(\varphi _{i}=v(i)+\frac{v(P_{k})-\sum _{j\in P_{k}}v(j)}{p_{k}}+\frac{ 2(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}|Z_{k}|}\) if \(\displaystyle i\in Z_{k}=\{j\in P_{k}/v(j)=\min _{z\in P_{k}}v(z)\}\), \(\varphi _{i}=v(i)+\frac{ v(P_{k})-\sum _{j\in P_{k}}v(j)}{p_{k}}+\frac{(p_{k}-2)(v(N)-\sum _{l\in M}v(P_{l}))}{mp_{k}(p_{k}-|Z_{k}|)}\) if \(i\in P_{k}\backslash Z_{k}\), satisfies SWU, SAU and DUNPP, but not ADD.

  • \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+\frac{v(N)-\sum _{l\in M}v(P_{l})}{mp_{k}}\) satisfies ADD, SWU and SAU, but not DUPP.

(d) Independence of the properties of Theorem 4.6:

  • \(\varphi _{i}=v(i)+\frac{v(N)-\sum _{j\in N}v(j)}{n}\) satisfies ADD, SWU and DPP, but not WSAU.

  • \(\varphi _{i}=v(i)+\frac{2(v(N)-\sum _{j\in N}v(j))}{mp_{k}}\) if \( \displaystyle i=\min _{j\in P_{k}}j\) or \(\varphi _{i}=v(i)+\frac{ (p_{k}-2)(v(N)-\sum _{j\in N}v(j))}{mp_{k}(p_{k}-1)}\) if \(i\in P_{k}\) and \( i\ne \min _{j\in P_{k}}j\), satisfies ADD, WSAU and DPP, but not SWU.

  • \(\varphi _{i}=v(i)+\frac{2(v(N)-\sum _{j\in N}v(j))}{mp_{k}|Z_{k}|}\) if \( \displaystyle i\in Z_{k}=\{j\in P_{k}/v(j)=\min _{z\in P_{k}}v(z)\}\), \( \varphi _{i}=v(i)+\frac{(p_{k}-2)(v(N)-\sum _{j\in N}v(j))}{ mp_{k}(p_{k}-|Z_{k}|)}\) if \(i\in P_{k}\backslash Z_{k}\), satisfies SWU, WSAU and DPP, but not ADD.

  • \(\varphi _{i}=\frac{v(P_{k})}{p_{k}}+\frac{v(N)-\sum _{l\in M}v(P_{l})}{mp_{k}}\) satisfies ADD, SWU, WSAU but not DPP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alonso-Meijide, J.M., Costa, J., García-Jurado, I. et al. On egalitarian values for cooperative games with a priori unions. TOP 28, 672–688 (2020). https://doi.org/10.1007/s11750-020-00553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-020-00553-2

Keywords

Mathematics Subject Classification

Navigation