Skip to main content
Log in

Non-monotone derivative-free algorithm for solving optimization models with linear constraints: extensions for solving nonlinearly constrained models via exact penalty methods

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

This paper describes a non-monotone direct search method (NMDSM) that finds a stationary point of linearly constrained minimization problems. At each iteration the algorithm uses NMDSM techniques on the Euclidean space \({\mathbb {R}}^n\) spanned by n variables carefully selected from the \(n+m\) variables formulated by the model under analysis. These variables are obtained by simple rules and are handled with pivot transformations frequently used in the solution of linear systems. A new weaker 0-order non smooth necessary condition is suggested, which transmute to other stationarity conditions, depending upon the kind of differentiability present in the system. Convergence with probability 1 is proved for non smooth functions. The algorithm is tested numerically on a set of small to medium size problems that have exhibited serious difficulties for their solution by other optimization techniques. The paper also considers possible extensions to non-linearly constrained problems via exact penalty function and a slightly modified algorithm satisfactorily solved a multi-batch multi-product plant that was modeled as a MINLP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramson MA, Audet C, Couture G, Dennis Jr JE, Le Digabel S. The NOMAD project. http://www.gerad.ca/nomad

  • Abramson MA, Brezhneva OA, Dennis Jr JE, Pingel RI (2008) Pattern search in the presence of degenerate linear constraints. Optim Methods Softw 23(3):297–319

    Article  Google Scholar 

  • Audet C, Dennis JE Jr (2003) Analysis of generalized pattern searches. SIAM J Optim 13:889–903

    Article  Google Scholar 

  • Audet C, Le Digabel S, Peyrega M (2015) Linear equalities in blackbox optimization. Comput Optim Appl 61(1):1–23

    Article  Google Scholar 

  • Belotti P, Kirches C, Leyffer S, Linderoth J, Luedke J, Mahajan A (2013) Mixed-Integer nonlinear optimization. Acta Numer 22:1–131

    Article  Google Scholar 

  • Burachik RS, Rubinov A (2005) On the absence of duality gap for Lagrange-type functions. J Ind Manag Optim 1(1):33–38

    Google Scholar 

  • Conn AR, Scheinberg K, Vicente Luís N (2009) Introduction to derivative-free optimization. MPS-SIAM series on optimization. SIAM. ISBN 978-0-898716-68-9 edition

  • Coope ID, Price CJ (2000) Frame based methods for unconstrained optimization. Optim Theory Appl 107(2):261–274

    Article  Google Scholar 

  • Di Pillo G, Grippo L (1988) On the exactness of a class of nondifferentiable penalty functions. Optim Theory Appl 57(3):399–410

    Article  Google Scholar 

  • Di Pillo G, Lucidi S, Rinaldo F (2012) An approach to constrained global optimization based on exact penalty functions. J Global Optim 54(2):251–260

    Article  Google Scholar 

  • Dolan ED, Moré JJ, Munson TS (2004) Benchmarking optimization software with COPS 3.0. Argonne National Laboratory Technical Report ANL/MCS-TM-273. ++

  • Easterling DR, Watson LT, Madigan ML, Castle BS, Trosset MW (2014) Parallel deterministic and stochastic global minimization of functions with very many minima. Comput Optim Appl 57:469–492

    Article  Google Scholar 

  • Fasano G, Liuzzi G, Lucidi S, Rinaldi F (2014) A linesearch-based derivative-free approach for nonsmooth constrained optimization. SIAM J Optim 24(3):959–992

    Article  Google Scholar 

  • Fenqi Y, Grossmann I (2009) Mixed-Integer nonlinear programming models for the optimal design of multi-product batch plant. http://www.minlp.org/library/problem/index.php?i=48

  • García-Palomares UM (2020) A unified convergence theory for Non monotone Direct Search Methods (DSMs) with extensions to DFO with mixed and categorical variables. submitted

  • García-Palomares UM, Rodríguez JF (2002) New sequential and parallel derivative-free algorithms for unconstrained minimization. SIAM J Optim 13(1):79–96

    Article  Google Scholar 

  • García-Palomaress UM, González-Castaño FJ, Burguillo Rial JC (2006) A combined global & local search (CGLS) approach to global optimization. J Global Optim 34:409–426

    Article  Google Scholar 

  • García-Palomares UM, Rodríguez-Hernández PS (2019) Unified approach for solving box-constrained models with continuous or discrete variables by non monotone direct search methods. Optim Lett 13(1):95–111

    Article  Google Scholar 

  • García-Palomares UM, García-Urrea IJ, Rodríguez-Hernández PS (2013) On sequential and parallel non-monotone derivative free algorithms for box constrained optimization. Optim Methods Softw 28(6):1233–1261

    Article  Google Scholar 

  • García-Urrea IJ (2010) Método de Búsqueda Directa no monótona para Optimizar una Función Objetivo Sujeta a Restricciones Lineales. Doctoral Dissertation, Universidad Simón Bolívar, Venezuela, http://159.90.80.55/tesis/000151094.pdf

  • Gramacy RB, Gray GA, Le Digabel S, Lee HKH, Ranjan P, Wells G, Wild SM (2014) Modeling an augmented lagrangian for improved Blackbox constrained optimization. arXiv preprint. arXiv:1403.4890

  • Grossmann IE, Sargent RW (1979) Optimal design of multipurpose chemical plants. Ind Eng Chem Process Des Dev 18:343–348

    Article  Google Scholar 

  • Kocis GR, Grossmann IE (1988) Global optimization of nonconvex mixed-integer non-linear programming (MINLP) problems in process synthesis. Ind Eng Chem Res 27(8):1407–1421

    Article  Google Scholar 

  • Kolda TG, Torczon VJ (2004) On the convergence of asynchronous parallel pattern search. SIAM J Optim 14(4):939–964

    Article  Google Scholar 

  • Kolda TG, Lewis RM, Torczon VJ (2003) Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev 45(3):385–482

    Article  Google Scholar 

  • Laguna M, Martí R (2002) Experimental testing of advanced scatter search designs for global optimization of multimodal functions

  • Larson J, Wild SM (2015) A batch, derivative-free algorithm for finding multiple local minima. Argonne National Lab/MCS-P5228-1114, May 2015

  • Le Digabel S (2011) NOMAD user guide, version 3.5.0. March 2011

  • Le Digabel S (2011) Algorithm 909: Nomad: nonlinear optimization with the mads algorithm. ACM Trans Math Softw 37(4):1–15

    Article  Google Scholar 

  • Lewis RM, Torczon VJ (2000) Pattern search methods for linearly constrained minimization. SIAM J Optim 10:917–941

    Article  Google Scholar 

  • Lucidi S, Sciandrone M (2002) On the global convergence of derivative-free methods for unconstrained optimization. SIAM J Optim 13(1):97–116

    Article  Google Scholar 

  • Pachón A (2015) La asignación de recursos en OFDMA derivados de la formulación y la solución de un modelo de optimizacíon con variables continuas y variables booleanas. Tesis Doctoral, Dpto. Ingeniería Telemática, Universidad de Vigo

  • Poland J (2000) Three different algorithms for generating uniformly distributed random points on the N-sphere. Unpublished. http://wwwalg.ist.hokudai.ac.jp/jan/randsphere.pdf

  • Sarkar D, Modak JM (2006) Optimal design of multiproduct batch chemical plant using NSGA-II. Asia-Pac J Chem Eng 1:13–20

    Article  Google Scholar 

  • Torczon VJ (1989) Multi-directional search: a direct search algorithm for parallel machines. PhD thesis, Rice University, Houston,TX

  • Torczon VJ (1991) On the convergence of multidirectional search algorithm. SIAM J Optim 1:123–145

    Article  Google Scholar 

  • Törn A, Ali M, Viitanen S (1999) Stochastic global optimization: problem classes and solution techniques. J Global Optim 14:437–447

    Article  Google Scholar 

  • Tsoulos IG, Lagaris IE (2006) MinFinder: locating all the local minima of a function. Comput Phys Commun 174:166–179

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially funded by the Universidad Simón Bolívar and by the Universidade de Vigo through grant R2014/037 from the Galician Regional Government. Spain. Thanks to an anonymous referee who read the previous version and suggested modifications that enhanced the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ubaldo M. García-Palomares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Palomares, U.M. Non-monotone derivative-free algorithm for solving optimization models with linear constraints: extensions for solving nonlinearly constrained models via exact penalty methods. TOP 28, 599–625 (2020). https://doi.org/10.1007/s11750-020-00549-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-020-00549-y

Keywords

Mathematics Subject Classification

Navigation