Skip to main content
Log in

Stochastic modelling of operational quality of k-out-of-n systems

  • Original Paper
  • Published:
TOP Aims and scope Submit manuscript

Abstract

In this paper, we study some operational quality measures of the k-out-of-n systems. Performance of these systems is characterized by a quality (output) function that is decreasing in the absence of components’ failures. Moreover, it decreases (downward jump) with each failure of a component in a system as well. We employ the point processes approach for description of the corresponding failure process and derivation of the main results. Expectations (unconditional and conditional on survival) and variability for the system’s quality function are derived and analyzed. The corresponding ‘future quality process’ is defined and described. Some illustrative examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aven T, Jensen U (1999) Stochastic models in reliability. Springer, New York

    Book  Google Scholar 

  • Aven T, Jensen U (2000) A general minimal repair model. J Appl Probab 37:187–197

    Article  Google Scholar 

  • Boland PJ, Proschan F (1983) The reliability of k out of n systems. Ann Prob 11:760–764

    Article  Google Scholar 

  • Cha JH (2014) Characterization of the generalized Pólya process and its applications. Adv Appl Prob 46:1148–1171

    Article  Google Scholar 

  • Cha JH, Finkelstein M (2011) Stochastic intensity for minimal repairs in heterogeneous populations. J Appl Prob 48:868–876

    Article  Google Scholar 

  • Cha JH, Finkelstein M (2018) Point processes for reliability analysis. Shocks and repairable systems. Springer, London

    Book  Google Scholar 

  • Cha JH, Finkelstein M (2019a) On some characteristics of quality for systems operating in a random environment. Proc Inst Mech Eng Part O 233:257–267

    Google Scholar 

  • Cha JH, Finkelstein M (2019b) Optimal preventive maintenance for systems having a continuous output and operating in a random environment. TOP 27:327–350

    Article  Google Scholar 

  • Ding Y, Zuo MJ, Lisnianski A, Li W (2010) A framework for reliability approximation of multi-state weighted k-out-of-n systems. IEEE Trans Reliab 59:297–308

    Article  Google Scholar 

  • Eryilmaz S (2013) Reliability of a k-out-of-n system equipped with a single warm standby component. IEEE Trans Reliab 62:499–503

    Article  Google Scholar 

  • Eryilmaz S, Navarro J (2012) Failure rates of consecutive k-out-of-n systems. J Korean Stat Soc 41:1–11

    Article  Google Scholar 

  • Finkelstein M (2003) The performance quality of repairable systems. Qual Reliab Eng Int 19:67–72

    Article  Google Scholar 

  • Finkelstein M (2008) Failure rate modeling for reliability and risk. Springer, London

    Google Scholar 

  • Finkelstein M, Cha JH (2013) Stochastic modelling for reliability (Shocks, burn-in and heterogeneous populations). Springer, London

    Book  Google Scholar 

  • Ghoraf N (2008) Reliability formula and limit law of the failure time of “m-consecutive-k-out-of-n: F system”. TOP 16:62

    Article  Google Scholar 

  • Ghoraf N, Boushaba M (2003) Fast formula of a reliability of m-consecutive-k-out-of-n: F system with cycle k. TOP 11:275

    Article  Google Scholar 

  • Hsieh CC, Chiu KC (2002) Optimal maintenance policy in a multistate deteriorating standby system. Eur J Oper Res 141:689–698

    Article  Google Scholar 

  • Krishnamoorthy A, Ushakumari PV (1999) Reliability of a k-out-of-n system with repair and retrial of failed units. TOP 7:293–304

    Article  Google Scholar 

  • Lee H, Cha JH (2016) Point processes approach to modeling and analysis of general cascading failures models. J Appl Prob 53:174–186

    Article  Google Scholar 

  • Leemis LM (1995) Reliability: probabilistic models and statistical methods. Prentice Hall, New Jersey

    Google Scholar 

  • Levitin G (2013) Multi-state vector k-out-of-n systems. IEEE Trans Reliab 62:648–657

    Article  Google Scholar 

  • Levitin G, Xing L, Dai Y (2015) Linear multistate consecutively-connected systems subject to a constrained number of gaps. Reliab Eng Syst Saf 133:246–252

    Article  Google Scholar 

  • Lisniansky A, Levitin G (2003) Multi-state system reliability: assessment, optimization and applications. World Scientific, Singapore

    Book  Google Scholar 

  • Lisniansky A, Frenkel I, Ding Y (2010) Multistate systems reliability analysis and applications for engineers and industrial managers. Springer, London

    Google Scholar 

  • Marichal JL, Mathonet P, Navarro J, Paroissin C (2017) Joint signature of two or more systems with applications to multistate systems made up of two-state components. Eur J Oper Res 263:559–570

    Article  Google Scholar 

  • Meng FC (2005) Comparing two reliability upper bounds for multistate systems. Reliab Eng Syst Saf 87:31–36

    Article  Google Scholar 

  • Natvig B (2010) Multistate systems reliability theory with applications. Wiley, Chichester

    Google Scholar 

  • Navarro J, Eryilmaz S (2007) Mean residual lifetimes of consecutive-k-out-of-n systems. J Appl Prob 44:82–98

    Article  Google Scholar 

  • Navarro J, Longobardi M, Pellerey F (2017) Comparison results for inactivity times of k-out-of-n and general coherent systems with dependent components. Test 26:822–846

    Article  Google Scholar 

  • Rausand M, Hoyland A (2004) System reliability theory: models, statistical methods and applications, 2nd edn. Wiley, New Jersey

    Google Scholar 

  • Yeh WC (2008) A simple minimal path method for estimating the weighted multi-commodity multistate unreliable networks reliability. Reliab Eng Syst Saf 93:125–136

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank referees for helpful comments and advices. The work of the first author was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2019R1A2B5B02069500). The work of the first author was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number: 2019R1A6A1A11051177).The work of the second author was supported by National Research Foundation (SA) (Grant No: 103613).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji Hwan Cha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Proof of Lemma 1

Let \(s_{0} \equiv 0\), \(s_{m + 1} \equiv t\), \(\Delta t_{0} \equiv 0\), and \(\Delta t_{j}\) is infinitesimally small so that \(s_{j} + \Delta t_{j} < s_{j + 1}\), \(j = 1,2, \ldots ,m\). Then, using the notion of stochastic intensity,

$$\begin{aligned} P(s_{j} \le S_{j} \le s_{j} + \Delta t_{j} ,j = 1, \ldots ,m,N(t) = m) = P(\{ {\text{No}}\,\,{\text{events}}\,\,{\text{in}}\,\,(s_{j - 1} + \Delta t_{j - 1} ,s_{j} ),\,\,1\,\,{\text{event}}\,\,{\text{in}}\,[s_{j} ,\,s_{j} + \Delta t_{j} ]\} ,j = 1,2, \ldots ,m,\, \hfill \\ \quad \quad {\text{no}}\,\,{\text{events}}{\kern 1pt} \,\,{\text{in}}\,\,(s_{m} + \Delta t_{m} ,t))\, \hfill \\ \quad \quad = \left[ {\exp \{ - \varLambda_{0} (0,s_{1} )\} (\lambda_{0} (s_{1} )\Delta t_{1} + o(\Delta t_{1} ))} \right. \times \exp \{ - \varLambda_{1} (s_{1} + \Delta t_{1} ,s{}_{2})\} (\lambda_{1} (s_{2} |s_{1} )\Delta t_{2} + o(\Delta t_{2} )) \times \cdots \hfill \\ \quad \quad \quad \times \exp \{ - \varLambda_{m - 1} (s_{m - 1} + \Delta t_{m - 1} ,s_{m} )\} (\lambda_{m - 1} (s_{m} |s_{1} ,s_{2} , \ldots ,s_{m - 1} )\Delta t_{m} + o(\Delta t_{m} ))\left. {\exp \{ - \varLambda_{m} (s_{m} + \Delta t_{m} ,t)\} } \right] \hfill \\ \quad \quad = \prod\limits_{j = 0}^{m} {\left( {\lambda_{j} (s_{j + 1} |s_{1} ,s_{2} , \ldots ,s_{j} )\Delta t_{j + 1} + o(\Delta t_{j + 1} )} \right)} \cdot \exp \left\{ { - \sum\limits_{j = 0}^{m} {\varLambda_{j} (s_{j} + \Delta t_{j} ,s_{j + 1} )} } \right\}. \hfill \\ \end{aligned}$$

Denote by \(f_{{S_{1} ,S_{2} , \ldots ,S_{N(t)} ,N(t)}} (s_{1} ,s_{2} , \ldots ,s_{m} ,m)\) the joint distribution of \((S_{1} = s_{1} ,S_{2} = s_{2} , \ldots ,S_{m} = s_{m} ,N(t) = m)\). Then

$$\begin{aligned} f_{{S_{1} ,S_{2} , \ldots ,S_{N(t)} ,N(t)}} (s_{1} ,s_{2} , \ldots ,s_{m} ,m) = \lim_{{\Delta t_{j} \to 0,j = 1,2, \ldots ,m}} \frac{{P(s_{j} \le S_{j} \le s_{j} + \Delta t_{j} ,j = 1, \ldots ,m,N(t) = m)}}{{\left( {\prod\nolimits_{j = 1}^{m} {\Delta t_{j} } } \right)}} \hfill \\ \quad = \left[ {\prod\limits_{j = 0}^{m - 1} {\lambda_{j} } (s_{j + 1} |s_{1} ,s_{2} , \ldots ,s_{j} )\exp \{ - \varLambda_{j} (s_{j} ,s_{j + 1} )\} } \right] \cdot \exp \{ - \varLambda_{m} (s_{m} ,t)\} ,\quad 0 \le s_{1} \le s_{2} \le \cdots \le s_{m} \le t,\quad m = 1,2, \ldots ,n - k. \hfill \\ \end{aligned}$$

1.2 Proof of Theorem 4

Denote by \(\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\}\) the realization of \(\{ S_{1} ,S_{2} , \ldots ,S_{N(s)} ,N(s)\}\). By definition,

$$\begin{aligned} Q_{E} & (t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s) = E[\tilde{Q}(s + t)I(s + t)|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s] \hfill \\ & = E\left[ {Q(s + t)\prod\limits_{i = 1}^{n(s)} {\exp \{ - \psi_{i} (s_{i} )\} } \prod\limits_{j = N(s) + 1}^{N(s + t)} {\exp \{ - \psi_{j} (S_{j} )\} } \cdot I(s + t)|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s} \right] \hfill \\ & = Q(s + t)\prod\limits_{i = 1}^{n(s)} {\exp \{ - \psi_{i} (s_{i} )\} } E\left[ {\prod\limits_{j = N(s) + 1}^{N(s + t)} {\exp \{ - \psi_{j} (S_{j} )\} } \cdot I(s + t)|\{ t_{1} ,t_{2} , \ldots ,t_{n(s)} ,n(s)\} } \right] \hfill \\ & = Q(s + t)\prod\limits_{i = 1}^{n(s)} {\exp \{ - \psi_{i} (s_{i} )\} } E\left[ {\prod\limits_{j = 1}^{{N_{s} (t)}} {\exp \{ - \psi_{n(s) + j} (s + S_{j}^{*} )\} } \cdot I(s + t)|\{ t_{1} ,t_{2} , \ldots ,t_{n(s)} ,n(s)\} } \right], \hfill \\ \end{aligned}$$

where \(n(s) \le n - k\), \(N_{s} (t) = N(s + t) - N(s)\), \(S_{j}^{*}\) is the time from \(s\) to the \(j\) th component’s failure occurred in \((s,s + t]\), \(j = 1,2, \ldots ,N_{s} (t)\). Note that, given \(\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\}\), at time \(s\) the system is the \(k\)-out-of \(n - n(s)\) system with the common components failure rate \(\lambda (s + u)\), \(u \ge 0\). Thus, applying similar procedure as that in the proof of Theorem 1,

$$\begin{aligned} & E \left[ {\prod\limits_{j = 1}^{{N_{s} (t)}} {\exp \{ - \psi_{n(s) + j} (s + S_{j}^{*} )\} } \cdot I(s + t)|\{ t_{1} ,t_{2} , \ldots ,t_{n(s)} ,n(s)\} } \right] \hfill \\ & \quad = \exp \{ - (n - n(s))\varLambda_{s} (t)\} + \sum\limits_{m = 1}^{n - n(s) - k} {\int\limits_{0}^{t} {\int\limits_{0}^{{v_{m} }} \cdots } } \int\limits_{0}^{{v_{2} }} {\prod\limits_{i = 1}^{m} {\exp \{ - \psi_{n(s) + i} (s + v_{i} )\} } } \hfill \\ & \quad \;\; \times \left[ {\prod\limits_{j = 0}^{m - 1} {\lambda_{sj} } (v_{j + 1} |v_{1} ,v_{2} , \ldots ,v_{j} )\exp \{ - \varLambda_{sj} (v_{j} ,v_{j + 1} )\} } \right] \cdot \exp \{ - \varLambda_{sm} (v_{m} ,t)\} dv_{1} dv_{2} \ldots dv_{m} , \hfill \\ \end{aligned}$$

where \(\varLambda_{s} (t) = \int_{0}^{t} {\lambda (s + w)} dw\), \(\lambda_{sj} (t|v_{1} ,v_{2} , \ldots ,v_{j} ) = (n - n(s) - j)\lambda (s + t)\), \(j = 0,1,2, \ldots ,n - n(s) - k\), \(\varLambda_{sj} (u_{1} ,u_{2} ) = \int_{{u_{1} }}^{{u_{2} }} {\lambda_{sj} (w|v_{1} ,v_{2} , \ldots ,v_{j} )} dw\).

Observe that

$$\begin{aligned} & Q_{E} (t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s) = E[\tilde{Q}(s + t)I(s + t)|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s] \hfill \\ & = E[\tilde{Q}(s + t)I(s + t)|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s,T > s + t]P(T > s + t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s) \hfill & \\ + E[\tilde{Q}(s + t)I(s + t)|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s,T \le s + t]P(T \le s + t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s) \hfill & \\ = E[\tilde{Q}(s + t)I(s + t)|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s + t]P(T > s + t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s) \hfill & \\ = Q_{ES} (t|\{ t_{1} ,t_{2} , \ldots ,t_{n(s)} ,n(s)\} ,T > s)P(T > s + t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ). \hfill \\ \end{aligned}$$

Again, given \(\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\}\) at time \(s\), the system is the \(k\)-out-of \(n - n(s)\) system with the common components failure rate \(\lambda (s + u)\), \(u \ge 0\). Thus,

$$P(T > s + t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ) = \sum\limits_{l = k}^{n - n(s)} {} \left( {\begin{array}{*{20}c} {n - n(s)} \\ l \\ \end{array} } \right)(\exp \{ - \varLambda_{s} (t)\} )^{l} (1 - \exp \{ - \varLambda_{s} (t)\} )^{n - n(s) - l} ,$$

and

$$Q_{ES} (t|\{ t_{1} ,t_{2} , \ldots ,t_{n(s)} ,n(s)\} ,T > s) = \frac{{Q_{E} (t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} ,T > s)}}{{P(T > s + t|\{ s_{1} ,s_{2} , \ldots ,s_{n(s)} ,n(s)\} )}}.$$

1.3 Proof of Theorem 5

Observe that

$$\begin{aligned} Q_{E} (t|T > s) & = E[\tilde{Q}(s + t)I(s + t)|T > s] \hfill \\ & = E_{{(\{ S_{1} ,S_{2} , \ldots ,S_{N(s)} ,N(s)\} |T > s)}} [E[\tilde{Q}(s + t)I(s + t)|\{ S_{1} ,S_{2} , \ldots ,S_{N(s)} ,N(s)\} ,T > s]], \hfill \\ \end{aligned}$$

where \(E_{{(\{ S_{1} ,S_{2} , \ldots ,S_{N(s)} ,N(s)\} |T > s)}} [ \cdot ]\) stands for the expectation with respect to the conditional joint distribution \((\{ S_{1} ,S_{2} , \ldots ,S_{N(s)} ,N(s)\} |T > s)\). From Theorem 4

$$\begin{aligned} & E[\tilde{Q}(s + t)I(s + t)|\{ T_{1} ,T_{2} , \ldots ,T_{N(s)} ,N(s)\} ,T > s] \hfill \\ & = Q(s + t)\prod\limits_{i = 1}^{n(s)} {\exp \{ - \psi (s_{i} )\} } \times \left\{ {\exp \{ - (n - n(s))\varLambda_{s} (t)\} } \right. \hfill \\ & \quad + \sum\limits_{m = 1}^{n - n(s) - k} {\int\limits_{0}^{t} {\int\limits_{0}^{{v_{m} }} \cdots } } \int\limits_{0}^{{v_{2} }} {\prod\limits_{i = 1}^{m} {\exp \{ - \psi_{n(s) + i} (s + v_{i} )\} } } \hfill \\ & \;\; \times \left. {\left[ {\prod\limits_{j = 0}^{m - 1} {\lambda_{sj} } (v_{j + 1} |v_{1} ,v_{2} , \ldots ,v_{j} )\exp \{ - \varLambda_{sj} (v_{j} ,v_{j + 1} )\} } \right] \cdot \exp \{ - \varLambda_{sm} (v_{m} ,t)\} dv_{1} dv_{2} \ldots dv_{m} } \right\}, \hfill \\ \end{aligned}$$

and the conditional joint distribution \((\{ S_{1} ,S_{2} , \ldots ,S_{N(s)} ,N(s)\} |T > s)\) is given by

$$\begin{aligned} & \frac{1}{P(T > s)}\left[ {\prod\limits_{j = 0}^{m - 1} {\lambda_{j} } (s_{j + 1} |s_{1} ,s_{2} , \ldots ,s_{j} )\exp \{ - \varLambda_{j} (s_{j} ,s_{j + 1} )\} } \right] \cdot \exp \{ - \varLambda_{m} (s_{m} ,t)\} \hfill \\ & \quad 0 \le s_{1} \le s_{2} \le \cdots \le s_{m} \le s,m = 1,2, \ldots ,n - k. \hfill \\ \end{aligned}$$

Let

$$\begin{aligned} \varPhi (r) & \equiv \left\{ {\exp \{ - (n - r)\varLambda_{s} (t)\} + \sum\limits_{m = 1}^{n - r - k} {\int\limits_{0}^{t} {\int\limits_{0}^{{v_{m} }} \cdots } } \int\limits_{0}^{{v_{2} }} {\prod\limits_{i = 1}^{m} {\exp \{ - \psi_{r + i} (s + v_{i} )\} } } } \right. \hfill \\ & \quad \left. { \times \left[ {\prod\limits_{j = 0}^{m - 1} {\lambda_{sj} } (v_{j + 1} |v_{1} ,v_{2} , \ldots ,v_{j} )\exp \{ - \varLambda_{sj} (v_{j} ,v_{j + 1} )\} } \right] \cdot \exp \{ - \varLambda_{sm} (v_{m} ,t)\} dv_{1} dv_{2} \ldots dv_{m} } \right\}. \hfill \\ \end{aligned}$$

Then

$$\begin{aligned} Q_{E} (t|T > s) & = \frac{{\exp \{ - n\varLambda (s)\} }}{{\sum\nolimits_{l = k}^{n} {\left( {\begin{array}{*{20}c} n \\ l \\ \end{array} } \right)} (\exp \{ - \varLambda (s)\} )^{l} (1 - \exp \{ - \varLambda (s)\} )^{n - l} }}Q(s + t)\varPhi (0) \hfill \\ & \; + \frac{Q(s + t)}{{\sum\nolimits_{l = k}^{n} {\left( {\begin{array}{*{20}c} n \\ l \\ \end{array} } \right)} (\exp \{ - \varLambda (s)\} )^{l} (1 - \exp \{ - \varLambda (s)\} )^{n - l} }} \hfill \\ & \times \sum\limits_{r = 1}^{n - k} {\int\limits_{0}^{s} {\int\limits_{0}^{{s_{r} }} \cdots \int\limits_{0}^{{s_{2} }} {\left[ {\prod\limits_{i = 1}^{r} {\exp \{ - \psi (s_{i} )\} } } \right]\varPhi (r)} } } \hfill \\ & \times \left[ {\prod\limits_{j = 0}^{r - 1} {\lambda_{j} } (s_{j + 1} |s_{1} ,s_{2} , \ldots ,s_{j} )\exp \{ - \varLambda_{j} (s_{j} ,s_{j + 1} )\} } \right] \cdot \exp \{ - \varLambda_{r} (s_{r} ,t)\} ds_{1} \ldots ds_{r - 1} ds_{r} . \hfill \\ \end{aligned}$$

On the other hand, by definition, \(Q_{ES} (t|T > s) = E[\tilde{Q}(s + t)|T > s + t] = Q_{ES} (s + t)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, J.H., Finkelstein, M. Stochastic modelling of operational quality of k-out-of-n systems. TOP 28, 424–441 (2020). https://doi.org/10.1007/s11750-019-00536-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11750-019-00536-y

Keywords

Mathematics Subject Classification

Navigation